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Abstract
The double fetch vulnerability is a specific type of time-of-check to time-of-use (TOCTOU) bug,
generally occurring in sharedmemory interfaces. It happens when a kernel process, or other
privileged process such as a device driver, accesses a less trusted variable more than once,
without re-verifying any checks of the variable on the second access.

The paper discusses how they occur, how they can be recognised, and some approaches to
mitigate against them.
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Introduction
The double fetch vulnerability is a specific type of time-of-check to time-of-use (TOCTOU) bug, generally occurring in
shared memory interfaces. It happens when a kernel process, or other privileged process such as a device driver
or ARM TrustZone, reads a less trusted variable more than once, without re-verifying any checks of the variable on
the second read. The term was first used by Fermin J. Serna in a post on the Microsoft Security and Defense Blog
for MS08-061, in 20081 although the bug class was known prior to that blog post. This bug (MS08-061) allowed a
local privilege escalation in the then current version of Windows2 as a result of the kernel accessing a user-controlled
memory pool twice, without checking for a change in the size of the memory pool. No public domain exploits exist for
this vulnerability, although it was possibly overshadowed at the time by MS08-067, a notorious remote code execution
vulnerability with System privileges, that was disclosed two weeks later. Since the discovery and description of MS08-
061, variations of the double-fetch vulnerability have been discovered in the Linux Kernel, the Windows kernel, and in
various device drivers and virtualized hardware (see the examples later in this paper). Double fetches cause security
concerns for various reasons. If device drivers, kernel processes, or other high-privileged code interact with a user-
controlled variable that is susceptible to double fetch, then it can result in a vulnerability (such as privilege escalation
or buffer overflow). These defects are not easily identifiable by static analysis.

1https://msrc-blog.microsoft.com/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
2https://docs.microsoft.com/en-us/security-updates/securitybulletins/2008/ms08-061
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Double Fetch Bugs in More Detail
There are variations in the (unintentional) implementation or manifestation of the double fetch bug, but they all access
a value from shared variable or memory interface that is accessible by another process. The subsequent fetching
of that data without a subsequent check for whether it has been changed by other processes or by hardware that
can modify the data. This can have security implications when a privileged process carries out the fetching, using
user-controlled data from a less privileged process.

It’s also important to note that although the bugs are commonly known by the name ‘double fetch’, the general class
of bug can be caused by other types of access (such as a shared variable or object), and the situation may also occur
with more than two accesses.

Double fetch bugs can be caused by access of shared memory with insufficient protections, sometimes due to invalid
programmer assumptions, or in other cases, by compiler optimization, which we’ll also examine. The outcome is a
privileged process such as a kernel, uses data controlled by a less privileged user without a suitable check, potentially
leading to privilege escalation.

Not all double fetch instances are exploitable. The level of risk is classified by Wang3 as follows:

• Benign double fetch: A case that will not cause harm, because of other protections, because the double-fetched
value is not used twice or the original value is overwritten prior to use.

• Harmful double fetch: A case that could cause failures in the kernel/process with the failures limited to performance
issues.

• Double-fetch vulnerability: A case that can be actively exploited for privilege escalation, arbitrary read/write, or buffer
overflows.

While we examine double fetch in general terms in this paper, we concentrate on the security implications and primarily
concern ourselves with double fetch vulnerabilities (although any defences and mitigations discussed are equally
applicable against the benign and harmful instances).

The non-exploitable instances can still result in sub-optimal performance, and can cause poor performance in terms
of speed or resource usage, or potentially a crash.

These bugs exist in low-level code such as the kernel and device drivers, because shared memory interfaces can offer
performance benefits over high-level mechanisms such as sockets. Device drivers, by their nature, are susceptible to
this issue because they run with elevated privileges while interacting with memory that may be updated by a piece of
hardware.

Double fetch vulnerabilities can be caused by poor programming practices or by unexpected compiler optimizations.
To illustrate these cases and make the explanations more concrete, we’ll look at examples of each in detail in the
following sections, and discuss the nature of the vulnerabilities and how they were fixed.

Programming Practices Causing Double Fetch

A double fetch bug may occur due to insecure programming practices. This could happen when, for example, a privi-
leged process uses a variable controlled by a less-privileged process and performs a check on it, before subsequently
reusing the same variable without performing further checks.

