

powHSM Security Assessment

IOV Labs

Version 1.1 – October 3, 2022

©2022 – NCC Group

Prepared by NCC Group Security Services, Inc. for IOV Labs. Portions of this document and the

templates used in its production are the property of NCC Group and cannot be copied (in full or in part)

without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of

the information contained herein. Use of NCC Group’s services does not guarantee the security of a

system, or that computer intrusions will not occur.

Prepared By

Paul Bottinelli

Kevin Henry

Prepared For

Bernardo Codesido

Adrian Eidelman

Ariel Mendelzon

1 Executive Summary

Synopsis

In June 2022, IOV Labs engaged NCC Group to perform a review of powHSM. Per the

project documentation: “Its main role is to safekeep and prevent the unauthorized usage of

each of the powPeg’s members’ private keys. powHSM is implemented as a pair of

applications for the Ledger Nano S, namely a UI and a Signer, and it strongly depends on

the device’s security features to implement the aforementioned safekeeping.”. In total, two

consultants contributed 20 person days of effort over approximately five weeks. The

assessment primarily focused on source code review, supplemented by 2 Ledger Nano S

devices provided by IOV to facilitate testing.

In September 2022, the same consultants reviewed an updated version of the library

addressing the findings in this report. In general, all findings and major comments were

addressed by IOV and all documented findings are considered fixed.

Scope

The scope of the review includes github.com/rsksmart/rsk-powhsm/tree/3.0.0, targeting

the 3.0.0 tagged release. The UI and signer components were identified as the highest

priority, including common code in src/common. In particular, the following goals were

identified by IOV to guide the review:

Seed cannot be extracted from the device

Signature operation authorization cannot be bypassed

Signer update authorization

Transaction signing

Recovery mode cannot be accessed without wiping the device first

An arbitrary app cannot be successfully used without wiping the device first

Arbitrary BIP32 paths cannot be used (either for signing or extracting the public key)

Blockchain state cannot be manipulated without the corresponding PoW

The subsequent re-test focused on changes made in the 3.0.1 tagged release.

Limitations

While physical devices were provided as part of this assessment, a review of the physical

security of the Ledger Nano S and the included secure element was not in scope. This

includes the investigation of side channel attacks, or attempts to reverse engineer the

behavior of the secure element.

Key Findings

The assessment uncovered a number of low severity findings, including:

Inconsistent Threshold Signature Validation Criteria: The order in which signers are

authorized affects the result of the authorization process.

Potentially Unsafe Exception Handling: Failure to use TRY-CATCH blocks appropriately

may lead to incorrect or unpredictable behavior based on compiler optimizations.

Failure to Validate Signer Authorizer Array Size May Lead to Out-of-Bound Memory

Access: If a large number of distinct authorizers are provided, then the signer

authorization process may write to out-of-bound memory addresses.

Additional Content

In addition to the formal findings listed above, the document contains sections detailing

general comments and engagement notes, as well as a detailed walkthrough of review

goals, with several more in-depth observations.

1.

2.

a.

b.

3.

4.

5.

6.

•

•

•

2 / 43 – Executive Summary

Client Confidential

https://github.com/rsksmart/rsk-powhsm/tree/3.0.0/ledger/src/common
https://github.com/rsksmart/rsk-powhsm/tree/3.0.0/ledger/src/common
https://github.com/rsksmart/rsk-powhsm/tree/3.0.1

2 Dashboard

Target Data Engagement Data

Name powHSM Type Security Assessment

Type Embedded Application Method Code-assisted

Platforms Embedded C; Ledger Nano

S

Dates 2022-06-06 to

2022-07-08

Environment Local Instance Consultants 2

Level of Effort 20 days

Targets

rsk-powhsm https://github.com/rsksmart/rsk-powhsm/tree/3.0.0

Finding Breakdown

Critical issues 0

High issues 0

Medium issues 0

Low issues 5

Informational issues 1

Total issues 6

Category Breakdown

Authentication 1

Cryptography 1

Data Validation 2

Error Reporting 1

Other 1

Component Breakdown

UI 2

UI, tcpsigner 1

signer 2

signer, signer-certificate 1

 Critical High Medium Low Informational

3 / 43 – Dashboard

Client Confidential

https://github.com/rsksmart/rsk-powhsm/tree/3.0.0

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Inconsistent Threshold Signature Validation Criteria Fixed 6PU Low

Potentially Unsafe Exception Handling Fixed AP2 Low

Block Number Validation in Blockchain State Update

Does Not Match Documentation

Fixed 2GR Low

Failure to Validate Signer Authorizer Array Size May

Lead to Out-of-Bound Memory Access

Fixed W4M Low

Onboarding State May Not Be Correctly Tracked Fixed 7DB Low

Flash Memory Endurance Considerations Fixed 4GK Info

4 / 43 – Table of Findings

Client Confidential

4 Finding Details

Inconsistent Threshold Signature Validation

Criteria

Overall Risk Low

Impact Low

Exploitability Medium

Finding ID NCC-E003945-6PU

Component UI

Category Cryptography

Status Fixed

Impact

The order in which signers are authorized affects the result of the authorization process.

The presence of an invalid signer within the first m signers of the “m-of-n” threshold

scheme will cause a failure, but the presence of an invalid signer after the first m signers

will not. This property is not typical of most threshold signature schemes.

Description

The function do_authorize_signer(volatile unsigned int rx, sigaut_t* sigaut_ctx)

implements the signer authorization protocol using an “m-of-n” threshold approach. This

function is called multiple times on various messages using the same authorization context

sigaut_ctx to track the number of valid authorization signatures. The first step involves

initializing the sigaut_ctx with the correct signer information. The authorization context is

defined in signer_authorization.h:

Once initialized, do_authorize_signer() will iterate over the known authorizers looking for

a key that validates the expected signature; see signer_authorization.c:

Low

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

250

251

252

253

254

255

256

257

// Signer authorization context

typedef struct {

sigaut_stage_t stage;

sigaut_signer_t signer;

bool authorized_signer_verified[MAX_AUTHORIZERS];

union {

cx_sha3_t auth_hash_ctx;

cx_ecfp_public_key_t pubkey;

};

union {

uint8_t buf[AUX_BUFFER_SIZE];

uint8_t auth_hash[HASHSIZE];

};

} sigaut_t;

// Check to see whether we find a matching authorized signer

signature_valid = 0;

for (int i = 0; i < TOTAL_AUTHORIZERS && !signature_valid; i++) {

// Clear public key memory region first just in case initialization

// fails

explicit_bzero(&sigaut_ctx->pubkey, sizeof(sigaut_ctx->pubkey));

// Init public key

cx_ecfp_init_public_key(CX_CURVE_256K1,

5 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L107-L124
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L107-L124
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L107-L124
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L250-L275
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L250-L275
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L250-L275

If the a valid signature is found, the result is stored within the current context. If no valid

signature was found, then an error is thrown and the context is reset (zeroed out).

Otherwise, the function proceeds to count the number of verified signatures in the current

context, and will return either SIG_AUT_OP_SIGN_RES_SUCCESS if the threshold is met, or SIG

_AUT_OP_SIGN_RES_MORE , indicating additional signatures are needed.

