

 iSEC Partners, Inc.

Exploiting Rich Content
Riley Hassell

As rich Internet application (RIA) technologies flourish in the mar-

ketplace security professionals begun to wonder what impact RIA

will have on security landscape. I decided to perform an assessment

of one of the most widely deployed technologies, Adobe Flash, and

in the process discovered several issues that could be used to com-

promise systems with Adobe Flash installed. During the audit a

large group of issues was uncovered that initially appeared harm-

less. Later in this paper I will describe how attackers can exploit

these perceived low risk issues to have a much deeper impact.

 Flash Overview

 Testing Methodology

 Manual Review

 Reverse Engineering

 Automated Testing

 Test Results

Flash Overview

Adobe Flash is one of the most widely deployed software technolo-

gies to date. The (Millward Brown) estimates 99% of internet-

connected computers are Flash enabled. Flash delivers a wide va-

riety of rich multimedia feature to its clients including: rich web

based application, video streaming, gaming, and

iSEC Partners, Inc. is a

information security firm

that specializes in appli-

cation, network, host,

and product security. For

more information about

iSEC, please refer to the

Appendix A or

www.isecpartners.com

Figure 1 Flash per Internet enabled desktops.

1

The SWF version 9
2
 file format consists of 64 tag types that are

parsed sequentially through the file. Tags have a TLV (type, length,

value) structure. Some tags contain embedded data such as bitmaps,

sounds, fonts, and even video. Several tags support subtypes of var-

ious depths. One such tag is DoAction. This tag contains compiled

ActionScript 2.0 byte codes.

1
 Millward Brown survey:

http://www.adobe.com/products/player_census/flashplayer/

2
http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v9.pdf

http://www.adobe.com/products/player_census/flashplayer/
http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v9.pdf

Testing methodology

Based on current research and public statistics we know the follow-

ing:

 Flash is available on all major desktop operating systems

 Flash Player is often installed default by vendors

 When Player not installed default by System vendor, user

will usually install the Flash player/

 ActionScript 2 (AS2) is supported by all popular players.

Even FlashLite, the Flash player for mobile device supports

ActionScript 2.0

The version penetration portion of the (Millward Brown) survey

indicates that on average 99% of systems in mature markets support

Action Script 2.0. Adobe indicated in their (PSIRT advisory) indi-

cated that Flash Player 9.0.124.0 and earlier were affected by my

SWF Header

DoAction

ActionRecord

ActionRecord

ActionRecord

…

ActionEnd

ShowFrame

EndTag

Many features are exposed

through tags and tag data. One

of the more powerful features

exposed is ActionScript. De-

signed initially for simple ani-

mation but has since been ex-

tended to offer rich functionali-

ty. ActionScript is based on the

ECMAScript standard there-

fore it is very similar to Java-

Script. ActionScript is sup-

ported by all popular Flash

players. ActionScript 2.0 when

compiled is converted to Ac-

tionRecord sub tags. The Ac-

tionRecord sub tags are stored

within DoAction tag data. A

stream of ActionRecord(s) is

terminated with record type of

ActionEnd.

findings. Therefore the issues discovered in the core AS2 runtime

could potentially affect 99% of Internet-enabled computers. Due to

its healthy install base, and the fact that it typically runs automati-

cally when pages contain flash content, exploitable problems with

Flash implementations would represent a potentially major risk to

Internet users.. Software with large installed bases may be priori-

tized by hackers and worm writers. One goal of this project was to

investigate the existence of vulnerabilities that could be exploited

across the various Flash-capable OSs. Results were provided to

Adobe for remediation. Testing was broken up into several phases.

http://www.adobe.com/products/player_census/flashplayer/version_

penetration.html

Manual Testing

Adobe’s Flash Professional is the most popular development envi-

ronment for Flash applications. Using Flash Professional I created

simple Flash movies with ActionScript. I then dissected my crea-

tions and reviewed the compiled movies in depth to better under-

stand the ActionScript runtime.

Figure 2 - Flash CS3 Professional

Timeline

Stage

ActionScript Editor

The stage is the large white rectangle where the movie frame design

is conducted. The user can attach various multimedia assets and ac-

tions to each frame.

The timeline is a linear representation of the frames within a movie.

Flash developers typically manage frames and frame contents using

the timeline.