Although double fetch vulnerabilities existed prior to MS08-061, these were usually described using more traditional
terms, such as buffer overflow. Fermin J. Serna first used the term double fetch in a blog post.4

In the MS08-061 blog post we are given the following code:
3https://discovery.ucl.ac.uk/id/eprint/1557280/1/Dodier-Lazaro_sec17-wang.pdf
4https://msrc-blog.microsoft.com/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
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// Attacker controls lParam
void win32k_entry_point(...) {

[...]
// lParam has already passed successfully the ProbeForRead
my_struct = (PMY_STRUCT)lParam;
if (my_struct ->lpData) {

cbCapture = sizeof(MY_STRUCT) + my_struct->cbData; // [1] first fetch
[...]
// my_struct ->lpData has already passed successfully the ProbeForRead
[...]
if ( my_allocation = UserAllocPoolWithQuota(cbCapture, TAG_SMS_CAPTURE)) != NULL) {

RtlCopyMemory(my_allocation, my_struct->lpData,
my_struct->cbData); // [2] second fetch

}
}
[...]

}

In this case, the two fetches are visible in the source code, and a manual code review could conceivably identify the
issue, provided the reviewer identified the variable as originating in user space, prior to being used by the kernel. In this
example, the first fetch of mystruct->cbData is used to determine the size of my_struct->lpData, and to then determine
the size of an area of memory referenced by my_allocation that will hold a copy of my_struct->lpData. The second fetch
takes place when the RtlCopyMemory function5 is used to obtain a new copy of my_struct and copy mystruct->cbData
bytes of my_struct->lpData into my_allocation. If an attacker has inserted a payload into the memory referenced by
my_struct that is larger than the original value of my_struct, then this payload will overflow the memory referenced by
my_allocation.

Generally, these situations involve invariants between two or more variables where one or more of these variables
is modified without the invariant being enforced. An example of a specific situation that could impact security, such
as the one previously described, is where code for a privileged process reads a user-controlled variable to determine
the size of memory allocation and subsequently to perform a copy of the variable, without re-checking that the size
is still correct. Detection and possible fixes are described later in this post. The following example shows code from
Linux kernel 2.6.9, reported in CVE 2005-24906,.7 Although described as a buffer overflow in the CVE, it is similar to
the vulnerability described by MS08-061 in that it checks the length once, but fetches it twice, using the length from
the first fetch. In the following code, the user-controlled parameters passed into the function are examined in the first
while loop and copied in the second while loop. The verification of the data’s length only occurs in the first loop, while
the second loop copies the data without verifying the length.

int cmsghdr_from_user_compat_to_kern(struct msghdr *kmsg, unsigned char *stackbuf,
int stackbuf_size)

{
struct compat_cmsghdr __user *ucmsg;
struct cmsghdr *kcmsg, *kcmsg_base;
compat_size_t ucmlen;

[...]

kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf;
ucmsg = CMSG_COMPAT_FIRSTHDR(kmsg);

5https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-rtlcopymemory
6https://www.cvedetails.com/cve/CVE-2005-2490/
7https://discovery.ucl.ac.uk/id/eprint/1557280/1/Dodier-Lazaro_sec17-wang.pdf
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while(ucmsg != NULL) {
if(get_user(ucmlen, &ucmsg->cmsg_len))

return -EFAULT;

if(CMSG_COMPAT_ALIGN(ucmlen) < CMSG_COMPAT_ALIGN(sizeof(struct compat_cmsghdr)))
return -EINVAL;

[...]

if((...)(((char __user *)ucmsg - (char __user*)... + ucmlen) > kmsg->msg_controllen)
return -EINVAL;

ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);
}

if(kcmlen == 0)
return -EINVAL;

[...]

ucmsg = CMSG_COMPAT_FIRSTHDR(kmsg);
while(ucmsg != NULL) {

__get_user(ucmlen, &ucmsg->cmsg_len);
tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))) +
CMSG_ALIGN(sizeof(struct cmsghdr)));
kcmsg->cmsg_len = tmp;

if(copy_from_user(CMSG_DATA(kcmsg), CMSG_COMPAT_DATA(ucmsg),
(ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg)))))

}

Compiler-Introduced Double Fetch

A double fetch bug can occur in situations where the compiler introducesmultiple fetches of a variable, despite a single
read within the source code. Unlike the MS08-061 bug previously discussed, this defect arises from a permissible
compiler transformation that results in a second read of the user-controlled memory. Consequently, the defect is
visible in the object code but not the source code.

Note that this bug type has been referred to as ‘compiler induced’ in the past. We are using the phrase ‘compiler
introduced’ here to emphasize that this is a valid transformation. This distinction will be discussed in more detail later.

The following code, adapted from Xen Security Advisory CVE-2015-8550 (XSA-155),8 illustrates a compiler-introduced
double fetch. The code is vulnerable to a race condition, in a case where the integer referenced by the ps pointer could
be modified by another thread that carried out the modification between the first and second read of the variable.

