

The L@m3ne55 of Passw0rds: Notes from the field

Ben Williams
Senior Security Consultant

Previously

- Presented at various conferences including BlackHat and other smaller conferences in Europe
 - Exploitable vulnerabilities security appliances
 - Enumerating internal security products/policy externally

What we are covering today

- The experience of breaking into networks and applications with a variety of password attack tools and techniques
 - only a tiny part of what we do... but...
- What works and why
- Demos
- Advice

Password Attacks are not new, but...

- Things are much the same for the defender
 - Adoption of 2FA is slow and compartmentalised
 - Users choose passwords
- Regular iterative improvements for the attacker
 - New attack techniques
 - Improved tools and frameworks
 - Improved methodology and resources
 - Moore's law of processor improvements
 - Network bandwidth improvements
 - Tor and botnets

External Demo

External Enumeration and Attacks

- External enumeration
 - Password dictionary data
 - Internal usernames, hostnames and IP addresses
 - Email addresses, and formats
 - LinkedIn, Facebook etc.
- Attacks
 - Web applications with password authentication
 - VPN, Portals etc
 - Phishing (fake portal, outlook web access, whatever)

Demo External Enumeration

Demo External Attack

Account lockout != Bruteforce protection

- Password policy + account lockout + timeout
 - Temporary locks often lead to user enumeration
 - Attacker would likely gain access to the application
- Password policy + account lockout + manual reset
 - Attacker could gain access to the application if they can enumerate enough real users separately
 - Account lockout DoS
- Password policy + account lockout + timeout + brute-force protection
 - Can be very resilient, but unauthorised access may still be possible

Internal Demos

Internal Domain 1: Initial access

- Unauthenticated enumeration
 - Find the DCs, Workstations and Servers
- Low hanging fruit
 - Weak credentials: admin/admin, anonymous ftp and shares, snmp public/private, sa/<blank>, tomcat jboss
- Unauthenticated attacks
 - Enumerating users
 - Collecting hashes with NetBIOS/NBNS Spoofing
 - Small targeted password attack

Demo Phase 1

Internal Domain 2: Authenticated enumeration

- Authenticated enumeration
 - Identify password policy
 - Identify all users, administrators and systems
- Moderate targeted password attack
- For the credentials we have
 - Where can we login?
 - What access do we have?
- Collecting more credentials
 - Hashes
 - Plaintext passwords

Demo Phase 2

Hopping from system to system

Internal Domain: Getting Domain Admin

- Have a coffee and repeat
 - Iterative process
 - Workstations > Servers > Domain controller
 - Scale makes it easier
- Keep going...
 - Where can we login?
 - What access do we have?
 - Collect more credentials
 - Repeat

Internal Domain 3: Beyond Domain Admin

- Active Directory Passwords
 - Dumping and cracking hashes
- What about the ones I can't crack?
 - Find where the admins are logged in
 - In memory Mimikatz DLL injection
- Now we have lots of passwords: Hit the other infrastructure
 - Firewalls, switches, routers, appliances
 - Basically everything, but how far do you want to go?

Demo Phase 3

Access all areas

- Domain Admins, and all user hashes
 - Can reuse hashes, don't need to crack
 - Krbtgt hash Golden ticket attack
- Cracking passwords, to compromise non-Windows resources
 - Unconnected Web applications
 - Appliances, network kit, other infrastructure
 - Third party systems

Password Stats from Real Tests

• This is a representative composite example from several tests

Top 10 passwords	Number
Welcome123	53 (5.8%)
Password1	15 (1.6%)
Changeme2013	10 (1.1%)
<obscure complex="" password=""></obscure>	9 (1.0%)
<football team=""></football>	8 (0.9%)
Monday1	8 (0.9%)
password	7 (0.7%)
<company reference=""></company>	6 (0.6%)
P@ssw0rd1	6 (0.6%)
Summer2014	5 (0.5%)

What about password policy

What are the important factors in password policy?