The ActionScript Editor control is used for editing and managing

ActionScript attached to the current Flash movie. In our screen shot

shown above the following ActionScript source has been added to

the first frame:

As you may have already guessed when this line of ActionScript is

executed by the player a browser control will be created and redi-

rected to the URL provided (e.g. http://www.isecpartners.com).

The SweetScape 010 Editor
3
 now includes a file format template

applied to a SWF movie a breakdown of the file contents will be

provided in a tree view that the user can navigate. The following

screenshot depicts the output returned once the SWF template was

applied to our sample SWF movie that makes use of getURL.

Figure 3 – SWF Template for 010 Editor

3
 SweetScape 010 Editor: http://sweetscape.com/010editor/

http://www.isecpartners.com/
http://sweetscape.com/010editor/

Reverse Engineering

I performed a series of short reverse engineering sessions in order to

get an idea of what was happening “under the hood” in the popular

Flash players. I observed that players typically do not validate the

sizes of compartmentalized data structures. Many of the features

across versions appear to be grouped together in code. The existing

code was not split up for each major version’s support. This devel-

opment style are one of the many characteristics of the flash player

that allow make it so versatile yet permit

Automated Testing

An automated testing platform Fault Injection for Reverse Engi-

neers (FIRE) was developed over the last two years to deal with

many of the problems encountered when testing complex file for-

mats. This framework when applied to Flash was termed Flash-

FIRE. The FIRE framework was augmented to incorporate event

hooking through process instrumentation. We use this method of

handling events to drive and synchronize the delivery of faults to

the target application. Event Driven Fault Injection (EDFI) offers

several major gains when performing fault injection as will be re-

viewed later in this section.

Gather Input

The FIRE framework is a mutation based fault injection framework,

meaning input is mutated or altered and then supplied to a target

function, module, or application. Since input is required for testing

it must be gathered. A python script was developed that uses the

Google SOAP API to find SWF movies and then downloads and

indexes them by unique MD5 hash.

Survey Input

Gathered input is surveyed for interesting regions and offsets the

regions are saved into a list of vectors. The surveying logic differs

between target technologies. Survey logic Flash will skip large tex-

tual data regions such XML, HTML and ASCII. Regions that con-

tain binary data such as ActionScript regions will be marked for

fault injection tested in the next phase.

Process Instrumentation

Now that input has been prepared the test harness must be initia-

lized and attached to the target technology, in this case a browser

application with Flash Player loaded as a COM object. When

FlashFIRE starts it will invoke Internet Explorer with a default ho-

mepage set to simple HTML page with a basic SWF movie. Internet

Explorer will be invoked and monitored by the FlashFIRE debug-

ger. This debugger will monitor the Internet Explorer instance and

detect perform actions based on a wide variety of events. One such

event is the loading of the Flash Player module. When this occurs a

breakpoint will be inserted inside the Flash Player at a CreateWin-

dow call. This code point is executed after a Flash movie has been

process and right before the visual aspects are painted onto the

screen. By monitoring the execution of this point and a few other

error conditions points the state of the fault injection can be closely

measured.

Mutate Input

Batches of files are retrieved from the catalog and for each iteration

of testing a file is pulled from the batch and mutated. The file is mu-

tated by injecting a variety of faulty input, e.g. for integer overflows

8bit,16bit and 32bit integer fields that trigger common integer over-

flow vulnerabilities are injected into surveyed regions. Once the

fault has been injected an event is sent to target application to trig-

ger it to load the test input (SWF file).

Process Monitoring

During the instrumentation phase breakpoints were set on several

key code execution control paths in the target application. Each time

one of these code points is executed a breakpoint will be hit and a

corresponding event will be generated with FlashFIRE and deli-

vered to the necessary listener.

Module Load Event

This event is fired when a selected module has been loaded in the

target address space.

Fault Delivered Event

This event is raised when the fault input has been completely

processed.

Application Failure Event

This event is raised when recoverable errors such as handled excep-

tions are encountered.

Application Critical Failure Event

Monitor points are setup in the target application in code paths that

are only exercised when critical failures are encountered. These

failures included: failure stack/heap cookie checks, exit process, and

unhandled exceptions.

Post Mortem bug Analysis (PMA)

When an Application Failure Event or Application Critical Failure

Event is encountered the FlashFIRE debugger will record the case

by collecting the current input stream (with the injected fault), the

thread context, and the stack trace from the current thread. These

items will be saved into a bug catalog of current findings.