Note that the above behavior is not typical of threshold schemes, particularly because it

may return an error even when the threshold is met. Consider a situation in which three

signatures are provided, and 2-of-3 signatures are required to reach the threshold. Now

consider a situation in which a single signature is corrupted or malicious. If the first or

second signature is corrupted, the check on line 283 will cause an error to be thrown, the

context to be wiped, and the signer authorization protocol will fail. However, if the third

signer is corrupted, then the function will correctly validate the first signature, followed by

the second, and then return SIG_AUT_OP_SIGN_RES_SUCCESS as the threshold has been met.

Recommendation

The result of the signer authorization protocol should not depend on the order in which

signatures are validated. The protocol could be updated to proceed on a failed signature

validation, and return success when the threshold is met. Alternatively, if a single invalid

signature is intended to cause an error, then the complete set of signatures must be tested,

rather than returning an early success. In either case, the behavior should be clearly

documented.

Retest Results

2022-09-08 – Fixed

As part of release 3.0.1, commit 4967855 removed the conditional block of code that

aborted the authorization process if any single signature was invalid. Therefore, the

validation criteria should no longer depend on the order in which signatures are validated.

This change is in line with NCC Group’s recommendation, and the issue is therefore

considered fixed.

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

283

284

285

286

287

authorizers_pubkeys[i],

sizeof(authorizers_pubkeys[i]),

&sigaut_ctx->pubkey);

signature_valid = cx_ecdsa_verify(&sigaut_ctx->pubkey,

0,

CX_NONE,

sigaut_ctx->auth_hash,

HASHSIZE,

APDU_DATA_PTR,

APDU_DATA_SIZE(rx));

// Cleanup

explicit_bzero(&sigaut_ctx->pubkey, sizeof(sigaut_ctx->pubkey));

// Found a valid signature?

if (signature_valid) {

sigaut_ctx->authorized_signer_verified[i] = true;

}

}

if (!signature_valid) {

// Invalid signature given, start over

reset_signer_authorization(sigaut_ctx);

THROW(SIG_AUT_INVALID_SIGNATURE);

}

6 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/commit/49678558636ee8030efd8b02c0106fd738a0e759

Potentially Unsafe Exception Handling

Overall Risk Low

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E003945-AP2

Component signer, signer-certificate

Category Error Reporting

Status Fixed

Impact

Failure to use TRY-CATCH blocks appropriately may lead to incorrect or unpredictable

behavior based on compiler optimizations.

Description

Current guidance for Ledger app developers suggests that exceptions should be avoided

for cryptographic code:

Rationale: the exception mechanism is not standard C, and is difficult to use,

particularly for error management. There were errors related to this exception

model in every single app we reviewed in 2020.

Despite the above guidance, exception handling is required prior to SDK version 2.0. Proper

usage of the SDK’s exception handling model is documented with the following guidance:1

You must be careful to always close a TRY context when jumping out of it. …the

CLOSE_TRY macro must be used to close the TRY context before returning from the

function…

When modifying variables within a TRY / CATCH / FINALLY context, always declare

those variables volatile . This will avoid the compiler making invalid assumptions when

optimizing your code because it doesn’t understand how our exception model works.

The file ledger/src/signer-certificate/src/main.c contains a return within a TRY block

without calling CLOSE_TRY first:

As per the recommendation above, the CLOSE_TRY macro should be called immediately

prior to the return on line 587.

Several instances of local variables being modified within a TRY block without being

declared volatile were also observed:

In ledger/src/signer/src/hsm-ledger.c on line 30, the variable tx is declared as

unsigned int tx = 0; , and later modified within a TRY block on lines 44 and 47.

In ledger/src/signer/src/sign.c on line 54 the variable pubkey_size is declared as int

pubkey_size; , and later modified within a TRY block on line 70.

In the same file on line 121 the variable sig_size is declared as int sig_size; and

modified in a TRY block on line 137.

Low

1.

2.

585

586

587

588

•

•

◦

case RSK_END_CMD: // return to dashboard

os_sched_exit(0);

return;

// goto return_to_dashboard;

1. https://developers.ledger.com/docs/nano-app/troubleshooting/#exception-handling

7 / 43 – Finding Details

Client Confidential

https://developers.ledger.com/docs/nano-app/secure-app/#avoid-exceptions-for-cryptographic-code
https://developers.ledger.com/docs/nano-app/secure-app/#avoid-exceptions-for-cryptographic-code
https://developers.ledger.com/docs/nano-app/troubleshooting/#exception-handling
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L585-L588
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L585-L588
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm-ledger.c#L30
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm-ledger.c#L30
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/sign.c#L54
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/sign.c#L54
https://developers.ledger.com/docs/nano-app/troubleshooting/#exception-handling

In ledger/src/signer-certificate/src/main.c on line 457, the variable index is declared as

unsigned int index; , and later modified within a TRY block on line 491.

As per the second recommendation above, each of these variables should be marked as

volatile .

Recommendation

Add the missing CLOSE_TRY macro.

Add volatile to the listed variable declarations.

Location

ledger/src/signer-certificate/src/main.c, lines 585-588.

ledger/src/signer/src/hsm-ledger.c, line 30.

ledger/src/signer/src/sign.c, lines 54, 121.

ledger/src/signer-certificate/src/main.c, line 457.

Retest Results

2022-09-08 – Fixed

In the 3.0.1 release:

The signer-certificate component has been removed, negating any instances of

unsafe code in this component.

In hsm-ledger.c, in the function hsm_ledger_main_loop() , the variable tx is now

declared volatile.

In sign.c, in the function do_pubkey() , the variable pubkey_size is now declared

volatile, as are other local variables private_key_data , private_key , and public_key .

Also in sign.c, in the function do_sign() , variables private_key_data , private_key ,

and sig_size are now declared volatile.

These combined changes either remove or address the identified unsafe instances of

exception handling, thereby addressing this finding.

1.

2.

•

•

•

•

•

•

•

•

8 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L457
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L457
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L585-L588
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L585-L588
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm-ledger.c#L30
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm-ledger.c#L30
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/sign.c#L54
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/sign.c#L54
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L457
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L457
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/signer/src/hsm-ledger.c#L30
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/signer/src/hsm-ledger.c#L30
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/signer/src/sign.c#L50-L54
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/signer/src/sign.c#L50-L54
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/signer/src/sign.c#L126-L129
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/signer/src/sign.c#L126-L129

Block Number Validation in Blockchain State

Update Does Not Match Documentation

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E003945-2GR

Component signer

Category Data Validation

Status Fixed

Impact

Failure to ensure the block numbers are sequential may result in an attacker being able to

induce the HSM in a bad state.

Description

The powHSM implementation provides users with the ability to perform a number of

operations, including the security-critical advanceBlockchain operation, which advances

the HSM state to a newer state. For the process of advancing the blockchain state, an

array of m blocks is provided as input to the process. These blocks correspond to the

consecutive (confirmed) heads of the blockchain, and as such they include various fields,

including their parent hash, some Proof-of-Work values and the block number, represented

as a 32-bit unsigned integer.