#include <stdio.h>
#include <stdlib.h>

void doStuff(int* ps)
{

printf("NON-VOLATILE");

8https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8550
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switch(*ps)
{

case 0: { printf("0"); break; }
case 1: { printf("1"); break; }
case 2: { printf("2"); break; }
case 3: { printf("3"); break; }
case 4: { printf("4"); break; }
default: { printf("default"); break; }

}
return;

}

void main(int argc, void *argv)
{

int i = rand();
doStuff(&i);

}

The source code has a single read of *ps, but the compiler produces object code with multiple reads of *ps. This is a
result of the “as-if” principle, as described in section 5.1 of the C99 Rationale 20039:

The /as if/ principle is invoked repeatedly in this Rationale. The C89 Committee found that describing various aspects of
the C language, library, and environment in terms of concrete models best serves discussion and presentation. Every
attempt has beenmade to craft these models so that implementations are constrained only insofar as they must bring
about the same result, /as if/ they had implemented the presentation model; often enough the clearest model would
make for the worst implementation.

This bug is a consequence of the way GCC optimizes code for Intel architecture, containing switch statements with five
or more cases.10 The optimization eliminates the use of a register in cases where the default value is hit, but opens a
small window for an attacker to modify the variable between reads.

This is apparent in the compiler output below, that shows the switch value held in memory, at a location pointed to by
the rbx register, and being dereferenced in the cmp instruction, before being used again by subsequent instructions:

doStuff:
.LFB39:

.cfi_startproc
endbr64
push rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
xor eax, eax
mov rbx, rdi
lea rsi, .LC0[rip]
mov edi, 1
call __printf_chk@PLT
cmp DWORD PTR [rbx], 4
ja .L2
mov eax, DWORD PTR [rbx]
lea rdx, .L4[rip]
movsx rax, DWORD PTR [rdx+rax*4]

9http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
10http://tkeetch.co.uk/blog/?p=58
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add rax, rdx
notrack jmp rax
.section .rodata
.align 4
.align 4

[...]

.L2:
.cfi_restore_state
lea rsi, .LC1[rip]
mov edi, 1
xor eax, eax
pop rbx
.cfi_def_cfa_offset 8
jmp __printf_chk@PLT
.cfi_endproc

This is not a compiler bug as this is a valid transformation. The Xen source code is defective in that it fails to disallow
this optimization through the use of volatile or other means, as discussed further below.

The bug specifically occurs in an optimizedGCC executable. Compiler-introduced vulnerabilities depend on the specific
implementation (compiler and flags)11,.12 The source code should always be considered incorrect if the transformation
that introduces the defect is permissible.

11http://tkeetch.co.uk/blog/?p=58
12https://docs.huihoo.com/blackhat/usa-2013/us-13-Blanchou-Shattering-Illusions-in-Lock-Free-Worlds.pdf
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Detection and Exploitation
Static analysis is currently of limited use in detecting double fetch bugs because of the contextual knowledge required
outside of the identification of unchecked second fetch. To do this any static analysis tool would require additional
information to identify an instance:

• Whether the code being examined runs with elevated privileges
• Whether the variable can be modified outside of the context of the code
• Whether the above modification may be made by a non-administrator user/process

Manual code review could be used to identify double fetch bugs, although this would depend upon the skills and
alertness of the reviewer, as well as the reviewer being provided with suitable information or documentation to allow
them to draw correct conclusions.

Wang and Krinke give the following breakdown of how their approach to static analysis was used to detect double
fetch bugs in the Linux kernel. This seems to have been effective, according to their paper, although it is a refined
version of the above general points, adapted for the Linux kernel13:

“Our approach examines all source code files of the Linux kernel and checks whether a kernel function contains two or more
invocations of transfer functions that fetch data from the same user pointer. From the 39,906 Linux source files, 17,532
files belong to drivers (44%), and 10,398 files belong to non-x86 hardware architectures (26%) which cannot be analyzed
with Jurczyk and Coldwind’s x86-based technique. We manually analyzed the matched kernel functions to infer knowledge
on the characteristics of double fetches, i.e., how the user data is transferred to and used in the kernel, which helped us to
carry out a categorization of double-fetch situations, as we discuss in Section 3.2. The manual analysis also helped us refine
our pattern matching approach and more precisely detect actual double-fetch bugs…”

Dynamic analysis can be used to identify both compiler-introduced double fetches and double fetches resulting from
insecure coding practices, with useful work being done by both the Bochspwn project14 and by Wang.