Bug Cache

Another important enhancement to the FlashFIRE debugger is ex-

ception caching. When an application error is encountered the call

stack is validated to be not null and at least three frames in depth. If

this criterion is met a hash is created from the call stack and current

EIP. This hash is checked against a list of previously encountered

hash. If the hash does not exist it is created and the bug is cataloged.

If it already exists then no further processing of the bug occurs.

Test Results

In this section the results of testing effort will be discussed and re-

viewed in depth where pertinent. The follow bullet points summar-

ize the testing effort and results:

 3 million injections in 36 hours of testing

 23 unique vulnerabilities identified

 785 unique paths to vulnerable code sequences identified

Targeted testing was applied to the ActionScript 2 virtual machine

used by the Adobe Flash player. Several issues were identified

which could lead to denial of service, information disclosure or

code execution when parsing a malicious SWF file. The majority of

testing occurred during 120 hours of automated SWF-specific fault

injection testing in which several hundred unique control paths were

identified that trigger bugs and/or potential vulnerabilities in the

Adobe Flash Player. Paths leading to duplicate issues where con-

densed down to a number of unique problems in the Adobe Flash

Player. The primary cause for these vulnerabilities appears to be

simple failures in verifying the bounds of compartmentalized data

structures.

Figure 4 – Automated Testing Results

As shown in the graph above the majority of the issues discovered

are out of bounds read operations. These are typically caught by op-

erating system exception handling and converted into an error.

Read beyond bounds

A read beyond bounds occurs when a piece of code reads beyond

the bounds of the data element it is intended to read. This type of

bug is very common in code that deals with complex binary struc-

tures.

SWF for example is a flat structure (file format) that consists of tags

and these tag objects can have similar tag objects embedded within

them. When this tag chain is traversed the length fields are used

when retrieving content from the SWF into the player memory. For

example the following code would perform a read beyond bounds if

the length within the block structure (blk -> len) is greater than the

actual size of the data element:

typedef struct block {

 int len;

 void *data;

} BLOCK;

char *url = NULL;

int GetElement(BLOCK *blk) {

 if(blk->len > 2048)

 {

 printf("Invalid block size!\n");

 return -1;

 }

67%

21%

8%
4% Read Beyond Bounds

Null Pointer

Uninitalized Data

Other

 url = (char *)calloc(blk->len,1);

 memcpy(url, blk->data, blk->len);

 return 0;

}

This small example demonstrates one of the principles behind why

read beyond issues are so prevalent: Dynamically sized data ele-

ments are very difficult to measure in size and the lengths supplied

with those fields are usually trusted. With copy operations the size

of the destination buffer is usually known and a write beyond

bounds (buffer/heap overflow) can be prevented by verifying that

the size of the source buffer is not greater than the size of the desti-

nation buffer. On the other side of the transaction not much is

known.

Example read beyond bounds in Flash

In the case of the DefineConstantPool record we were able supply

an arbitrary constant count. The player then parses constant values

(strings) from the string table, and continues reading null terminated

strings in the adjacent tag data, eventually reading from memory

adjacent to the Flash movie. References to these values are stored in

a table of constants that can be later accessed using a set of action

records. A proof of concept was developed and presented to the

vendor to demonstrate the threat of read beyond bounds issues to

complex file formats such as the SWF file format.

The proof of concept SWF movie will 255 strings from adjacent

heap memory, create a text file on the stage and write the contents

of the strings to the stage. The following is pseudo code for the

proof of concept SWF that was created to demonstrate the exploita-

bility of a read beyond bound issue.

var heapstr = new Array();

heapstr[0] = "I";

heapstr[1] = "S";

heapstr[2] = "E";

heapstr[3] = "C";

heapstr[4] = const_pool_string_from_heap[0]

heapstr[5] = const_pool_string_from_heap[1]

heapstr[6] = const_pool_string_from_heap[2]

...

heapstr[259] = const_pool_string_from_heap[255]

var buffer:String = "";

for(var i = 0;i < 259;i++)

 buffer += heapstr[i];

createTextField("tf", 1, 10, 10, 400, 100);

tf.text = buffer;

When the POC is loaded into the browser a small subset of the heap

strings will be written to a textbox on the browser page. For exam-

ple when the author tested the proof of concept on his vulnerable

test system the following was displayed in the browser:

IheapstrArrayISECbufferitfcreateTextFieldmultiline-

wordWraptext? ™?

text? ™?