The algorithm defined in the file blockchain-bookkeeping.md defines a number of checks

and validation rules to ensure the state can only be advanced to a legitimate blockchain

block. Among these checks, the algorithm states the following regarding the ordering of

the blocks by their block number:

This blocks array is indexed from 0 to m-1 and blocks must be ordered from

newest to oldest, i.e. blocks[0].number == num_0; blocks[1].number ==

num_0-1; ...; blocks[n-1].number == num_0-(m-1) . This order is not assumed,

but validated within the operation.

However, this check does not seem to be enforced in the current implementation.

Specifically, no checks are performed in the different block processing functions in ledger/

src/signer/src/bc_advance.c to ensure the block numbers are sequential. This was also

confirmed by modifying the testing data in the file 14-advance-brothers.json.

Additionally, note that this observation also applies to the “Updating the known ancestor

block” use-case of the powHSM, implemented in the bc_ancestor.c source file (see

blockchain-bookkeeping.md):

As with the previous algorithm (update of the HSM state), the blocks must be

provided in newest-to-oldest order.

Recommendation

Add an additional check in the bc_advance() function to ensure that the block number of

the current block being processed is strictly smaller than the previous block (provided

blocks are handled from newest to oldest). Ensure this check is also performed in the

bc_upd_ancestor() function.

Low

9 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_ancestor.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_ancestor.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md

Location

ledger/src/signer/src/bc_advance.c

ledger/src/signer/src/bc_ancestor.c

Retest Results

2022-09-09 – Fixed

Release 3.0.1 (and more specifically commit 986b967) updates the wording of the

blockchain-bookkeeping.md document to refer to the validity of the chain of parent hashes

as opposed to the block numbers, as follows:

This blocks array is indexed from 0 to m-1 and blocks must be ordered from

newest to oldest, i.e. blocks[0].parent_hash == hash(blocks[1]);

blocks[1].parent_hash == hash(blocks[2]); ...; blocks[m-2].parent_hash ==

hash(blocks[m-1]) . This order is not assumed, but validated within the operation.

This change aligns the documentation with the operations performed in the code. Hence,

the finding is considered fixed.

•

•

10 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_ancestor.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_ancestor.c
https://github.com/rsksmart/rsk-powhsm/commit/986b96769b21a073aeabd2c038228af9f5b0ea63
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/docs/blockchain-bookkeeping.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/docs/blockchain-bookkeeping.md

Failure to Validate Signer Authorizer Array Size

May Lead to Out-of-Bound Memory Access

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E003945-W4M

Component UI

Category Data Validation

Status Fixed

Impact

If more than MAX_AUTHORIZERS = 10 distinct authorizers are provided, then the Signer

authorization process may segfault or behave incorrectly due to out-of-bound memory

access.

Description

The list of authorized signers is provided during the initial build by defining the array

AUTHORIZERS_PUBKEYS , with the threshold hardcoded to a simple majority of the provided

signers. For testing purposes, three default keys are provided in testing.h, although up to

10 can be provided; see signer_authorization.h:

The above value is used to denote the maximum number of authorizers, although it should

be noted that this maximum is not explicitly checked anywhere in the code. The only

usage appears to be in allocating storage to track how many distinct signers have

contributed to the threshold, also defined in signer_authorization.h:

As part of the signing process in do_authorize_signer() in signer_authorization.c the

above array is written to.

Observe that the index i is bounded by TOTAL_AUTHORIZERS (the size of the provided

authorized signers array) and not by MAX_AUTHORIZERS , the size of the array being written

to. Therefore, an out-of-bound memory write may occur if too many authorizers are

provided.

Note that the process of establishing the set of authorizers is not currently defined and

was out of scope for the purposes of this review. Despite this, it is likely to be a highly-

controlled and supervised process, with the likelihood of this bug being triggered being

exceptionally low. Nevertheless, it represents a missing error check that could be caught

and responded to, and it is therefore recommended that the above potential out-of-bounds

access be explicitly disallowed.

Low

80

81

113

// Maximum number of authorizers (increase this if using a greater number)

#define MAX_AUTHORIZERS 10

bool authorized_signer_verified[MAX_AUTHORIZERS];

for (int i = 0; i < TOTAL_AUTHORIZERS && !signature_valid; i++) {

<load signer key, attempt to verify signature>

// Found a valid signature?

if (signature_valid) {

sigaut_ctx->authorized_signer_verified[i] = true;

}

11 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization_signers/testing.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization_signers/testing.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L81
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L81
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L81
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L113
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L113
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L113
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L252-L275
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L252-L275
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L252-L275

The function init_signer_authorization() is called at initialization, and is responsible for

establishing the initial Signer hash and iteration provided at build time. This function could

also be made responsible for enforcing that TOTAL_AUTHORIZERS <= MAX_AUTHORIZERS .

Recommendation

Add a check to init_signer_authorization() to fail if TOTAL_AUTHORIZERS >

MAX_AUTHORIZERS ; or

Cap indexes at MAX_AUTHORIZERS (e.g., silently ignore any authorizers beyond the

maximum number supported).

The former would be a more conservative approach, and would ensure that an incorrect

configuration of authorizers is detected.

Location

signer_authorization.h

signer_authorization.c

Retest Results

2022-09-08 – Fixed

Release 3.0.1 adds the following compile time check in signer_authorization.c:

This change effectively prevents the potential out-of-bounds memory access and fixes the

issue.

1.

2.

•

•

150

151

152

void init_signer_authorization() {

// Build should fail when more authorizers than supported are provided

COMPILE_TIME_ASSERT(TOTAL_AUTHORIZERS <= MAX_AUTHORIZERS);

12 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/ui/src/signer_authorization.c#L150-L153
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/ui/src/signer_authorization.c#L150-L153
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/ui/src/signer_authorization.c#L150-L153

Onboarding State May Not Be Correctly

Tracked

Overall Risk Low

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E003945-7DB

Component UI, tcpsigner

Category Authentication

Status Fixed

Impact

The handler for the RSK_IS_ONBOARD APDU always returns true, rather than using the

N_onboarded_ui flag in flash memory. Furthermore, the N_onboarded_ui flag may not be

set to false when wiping the device, such that the flag will remain set even if the RSK_WIPE

process fails.

Description

It was observed in bolos_ux.c that the onboarding process sets a value in flash memory as

part of RSK_WIPE , which handles wiping and onboarding a device:

This value is referenced in attestation.c to validate that the device has been onboarded:

However, the handler for RSK_IS_ONBOARD does not use this value to determine if

onboarding via the UI is complete:

This handler always returns a positive result, and does not actually validate that

onboarding has taken place; see tcpsigner/os.c

Low

610

611

612

613

259

260

261

262

263

264

540

541

542

543

544

545

546

547

548

33

34

35

36

37

// Turn the onboarding flag on to mark onboarding

// has been done using the UI

aux = 1;

nvm_write((void *)PIC(N_onboarded_ui), &aux, sizeof(aux));

// Verify that the device has been onboarded

unsigned char onboarded = *((unsigned char*)PIC(N_onboarded_ui));

if (!onboarded) {

THROW(ATT_NO_ONBOARD);

return 0;

}

case RSK_IS_ONBOARD: // Wheter it's onboarded or not

reset_if_starting(RSK_IS_ONBOARD);

uint8_t output_index = CMDPOS;

SET_APDU_AT(output_index++, os_perso_isonboarded());

SET_APDU_AT(output_index++, VERSION_MAJOR);

SET_APDU_AT(output_index++, VERSION_MINOR);

SET_APDU_AT(output_index++, VERSION_PATCH);

tx = 5;

THROW(0x9000);

#define OS_PERSO_ISONBOARDED_YES 1

unsigned int os_perso_isonboarded() {

return OS_PERSO_ISONBOARDED_YES;

}

13 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L550-L617
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L550-L617
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/attestation.c#L259-L264
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/attestation.c#L259-L264
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/tcpsigner/os.c#L33-L37
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/tcpsigner/os.c#L33-L37

Note that this function is defined in tcpsigner and not in the UI component. It is

recommended that this be reviewed by the IOV team to ensure it is the correct behavior,

and to update this handler to use the flag stored in flash memory if appropriate, such that

all onboarding checks are consistent.