Policy A	Security Setting
Enforce password history	24 passwords remembered
Maximum password age	42 days
Minimum password age	1 days
Minimum password length	7 characters
Password must meet complexity requir	Enabled
Store passwords using reversible encr	Disabled

Hash cracking process

A structured process gets results fast

Wordlist + Wordlist + Markov Character patterns Rainbow tables Full brute-force

- Wordlists are huge, and based data from real compromises
- (Many millions of real users passwords)
- Character patterns most statistically relevant first
- Crack speed depends on hash algorithm

Statistical analysis of passwords

- 50% passwords follow 13 basic rules
- For example
 - ?|?|?|?|?|?|
 - ?u?l?l?l?l?l?n
 - ?u?l?l?l?l?l?l?n
 - ?u?l?l?l?l?n?n?n?n
- Good resources for further reading:
- http://www.praetorian.com/blog/statistics-will-crack-your-password-mask-structure
- http://wpengine.com/unmasked/
- http://www.datagenetics.com/blog/september32012/

How real users interpret password rules

"Passwords must contain at least 1 upper, 1 lower, 1 number, and be at least 7 characters long"

- Take a base word of 6, 7 or 8 characters
- Chose <u>only</u> one upper
- Make <u>first</u> character upper
- Add numbers on the end (one, two, or four numbers)
- Or, substitute numbers and symbols for letters which look like numbers and symbols ("P@ssw0rd!")
- For password changes, users increment the number: "Manunited1!", "Manunited2!", "Manunited3!"...

NCC Group: Passcrack

- Two nodes, approximately £2500 for hardware
 - Each about the price of a fast gaming machine
 - + 1 Consultants time for building it
 - Currently using 5 graphics cards between the two
 - Not "nation state" level by any means

NCC Group: Passcrack

- Up to 100 billion password guesses per second
- Do you think your current password would be resilient?
- Do you think you could choose one that is?

How you could interpret password rules

"Passwords must contain at least 1 upper, 1 lower, 1 number, and be at least 7 characters long"

- Take two or three base words (10 15 characters, more?)
- Chose <u>multiple</u> upper and spread them <u>around</u>
- Put your numbers in different places
- Don't use predictable L337spe@k
- When you need to change your password, actually change the base words, and use different base words for each application/site

Examples: "£\$9ThisisNotharD", "doesnothAvetobe2cOmplex"

Make Password Attacks Harder (Top 10)

- 2FA or brute-force protection on external apps/portals
- Increase the length of passwords to 10+
 - Include user education
- Remove low hanging fruit
 - Weak credentials: admin/admin, anonymous ftp and shares, snmp public/private, sa/<blank>, tomcat jboss etc.
- Remove <u>all</u> legacy Windows systems: 2000, XP, 2003
- Regularly identify and disable unused user accounts
 - Ongoing maintenance task
- No service accounts in "Domain Admins" group
 - Membership of this group should be very restricted

Make Password Attacks Harder (Top 10)

- Mitigate NBNS spoofing
 - http://www.leonteale.co.uk/netbios-nbns-spoofing/
- No common local administrator account passwords
 - Microsoft LAPS:
 - https://technet.microsoft.com/en-us/library/security/3062591.aspx
- Active Directory password audit
 - Remediate accounts with weak passwords
- Internal network segregation
 - Separate Workstations from Servers (internal filtering)
 - Host-based firewalls
- Don't give users "local administrator" access

www.nccgroup.com

ben.williams(at)nccgroup.com @insidetrust

For more information see nccgroup blog post

UK Offices

Manchester - Head Office

Cheltenham

Edinburgh

Leatherhead

London

Thame

European Offices

Amsterdam - Netherlands

Munich - Germany

Zurich - Switzerland

North American Offices

San Francisco

Atlanta

New York

Seattle

Australian Offices

Sydney