The Bochspwn project’s whitepaper provides a useful pattern for the detection of double fetch bugs15: Defining the
double-fetch pattern as two consequent reads of the samememory location is insufficient to achieve satisfying results;
instead, the pattern must be defined in greater detail. To have a double-fetch vulnerability:

• There must be at least two memory reads from the same location.
• Both read operations take place within a small race window.
• The code instantiating the reads must execute in kernel mode.
• The location subject to multiple reads must reside in memory writable by user-mode code.

Using dynamic analysis to detect double fetch bugs is non-trivial, with considerable time and resource needed to run
the test platform, and further time needed to interpret the results16:

“Jurczyk et al. presented a dynamic approach for finding double fetches. They used a full CPU emulator to run Windows and
log all memory accesses. This requires significant computation and storage resources, as just booting Windows already
consumes 15 hours of time, resulting in a log file of more than 100 GB [38]. In the memory access log, they searched for a
distinctive double-fetch pattern, e.g., two reads of the same user-space address within a short time frame. They identified
89 double fetches in Windows 7 and Windows 8. However, their work also required manual analysis, in which they found
that only 2 out of around 100 unique double fetches were exploitable double-fetch bugs. “

13https://discovery.ucl.ac.uk/id/eprint/1557280/1/Dodier-Lazaro_sec17-wang.pdf
14https://storage.googleapis.com/pub-tools-public-publication-data/pdf/42189.pdf
15https://storage.googleapis.com/pub-tools-public-publication-data/pdf/42189.pdf
16http://www.misc0110.net/files/double_fetch.pdf
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Impact ofDouble FetchonApplication Security

A privilege escalation risk is present when memory accessed by a privileged process being shared with, and modified
by, a less privileged process. Exploitable instances can result in arbitrary read/write or in code execution in the context
of the privileged process. Less harmful instances of the bug can result in crashes or have a performance impact.

10 | Double Fetch Vulnerabilities in C and C++ NCC Group



Possible Solutions and Mitigations
Since double fetch bugs can have varying causes, we must consider different solutions for the two different subtypes
of double fetch. This section suggests both how one can prevent double fetch vulnerabilities introduced through
insecure programming practices, as well as how one can prevent double fetch vulnerabilities introduced by compilers.

Programming Practices Double fetch bugs accessing shared memory may be fixed by adding a check against the
second fetch, eliminating the second fetch (where practical), or performing the check in a different manner. For
instance, shared memory variables can be copied to an automatic variable and/or declared volatile.

The blog post about MS08-061, previously used to illustrate this bug type, gives the following non-vulnerable code as
a fix:

// Attacker controls lParam
void win32k_entry_point(…) {

[...]
// lParam has already passed successfully the ProbeForRead
my_struct = (PMY_STRUCT)lParam;
cbData_captured= my_struct->cbData;
lpData_captured = my_struct->lpData;
if (lpData_captured) {

cbCapture = sizeof(MY_STRUCT) + cbData_captured;
[...]
// lpData_captured has already passed successfully the ProbeForRead
[...]
if (my_allocation = UserAllocPoolWithQuota(cbCapture, TAG_SMS_CAPTURE)) != NULL) {

RtlCopyMemory(my_allocation, lpData_captured, cbData_captured);
}

}
[...]

}

The fixed code now uses both the size and the data from the original fetch instead of repeating the fetch, and has
two new variables, lpData_captured and cbData_captured, holding the data and its length respectively. The memory
referenced bymy_allocation is now the correct size to hold the data from the user-controlled variable, and the privilege
escalation attack is eliminated.

Compiler Introduced For compiler-introduced double fetches, the use of volatile variables is one possible solution to
the double fetch problem. The volatile keyword prevents a double fetch as each read or write of a volatile-qualified
object that appears in the source code must have an equivalent fetch or store in the object code, and additional reads
and writes cannot be injected. For non volatile-qualified objects, a compiler may omit an access if the compiler deems
it unnecessary (bearing inmind that the compiler does not detect that the variablemay have beenmodified by external
processes) or may introduce additional accesses for any reason (such as the optimizations discussed earlier).