In addition to the above, it was also observed that the handler for RSK_WIPE does not

explicitly set N_onboarded_ui to false at any point. The handler does call

os_perso_wipe() , but it could not be validated if this operation wipes flash memory, or just

secrets held by the secure element. The Ledger Blue SDK contains the following in os.h:

Based on the above, it was unclear if os_perso_wipe() (or os_perso_erase_all()) will

correctly wipe flash memory, which would clear the N_onboarded_ui flag. If the following

are true, it is possible for this flag to be in an incorrect state:

A user has previously onboarded via the UI,

Flash memory is not zeroed out on wipe,

A user onboards again, and the process fails (e.g., an exception is thrown).

In this situation N_onboarded_ui will remain set to true, even if onboarding fails. Because

this behavior could not be explicitly verified, it is being highlighted for consideration by the

IOV team.

Recommendation

Update the RSK_IS_ONBOARD handler to use the correct N_onboarded_ui flag.

Ensure that the N_onboarded_ui flag is correctly wiped alongside other sensitive

information at the start of the onboarding process.

Retest Results

2022-09-08 – Fixed

Regarding the first recommendation, RSK Labs clarified that the highlighted code in the

tcpsigner component is solely for testing and was not considered in scope for this review.

The relevant syscalls are correctly handled by the Ledger SDK when on the device.

Therefore, the first half of this finding may be considered a false positive.

Regarding the second recommendation, the handler for RSK_WIPE has been updated to

explicitly wipe the N_onboarded_ui value in flash memory; see bolos_ux.c:

As a result, this finding is considered fixed.

761

762

763

764

1.

2.

3.

1.

2.

530

531

532

533

534

535

536

537

// any application can wipe the global pin, global seed, user's keys

// disabled for security reasons // SYSCALL void os_perso_wipe(void);

// erase seed, settings AND applications

SYSCALL void os_perso_erase_all(void);

case RSK_WIPE: //--- wipe and onboard device ---

reset_if_starting(RSK_META_CMD_UIOP);

// Reset the onboarding flag to mark onboarding

// hasn't been done just in case something fails

aux = 0;

nvm_write(

(void *)PIC(N_onboarded_ui), (void *)&aux, sizeof(aux));

14 / 43 – Finding Details

Client Confidential

https://github.com/LedgerHQ/blue-secure-sdk/blob/master/include/os.h#L761-L764
https://github.com/LedgerHQ/blue-secure-sdk/blob/master/include/os.h#L761-L764
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/ui/src/bolos_ux.c#L530-#L534
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/ui/src/bolos_ux.c#L530-#L534

Client Response

The TCPSigner is an x86 application for testing, there is no flash memory, and onboarding

is not part of this testing component.

Regarding the mock os_perso_isonboarded() function, this is done to allow testing under

the TCPSigner. In the actual UI, this function is part of the Nano S SDK and its

implementation and semantics are the expected ones.

15 / 43 – Finding Details

Client Confidential

Flash Memory Endurance Considerations

Overall Risk Informational

Impact Medium

Exploitability Undetermined

Finding ID NCC-E003945-4GK

Component signer

Category Other

Status Fixed

Impact

Reaching the maximum limit of erase / write cycles to the flash memory may render the

Ledger hardware useless, thus preventing correct operation of the powHSM solution.

Description

The powHSM implementation regularly writes to the flash memory of the Ledger device, for

example when advancing the blockchain state. These write operations are performed

through the preprocessor macros NVM_RESET() and NVM_WRITE() defined in ledger/src/

signer/src/nvm.h, both of which call the underlying nvm_write() function.

The Ledger documentation has specific recommendations and caveats surrounding the use

of the flash memory of the Ledger2.

The flash memory for the ST31G480, which is the Secure Element used in the

Ledger Blue, is rated for 500 000 erase / write cycles. This should be more than

enough to last the expected lifetime of the device, but only if applications use it

properly. Applications should avoid erasures as much as possible. Here are some

techniques for avoiding wearing out the device’s flash memory.

Given the frequency at which the powHSM implementation may write to the Ledger flash

memory, the total number of erase/write cycles may be reached within the lifetime of a

device. Hence, this finding should not only be seen as a warning, but also as a prompt to

initiate and introduce development practices to limit writing to flash as much as possible.

Recommendation

The Ledger documentation provides the following recommendations to increase the

lifetime of devices.

consider caching the data in RAM and then flushing to flash memory when the

application has finished its operation

developers should be aware that flash memory pages are aligned to 64-byte

boundaries. (…) write amplification can be avoided by making sure that 32 bytes of

data is contained entirely within a single page

Consider revisiting the code base with these two recommendations in mind.

Info

#include "os.h"

#define NVM_RESET(dst, size) nvm_write((void*)(dst), NULL, size)

#define NVM_WRITE(dst, src, size) nvm_write((void*)(dst), (void*)(src), size)

#endif

2. https://github.com/LedgerHQ/ledger-dev-doc/blob/master/source/userspace/memory.rst#flash-

memory-endurance

16 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/nvm.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/nvm.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/nvm.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/nvm.h
https://developers.ledger.com/docs/nano-app/persistent-storage/#flash-memory-endurance
https://github.com/LedgerHQ/ledger-dev-doc/blob/master/source/userspace/memory.rst#flash-memory-endurance
https://github.com/LedgerHQ/ledger-dev-doc/blob/master/source/userspace/memory.rst#flash-memory-endurance

Retest Results

2022-09-09 – Fixed

Release 3.0.1 (and more specifically commit ca4f306) introduces a number of updates

addressing the concerns outlined in this finding. In particular:

The initialized NVM variable was moved into the N_bc_state struct to ensure 64-

byte alignment.

A number of NVM_WRITE operations were replaced by calls to HSTORE , the latter

resolving to the standard memcpy() , thereby reducing the amount of erase / write cycles

to the flash memory.

One instance of a NVM_RESET was replaced by a direct call to memset , additionally

reducing the amount of erase / write cycles.

These changes align with the recommendations provided above, thereby addressing this

finding.