 @ffer

Lž file:///C:/Documents%20and%20Settings/consultant/Des

ktop/gen.swfction|

„€ H$0 ,p�p�

Loading this demonstration SWF movie in different popular brows-

ers yielded different outcomes due to the memory layout of the

browsers at the time the movie was loaded. Often the content was

sensitive, such as the username of the current logged in user, or lo-

cal path to the loaded content. The exploit discussed only retrieves

255 strings from the adjacent heap. A maximum of 65535 (size of

constant pool) strings could be retrieved, permitting an attacker to

retrieve large portions of browser heap memory.

Storage and retrieval

An attacker must accomplish two things to exploit most read

beyond bounds issue. First the data that is read from memory must

be stored somewhere more easily accessible to the attacker tempora-

rily. After the data has been stored it must be delivered to the at-

tacker. In the exploitation of the DefineConstantPool vulnerability

the storage phase occurs when the strings are read from the heap

and stored into the constant pool string table. The retrieval would

occur then the pool entries were concatenated into a buffer and sent

to the browser display.

Another important factor in Read Beyond Bounds (RBB) exploita-

tion is how the application treats the data during the storage and re-

trieval. For example if during the storage of the data, the copy oper-

ation is performed a using a strict size (i.e. memcpy) then the data

may contain nulls. If the data was copied using a null terminating

copy function (i.e. strncpy) then the data copied could be signifi-

cantly smaller. Ideally an attacker would want to find a storage and

retrieval combination that used strictly sized memory copy opera-

tions.

Heap Grooming

This technique has been around for nearly a decade but has recently

gotten attention publicly
4
. If an attacker can influence a target appli-

cation to allocate memory in sizes of their choosing and retain the

allocations temporarily, they can place attacker supplied data in

chosen regions of the target processes heap. Heap grooming has

been demonstrated as an assisting exploit method for heap over-

flows but the author found that it can also be used to order the heap

for other exploitation methods such as read beyond bounds. For ex-

ample when exploiting a read beyond bounds issue where an attack-

er can only read a few hundred bytes beyond the end of a heap

block. By defragmenting the heap and fan attacker can move the

originating read beyond bounds block throughout the heap and each

new read will capture new portions of heap memory. This can be

repeated until something of interested is acquired.

Same Origin Impact

The same origin policy
5
 is critical security concept that when en-

forced correctly prevents site content from accessing the content

from another site. This malicious behavior is usually attempted

through scripting. Issues such as the read beyond bounds issue al-

low an attacker to peek into browser memory and potentially read

content from other sites. This could include session cookie, user-

names and password and virtually anything else in browser heap

memory.

Prevalence in modern software

Software security audits frequently scan for operations that write

data to a destination. Parsers, null terminated copies, and list man-

agement often contain boundary writing issues i.e. buffer overflows.

The out of bound reading of data is often overlooked and not re-

viewed during an audit. Secondly when read boundary issues occur

they often do not cause a software failure, therefore they often go

unnoticed.

Conclusion

While initially this bug class appeared fairly benign the author

found several interesting qualities about RBB issues. These read

beyond issues can often be exploited to retrieve sensitive data from

the browser process. This issue doesn’t require any addressing, ma-

4
 http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-

eu-07-sotirov-apr19.pdf
5
 http://en.wikipedia.org/wiki/Same_origin_policy

chine code, or other system dependent characteristics. The proof of

concept shown earlier has been tested: Windows 2000, Windows

XP, Windows Vista, Windows 2003, Mac OS and various flavors of

Linux.

Acknowledgements

Josh Zelonis for the creation of the 010 Editor SWF and assistance

analyzing, testing and documenting vulnerability discoveries from

automated testing portion of this project.

 iSEC Partners, Inc.

Appendix A: About iSEC Partners, Inc.

iSEC Partners is a proven full-service security consulting firm, ded-

icated to making Software Secure. Our focus areas include:

 Mobile Application Security

 Web Application Security

 Client/Server Security

 Continuous Web Application Scanning (Automated/Manual)

Published Books

Notable Presentations

Whitepaper, Tools, Advisories, & SDL Products

 11 Published Whitepapers

o Including the first whitepaper on CSRF

 32 Free Security Tools

o Application, Infrastructure, Mobile, VoIP, & Storage

 8 Advisories

o Including products from Apple, Adobe, and Lenovo

 Free SDL Products

o SecurityQA Toolbar (Automated Web Application Testing)

o Code Coach (Secure Code Enforcement and Scanning)

o Computer Based Training (Java & WebApp Security)