A fix that uses volatile for the CVE-2015-8550 bug (used to illustrate the above bug type) is shown below.17 For this
issue, the use of a volatile int pointer eliminate the compiler-introduced double fetch from the object code:

#include <stdio.h>
#include <stdlib.h>

void doStuff(volatile int* ps) // Use volatile to ensure a single read
{

printf("VOLATILE");
switch(*ps)

17http://tkeetch.co.uk/blog/?p=58
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{
case 0: { printf("0"); break; }
case 1: { printf("1"); break; }
case 2: { printf("2"); break; }
case 3: { printf("3"); break; }
case 4: { printf("4"); break; }
default: { printf("default"); break; }

}
return;

}

void main(int argc, void *argv)
{

int i = rand();
doStuff(&i);

}

The code above results in the following compiler output, now having a single dereference of the memory location that
is stored in rbx, and the value held in that location being stored in the eax register:

doStuff:
.LFB39:

.cfi_startproc
endbr64
push rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
lea rsi, .LC0[rip]
mov rbx, rdi
xor eax, eax
mov edi, 1
call __printf_chk@PLT
mov eax, DWORD PTR [rbx]
cmp eax, 4
ja .L2
lea rdx, .L4[rip]
movsx rax, DWORD PTR [rdx+rax*4]
add rax, rdx
notrack jmp rax
.section .rodata
.align 4
.align 4

In more formal terms, the volatile keyword imposes restrictions on access and caching.

According to C23:

“Accesses to objects through the use of lvalues of volatile-qualified types are evaluated strictly according to the rules of the
abstract machine. At each sequence point, the value last stored in the object must agree with that prescribed by the abstract
machine. In the absence of the volatile qualifier, the contents of the designated location may be assumed to be unchanged,
except for possible aliasing.”

As the bug is inadvertently introduced by compiler optimization, itmight be tempting to take an approach of attempting
to eliminate it by switching off compiler optimization. This approach is definitely not recommended. In addition to the
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performance impact, a solution that relies on the person compiling the code using the appropriate settings is more of
a workaround than a repair. It also carries the inherent risk of not being applied if procedures or instructions are not
followed correctly.

Performance Considerations when Using Volatile-Qualified Objects As mentioned above, the decision to use shared
memory is usually for the purposes of improved performance. Using volatile -qualified objects can inhibit some
optimizations, impairing performance. Volatile should not be used carelessly, and should only be applied as necessary
to ensure the correctness of the code.

If volatile (or any other solution) is used to repair compiler-inserted double fetch bugs, the object code should be
examined to ensure a that only a single read instruction is emitted and test the resulting executable to ensure that the
repair is successful.

The use of volatile is unlikely to repair vulnerabilities introduced through insecure coding practices. The use of volatile
ensures that each memory access in the source code occurs in the executable, even when such memory accesses are
erroneous.

Compilers sometimes have bugs that cause the volatile qualifier to not behave as required by the standard.18 When
using volatile , examine the generated object code to verify that any use of volatile to eliminate double fetch translates
to the appropriate object code, and make sure you test the optimized, production builds.

18https://www.cs.utah.edu/~regehr/papers/emsoft08-preprint.pdf
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Conclusion
Double fetch bugs can result in privilege escalation vulnerabilities that can allow an attacker with a low privilege account
to execute code with elevated privileges, although the exploitable vulnerabilities are a relatively small subset of these
bugs. They can result from either insecure programming practices or can be caused as an unintended side effect of
compiler optimization (which are also combined with slightly less obvious insecure coding practices). There is currently
only one documented case where the GCC compiler can introduce such a defect, but to future-proof your code you
should assume that any allowable transformation is possible.

The two types of double fetch bug both have the same result, whereby an invariant exists involving two or more
variables and one ormore of these variables ismodifiedwithout the invariant being enforced. For example, a privileged
process reads a user-controlled variable, allocates memory to be used to hold a copy of the variable and subsequently
reads the variable from userland again without carrying out a subsequent check, allowing a potential overflow of the
kernel-controlled variable.

The bugs resulting from insecure coding vary, depending on the exact nature of the bug but include code changes
to ensure a check of the variable length after the second read, or performing a single read, storing a local copy and
eliminating the second read. The compiler introduced bugs can be fixed with the use of the volatile qualifier to prevent
the unwanted second read appearing in the object code.

The bugs generally exist due to the use of shared memory communication for the purpose of higher performance,
while the fixes generally have some small impact on performance. The fixes generally have a minimal performance
impact, and it seems unlikely that there would be any situation where such a small performance degradation would
outweigh the advantages of a secure and robust implementation.
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Standing on the Shoulders of Giants
This blog post has used information from several sources, and I’m indebted to the excellent work of the following
people and organizations:

• Robert C. Seacord for helpful suggestions and for the QA of initial drafts of this paper.
• Software Engineering Institute, Carnegie Mellon University: https://wiki.sei.cmu.edu/confluence/display/c/CON43-
C.+Do+not+allow+data+races+in+multithreaded+code

• Tom Keetch [@tkeetch]: http://tkeetch.co.uk/blog/?p=58
• Pengfei Wang, National University of Defense Technology; Jens Krinke, University College London; Kai Lu and Gen
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