•

•

•

17 / 43 – Finding Details

Client Confidential

https://github.com/rsksmart/rsk-powhsm/commit/ca4f30643ff10bcb235b58c195641c427a51a16f

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

Medium

18 / 43 – Finding Field Definitions

Client Confidential

Rating Description

Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

19 / 43 – Finding Field Definitions

Client Confidential

6 Review Goals

This section summarizes the review goals initially outlined by the IOV team and provides an

overview of how each goal was assessed during the engagement. The following table of

contents may be used to jump directly to a given section:

Seed cannot be extracted from the device

Signature operation authorization cannot be bypassed

Signer update authorization

Transaction signing

Recovery mode cannot be accessed without wiping the device first

An arbitrary app cannot be successfully used without wiping the device first

Arbitrary BIP32 paths cannot be used either for signing or extracting the public key

Blockchain state cannot be manipulated without the corresponding PoW

Seed cannot be extracted from the device

The core functionality of the Ledger device is the generation and protection of secret data

within a secure element. An overview of this process can be seen in bolos_ux.c in the

handler for RSK_WIPE , which re-establishes the seed once a device has been wiped. This

results in a hardware-backed seed with the resulting BIP39 mnemonic generated. During

the assessment, no custom code that modifies this process to potentially expose the seed

was identified, therefore, the seed on a device running the UI and Signer apps should be

as secure as a standard vanilla Ledger Nano S device.

Per Ledger’s documentation:

It is extremely unlikely for the Device private key to become compromised,

because the Secure Element is designed to be a stronghold against such physical

attacks. It is theoretically possible to extract the private key, but only with great

expense and time, so only an organization such as the NSA could do it.

Note that the above refers to the device private key, and not the seed established during

setup. Indeed, the security guidelines for app developers explicitly acknowledges that a

poorly coded application could leak secrets. For examples, the guidance of “Restrict Apps

to Coin-Specific BIP32 Prefix” is given, as well as “Do not allow the host to freely

manipulate key-pairs”. Unsafe interfaces may allow a user to perform mathematical

operations using a private key that would cause its value to leak.

The Engagement Notes section surveys the Ledger Security Guidelines and did not find

any violations or unsafe operations that would allow secret information to be recovered.

Similarly, later in this section the requirement that “Arbitrary BIP32 paths cannot be used” is

validated, which further reinforces that keys cannot be revealed mistakenly. As a final

observation, deterministic ECDSA signatures (RFC6979) are leveraged, which prevents a

poor source of randomness from leaking signing keys.

Known Vulnerabilities

For completeness, this sub-section presents a known potential attack on a Ledger device.

It should be noted that this attack does not affect the powHSM application, as the only

practical means of exploit involve interaction with the UI.

The Ledger Nano S consists of two distinct ST microprocessors:

An STM32F042K Microcontroller

An SST31H320 Secure Microcontroller (the “secure element”)

The secure element handles the storage and management of cryptographic keys, validation

of the bootloader, and provides some hardware-based random number generation and

1.

2.

a.

b.

3.

4.

5.

6.

1.

2.

20 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L550-L617
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L550-L617
https://developers.ledger.com/docs/nano-app/bolos-features/
https://www.rfc-editor.org/rfc/rfc6979

implementation of cryptographic primitives. The other MCU manages the peripherals (e.g.,

USB and buttons) and notifies the secure element whenever new data is ready to be

received. Applications are executed entirely in the secure element.

The so-called “F00DBABE” vulnerability (YouTube Link3) is a mechanism for injecting an

untrusted firmware onto the device. While this does not directly compromise secrets stored

within the secure element, it does give an attacker the ability to run arbitrary code in the

bootloader, which includes altering the contents of the screen, and emulating button

presses.

The Ledger bootloader uses a “magic value” of 0xF00DBABE at a specific address to

manage firmware updates. When the firmware is updated, this magic value is cleared, and

the bootloader prevents any non-authorized firmware from writing to this memory location.

Therefore, if an attacker modifies the firmware, the value will be cleared and the firmware

will not be executed. If the firmware is installed and attestation succeeds, then the

validated firmware can re-write this magic value and the device will continue to load the

newly-installed firmware.

The “vulnerability” in this case is a hardware configuration which allows two regions of

virtual memory to map to the same physical location in flash memory. Therefore, even

though unauthorized writes are prevented by the firmware, a second unprotected virtual

memory address exists pointing to the same physical address such that untrusted firmware

can write the 0xF00DBABE value without passing attestation. An attacker cannot use

custom firmware to extract the seed, but they could potentially alter the behavior of the UI

in a way that misleads a user into signing something they did not intend to.

Note that this attack requires physical access to the device and the ability to influence user

behavior. Such an attacker could potentially leverage other surveillance techniques to learn

the user’s PIN and use the device directly without further compromise. But such an

attacker would still not gain access to the seed, unless they can break the security of the

underlying secure element. Because the powHSM application does not involve active

interaction with the UI, this vulnerability does not have practical implications for powHSM ’s

use case.

Limitations

While physical devices were provided as part of this assessment, a review of the physical

security of the Ledger Nano S and the included secure element was not in scope. This

includes the investigation of side channel attacks, or attempts to reverse engineer the

behavior of the secure element. The device was treated as a black box and was interacted

with using the same interfaces a regular user would (e.g., via USB). A hardware-focused

penetration test may yield findings and observations not present in this report.

Re-test Results

None.

Signature operation authorization cannot be bypassed

Signature operation authorization may refer to two processes within the codebase:

The process by which the UI component authorizes the updating of the Signer

component, as documented at: https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/

docs/signer-authorization.md.

The process by which the Signer component facilitates the signing of a transaction.

1.

2.

3. https://www.youtube.com/watch?v=nNBktKw9Is4

21 / 43 – Review Goals

Client Confidential

https://www.youtube.com/watch?v=nNBktKw9Is4
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/signer-authorization.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/signer-authorization.md
https://www.youtube.com/watch?v=nNBktKw9Is4

This section will focus on the first item. The process of signing a transaction is covered

later in part of Arbitrary BIP32 paths cannot be used either for signing or extracting the

public key and Transaction signature operation authorization cannot be bypassed.

The Signer authorization process is handled via the main loop in bolos_ux.c:

The core logic handled by do_authorize_signer() in signer_authorization.c. This function

handles number of APDU operations, with the primary two being:

SIG_AUT_OP_SIGVER : Read in a new Signer hash and iteration to be verified.

The hash and iteration are written to the current context.

The iteration count is checked against the current iteration.

The EIP-712 to-be-signed hash is calculated and stored in the context.

SIG_AUT_OP_SIGN : Process a signature on the Signer hash for threshold authorization.

Receives a signature and checks it in sequence against the list of known authorized

signers.

Checks are performed in such a way that multiple signatures from the same signer

will not count as additional signatures towards the threshold.

If no valid authorized signer is found, an error is returned. Note that finding

"Inconsistent Threshold Signature Validation Criteria" elaborates on the implemented

validation criteria (e.g., fail vs proceed on error).

If the threshold has been met, the stored Signer hash and iteration are updated.

If the threshold has not been met, SIG_AUT_OP_SIGN_RES_MORE is returned. The

current progress remains tracked via the context.

The remaining operations simply fetch state and do not alter the authorization context:

SIG_AUT_OP_GET_CURRENT : Return the current Signer hash and iteration.

SIG_AUT_OP_GET_AUTH_COUNT : Return the total number of authorizers.

SIG_AUT_OP_GET_AUTH_AT : Return the public key of the authorizer at a given index.

The list of authorized signers is provided during the initial build by defining the array

AUTHORIZERS_PUBKEYS , with the threshold hardcoded to a simple majority of signers. For

testing purposes, three default keys are provided in testing.h, although up to 10 can be

provided; see signer_authorization.h:

The above value is used to denote the maximum number of authorizers, although it should

be noted that this maximum is not explicitly checked anywhere in the code. Finding

"Failure to Validate Signer Authorizer Array Size May Lead to Out-of-Bound Memory

Access" details a potential out-of-bound memory access relating to this missing check.

A pre-requisite to the Signer authorization process is a call to

init_signer_authorization() , which occurs in bolos_ux.c. If the state is not initialized,

this function loads the currently stored signer hash and currently stored signer iteration.

655

656

657

658

659

•

◦

◦

◦

•

◦

◦

◦

◦

◦

•

•

•

80

81

case INS_SIGNER_AUTHORIZATION:

reset_if_starting(INS_SIGNER_AUTHORIZATION);

tx = do_authorize_signer(rx, &sigaut_ctx);

THROW(0x9000);

break;

// Maximum number of authorizers (increase this if using a greater number)

#define MAX_AUTHORIZERS 10

22 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L655-L659
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L655-L659
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L181-L330
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L181-L330
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L181-L330
https://eips.ethereum.org/EIPS/eip-712
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization_signers/testing.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization_signers/testing.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L81
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L81
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.h#L81
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L485-L486
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L485-L486

The existence of a valid Signer hash is enforced by the device in bolos_ux.c by calling the

function is_authorized_signer() , which compares the provided app hash to the

authorized Signer hash:

The process of validating and enforcing the correct Signer hash is reviewed in the later

section An arbitrary app cannot be successfully used without wiping the device first.

Based on the above, it appears that the requirements set forth in signer-authorization.md

are realized in the current implementation.

As a final consideration, the following notes from the documentation are of particular

importance:

With the current implementation, the M keypairs in the N of M authorization

scheme are fixed. An improvement worth considering is implementing an operation

that allows for the updating of said keypairs.

The potential implementations and consequent security implications of this and

other proposed changes should be analysed carefully before actually moving

forwards.

The establishment and management of authorizers was outside the scope of this review.

The security of the entire process is reliant on the correct instantiation and behavior of the

authorizers, and there do not appear to be any documented processes related to the

management of authorizers over time.

Re-test Results

See finding "Inconsistent Threshold Signature Validation Criteria" for additional details.

Recovery mode cannot be accessed without wiping the device first

The primary mechanism used to prevent recovery mode from being accessed is described

in attestation.md:

At onboarding, the user-entered pin is required to contain at least one non-

numeric character, and the recovery screen for the Ledger device only allows for

the manual input of a fully numeric pin. This in turn implies that the only way of

accessing the recovery screen after the UI is installed and the device is

onboarded is by entering an invalid pin three times, which would wipe the device -

including any generated keys.

Recovery mode is enabled by the bootloader when the Ledger device is powered on with

the right button held down. As noted above, the user will be prompted for their PIN, if one

is set, prior to being granted access to recovery mode.

332

333

334

335

336

337

338

339

340

341

342

/*

* Tell whether the given signer hash is authorized to run

* as per the current signer authorization status.

*

* @arg[in] signer_hash the signer hash

*/

bool is_authorized_signer(unsigned char* signer_hash) {

return !memcmp(N_current_signer_status.signer.hash,

signer_hash,

sizeof(N_current_signer_status.signer.hash));

}

23 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/signer-authorization.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/signer-authorization.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/attestation.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/attestation.md

When initially setting up the Ledger device from a blank state, the user is prompted to

select a PIN consisting of 4-8 numerical digits, selected via the device UI. Overall, there

are four points within the code where a user’s PIN can be set:

During the initial device setup,

When re-initializing a device from a passphrase,

In the RSK_WIPE handler (“wipe and onboard device”),

In the RSK_NEWPIN handler.

The first two cases are part of the regular Ledger setup, and the latter two are part of the

UI component in bolos_ux.c.

The handler for RSK_WIPE performs the following:

From the above code, wiping the device first calls validate_pin() on G_bolos_ux_context

.pin_buffer :

1.

2.

3.

4.

428

429

430

431

432

433

434

435

436

437

case RSK_WIPE: //--- wipe and onboard device ---

reset_if_starting(RSK_META_CMD_UIOP);

#ifndef DEBUG_BUILD

validate_pin(G_bolos_ux_context.pin_buffer);

#endif

// Wipe device

os_global_pin_invalidate();

os_perso_wipe();

<...snip...>

// Set PIN

os_perso_set_pin(

0,

(unsigned char *)G_bolos_ux_context.pin_buffer + 1,

G_bolos_ux_context.pin_buffer[0]);

// Finalize onboarding

os_perso_finalize();

os_global_pin_invalidate();

SET_APDU_AT(1, 2);

SET_APDU_AT(

2,

os_global_pin_check(

(unsigned char *)G_bolos_ux_context.pin_buffer + 1,

G_bolos_ux_context.pin_buffer[0]));

// Clear pin buffer

explicit_bzero(G_bolos_ux_context.pin_buffer,

sizeof(G_bolos_ux_context.pin_buffer));

<...snip...>

/*

* Do pin validations on the given pin buffer

* If pin validations fail, throw

*/

void validate_pin(char *pin_buffer) {

// Check PIN length

if (pin_buffer[0] != MAX_PIN_LENGTH) {

THROW(0x69a0);

}

// Check if PIN is alphanumeric

24 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c

This function ensures that at least one character within pin_buffer (populated in the

RSK_PIN_CMD handler) is non-numeric. The device is wiped and a new seed is generated,

and then the PIN in the pin_buffer is restored via os_perso_set_pin() . Next, the existing

PIN-based authentication is invalidated (i.e., PIN must be provided again for sensitive

operations), and the result of os_global_pin_check() (i.e., re-validate the PIN) is written

to the returned APDU as the result. The in-memory pin_buffer is then cleared.

Note that this handler is the one and only place in the code where the flag N_onboarded_ui

is set, specifying that the UI has been correctly onboarded. Therefore, if this flag is set,

then the device should be onboarded with a PIN that contains non-numeric characters. The

finding "Onboarding State May Not Be Correctly Tracked" details some additional concerns

around the use and management of this flag.

The fourth case where the PIN is set is in the handler for RSK_NEWPIN :

This follows the same logic as in the RSK_WIPE case, where the PIN is validated (i.e., is the

correct length and contains at least one non-numeric character), invalidated, and the result

of os_global_pin_check() is returned. The function does differ from the RSK_WIPE case in

that the pin_buffer is not wiped. If there is no use case that requires this value to remain

438

439

440

441

442

443

444

445

446

447

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

int isAlphanumeric = 0;

for (int i = 0; i < MAX_PIN_LENGTH; i++) {

if (pin_buffer[i + 1] > '9') {

isAlphanumeric = 1;

}

}

if (!isAlphanumeric) {

THROW(0x69a0);

}

}

case RSK_NEWPIN:

reset_if_starting(RSK_META_CMD_UIOP);

#ifndef DEBUG_BUILD

validate_pin(G_bolos_ux_context.pin_buffer);

#endif

// Set PIN

os_perso_set_pin(

0,

(unsigned char *)G_bolos_ux_context.pin_buffer + 1,

G_bolos_ux_context.pin_buffer[0]);

// check PIN

os_global_pin_invalidate();

SET_APDU_AT(1, 2);

SET_APDU_AT(

2,

os_global_pin_check(

(unsigned char *)G_bolos_ux_context.pin_buffer + 1,

G_bolos_ux_context.pin_buffer[0]));

tx = 3;

THROW(0x9000);

break;

25 / 43 – Review Goals

Client Confidential

in memory, it would be prudent to explicitly delete it. It should also be noted that the PIN

is potentially cached in one other location:

This value is checked on line 970 as part of BOLOS_UX_CONSENT_APP_ADD , and is not

explicitly deleted at any point in the UI. It is recommended to review the usage and

deletion of G_pin_cache and pin_buffer , and to potentially combine them to ensure the

PIN is managed in memory as intended.

Based on the above observations, it appears that a device that has been successfully

onboarded with the UI will always contain a maximum-length PIN with at least one non-

digit character, thereby preventing the entering of the correct PIN via the device UI. The

only identified mechanism to specify such a PIN is via the RSK_PIN_CMD handler via an

incoming APDU. No other mechanisms to bypass this process were identified.

Section Engagement Notes, subsection Unexpected UI State, identified unexpected default

Ledger behavior around recovery mode.

Re-test Notes:

As part of release 3.0.1, commit 881627a unified the PIN buffers and replaced the

validate_pin() function with a new function is_pin_valid() in pin.c, which performs a

similar check to ensure the PIN contains at least one alphabetic character.

Per the recommendation above, the handler for RSK_NEWPIN now explicitly clears the PIN

buffer, aligning it with the RSK_WIPE case; see bolos_ux.c:

This patch effectively addresses the recommendations highlighted in this sub-section.

An arbitrary app cannot be successfully used without wiping the device

first

Recall from earlier that the correctness of the Signer authorization process was

established. The function is_authorized_signer() is defined in signer_authorization.c:

526

527

528

529

530

531

532

533

534

535

536

537

538

539

618

619

620

332

333

334

335

336

337

case RSK_PIN_CMD: // Send pin_buffer

reset_if_starting(RSK_META_CMD_UIOP);

pin = APDU_AT(2);

if ((pin >= 0) && (pin <= MAX_PIN_LENGTH)) {

G_bolos_ux_context.pin_buffer[pin] = APDU_AT(3);

// We don't need the prepended length for the pin

// cache, so it is one byte smaller

if (pin < sizeof(G_pin_cache) - 1) {

G_pin_cache[pin] = APDU_AT(3);

G_pin_cache[pin + 1] = 0;

}

}

THROW(0x9000);

break;

// Clear pin buffer

explicit_bzero(G_pin_buffer, sizeof(G_pin_buffer));

THROW(APDU_OK);

/*

* Tell whether the given signer hash is authorized to run

* as per the current signer authorization status.

*

* @arg[in] signer_hash the signer hash

*/

26 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/commit/881627abd2d3c4912233b4ac663b9c0b54521d07
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/ui/src/pin.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/ui/src/pin.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/ui/src/bolos_ux.c#L618-L620
https://github.com/rsksmart/rsk-powhsm/blob/3.0.1/ledger/src/ui/src/bolos_ux.c#L618-L620
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L332-L342
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L332-L342
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/signer_authorization.c#L332-L342

This function returns true if and only if the currently stored Signer hash matches the

provided hash. It is relied upon both when an app is added to the Ledger device, or by the

function is_app_version_allowed() in bolos_ux.c:

This function is then leveraged by run_first_app() to load the first non-UI app, as long as

it matches the allowed Signer version:

In other words, if the run_first_app() function results in an app being launched, it should

be the correct Signer app.

Automatically Launching the Signer

The primary interface of the Ledger UI is the dashboard. The handler for the dashboard

event calls run_first_app() when autoexec is set:

338

339

340

341

342

718

719

720

721

722

723

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

934

935

936

937

938

939

940

941

942

943

944

945

bool is_authorized_signer(unsigned char* signer_hash) {

return !memcmp(N_current_signer_status.signer.hash,

signer_hash,

sizeof(N_current_signer_status.signer.hash));

}

// Check if we allow this version of the app to execute.

int is_app_version_allowed(application_t *app) {

if (is_authorized_signer(app->hash))

return 1;

return 0;

}

// run the first non ux application

void run_first_app(void) {

unsigned int i = 0;

while (i < os_registry_count()) {

application_t app;

os_registry_get(i, &app);

if (!(app.flags & APPLICATION_FLAG_BOLOS_UX)) {

if (is_app_version_allowed(&app)) {

G_bolos_ux_context.app_auto_started = 1;

screen_stack_pop();

io_seproxyhal_disable_io();

os_sched_exec(i); // no return

}

}

i++;

}

}

case BOLOS_UX_DASHBOARD:

screen_wake_up();

// apply settings when redisplaying dashboard

screen_settings_apply();

// when returning from application, the ticker could have been

// disabled

io_seproxyhal_setup_ticker(100);

// Run first application once

if (autoexec) {

27 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L718-L723
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L718-L723

This autoexec variable is set to 1 whenever a command completes normally:

Therefore, the expected behavior when returning to the dashboard is an automatic launch

of the Signer app. The app is also launched as part of the handler for BOLOS_UX_CONSENT_G

ET_DEVICE_NAME :

This appears to be a method of force-loading the app by hijacking a common operation. It

was not immediately obvious what triggers this event, but it is likely to be a common

operation, perhaps performed as part of a normal startup.

Manually Launching the Signer

In bolos_ux_dashboard.c, there exists logic to handle a left+right button release (e.g., to

perform the selected action). This contains notes of a workaround based on apps

persisting after a PIN reset:

946

947

948

949

950

676

677

678

679

1000

1001

1002

1003

1004

1005

autoexec = 0;

run_first_app();

}

screen_dashboard_init();

break;

case RSK_END_CMD: // return to dashboard

reset_if_starting(RSK_END_CMD);

autoexec = 1;

goto return_to_dashboard;

case BOLOS_UX_CONSENT_GET_DEVICE_NAME:

screen_wake_up();

// GET_DEVICE_NAME event override to reload app

run_first_app();

// screen_consent_get_device_name_init();

break;

// if application is not signed when installed, nor is using the

// issuer key,

// then ask if the user really is ok to run it, this solves the

// security flaw

// that apps are not wiped when seed is wiped after 3 wrong PIN

// attempts.

<...snip...>

// requested non genuine validation

if ((db.app.flags &

(APPLICATION_FLAG_ISSUER | APPLICATION_FLAG_CUSTOM_CA |

APPLICATION_FLAG_SIGNED)) == 0) {

<...snip...>

// override the consent callback, just use the logic

G_bolos_ux_context.screen_stack[0].button_push_callback =

screen_dashboard_unsigned_app_button;

<...snip...>

} else {

// delegate boot

if (is_app_version_allowed(&db.app)) {

28 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux_dashboard.c#L587
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux_dashboard.c#L587

The highlighted conditional above is true if the app is from an untrusted issuer, is unsigned,

or a custom CA is being used. If any of these are true, then the code eventually hits the

custom callback screen_dashboard_unsigned_app_button() . Otherwise, the default case

proceeds to check the app version and continues. The code within the custom callback

applies similar logic to the default case, if and only if the DEBUG_BUILD flag is set, meaning

the command will succeed for a non-genuine validation only in a debug build.

New App Installation

In the case of adding a new app to the device, the handler in bolos_ux_main() will hit the

following:

As can be seen, the operation is canceled if the Signer is not correctly authorized.

Summary

Based on the above observations, and the earlier review of the Signer authorization

process, the UI appears to enforce that only an authorized Signer app can be installed,

and that the Signer app should be automatically launched in normal circumstances. If a

user attempts to manually launch an app (e.g., after a PIN reset), then the same

authorization check will be enforced via is_app_version_allowed() .

Additional investigation may be needed to ensure that the above cases are comprehensive,

but it appears that once a device is correctly initialized, only the Signer app may be

launched. Unless, of course, the device is factory-reset.

Re-test Results

None.

Arbitrary BIP32 paths cannot be used for signing or extracting the public

key)

Note that this section covers both the validation of BIP32 paths, as well as the resulting

use of the derived keys.

Let us first consider the case of extracting the public key. The relevant code path is

located inside the file ledger/src/signer/src/hsm.c, where a switch statement defines the

966

967

968

969

970

971

972

973

974

975

976

977

978

screen_dashboard_disable_bolos_before_app();

os_sched_exec(db.os_index); // no return

}

}

case BOLOS_UX_CONSENT_APP_ADD:

if (is_authorized_signer(

G_bolos_ux_context.parameters.u.appadd.appentry.hash)) {

// PIN is invalidated so we must check it again

os_global_pin_check(G_pin_cache, strlen(G_pin_cache));

G_bolos_ux_context.exit_code = BOLOS_UX_OK;

break;

} else {

G_bolos_ux_context.exit_code = BOLOS_UX_CANCEL;

}

screen_wake_up();

break;

29 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm.c

case INS_GET_PUBLIC_KEY on line 111. Inside this case, the conditional statement

highlighted below ensures only hardcoded paths may be used.

Specifically, this statement ensures that the path provided in the APDU is either contained

in the static authPaths array or in the static noAuthPaths array, defined in the ledger/src/

signer/src/pathAuth.c file, by calling the functions pathRequireAuth() and pathDontRequir

eAuth() .

The signing use-case is a little more complicated. First, the hsm.c file dispatches the

auth_sign() function upon notification of an INS_SIGN operation:

The auth_sign() function (located in ledger/src/signer/src/auth.c) performs different

function calls depending on the current state of the powHSM and on the type of path to be

used for derivation. The relevant code excerpt is provided below, for reference.

150

151

152

153

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

// Derives and returns the corresponding public key for the given path

case INS_GET_PUBLIC_KEY:

// <snip>

if (!(pathRequireAuth(APDU_DATA_PTR - 1) ||

pathDontRequireAuth(APDU_DATA_PTR - 1))) {

// If no path match, then bail out

THROW(0x6A8F); // Invalid Key Path

}

case INS_SIGN:

reset_if_starting(INS_SIGN);

tx = auth_sign(rx);

break;

unsigned int auth_sign(volatile unsigned int rx) {

unsigned int tx;

// Check we receive the amount of bytes we requested

// (this is an extra check on the legacy protocol, not

// really adding much validation)

if (auth.state != AUTH_ST_START && auth.state != AUTH_ST_MERKLEPROOF &&

APDU_DATA_SIZE(rx) != auth.expected_bytes)

THROW(0x6A87);

switch (APDU_OP() & 0xF) {

case P1_PATH:

if ((tx = auth_sign_handle_path(rx)) == 0)

break;

return tx;

case P1_BTC:

return auth_sign_handle_btctx(rx);

case P1_RECEIPT:

return auth_sign_handle_receipt(rx);

case P1_MERKLEPROOF:

if ((tx = auth_sign_handle_merkleproof(rx)) == 0)

break;

return tx;

default:

// Invalid OP

THROW(0x6A87);

30 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/pathAuth.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/pathAuth.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/pathAuth.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/pathAuth.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm.c#L150-L153
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm.c#L150-L153
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth.c#L59-L95
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth.c#L59-L95

The critical do_sign() operation may only be called in two instances, namely after the

execution hits one of the two break statements in the switch operator above, and only

when the state is AUTH_ST_SIGN .

There are two different paths that can lead to successful execution of the do_sign()

function, depending on whether the path requires authorization of not. Consider the

execution flow of a sign operation, starting with a call to the auth_sign_handle_path()

function. This function starts by checking that the current state is AUTH_ST_PATH and

throws an exception otherwise. After that, the execution checks whether the path requires

authorization by calling the pathRequireAuth() function, and if so, transitions to the state

AUTH_ST_BTCTX . Alternatively, if the path does not require authorization (checked with the

function call pathDontRequireAuth()), the state transitions to AUTH_ST_SIGN . In this latter

case, the value returned by the auth_sign_handle_path() function is 0 , and as such the

execution will break out of the switch statement above, and proceed to the signing

operation. The pathRequireAuth() case is a little more complex, and is detailed below.

Now, if the path does require authorization, the execution proceed through the other

functions present in the switch statement, in the following order.

auth_sign_handle_btctx()

auth_sign_handle_receipt()

auth_sign_handle_merkleproof()

27

28

29

30

31

32

33

34

35

36

37

1.

2.

3.

}

if (auth.state != AUTH_ST_SIGN)

THROW(0x6A89); // Invalid state

tx = do_sign(auth.path,

RSK_PATH_LEN,

auth.sig_hash,

sizeof(auth.sig_hash),

APDU_DATA_PTR,

APDU_TOTAL_DATA_SIZE);

unsigned int auth_sign_handle_path(volatile unsigned int rx) {

if (auth.state != AUTH_ST_PATH)

THROW(0x6A89); // Invalid state

// <snip>

if (pathRequireAuth(APDU_DATA_PTR)) {

// <snip>

auth_transition_to(AUTH_ST_BTCTX);

return TX_FOR_TXLEN();

} else if (pathDontRequireAuth(APDU_DATA_PTR)) {

// <snip>

auth_transition_to(AUTH_ST_SIGN);

return 0;

}

31 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_path.c#L40
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_path.c#L40
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_path.c#L40
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_path.c#L40
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_tx.c#L132
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_tx.c#L132
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_tx.c#L132
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_receipt.c#L233
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_receipt.c#L233
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_receipt.c#L233
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_trie.c#L175
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_trie.c#L175
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_trie.c#L175

These three functions all start by checking that the current execution state is consistent

with what they expect, specifically:

auth_sign_handle_btctx() checks that the state is AUTH_ST_BTCTX and transitions to

AUTH_ST_RECEIPT upon successful processing.

auth_sign_handle_receipt() checks that the state is AUTH_ST_RECEIPT and transitions

to AUTH_ST_MERKLEPROOF upon successful processing.

auth_sign_handle_merkleproof() checks that the state is AUTH_ST_MERKLEPROOF and

transitions to AUTH_ST_SIGN upon successful processing.

At this stage, the execution may proceed with signing.

Summary

Based on the above observations, the NCC Group team confirmed that the execution is

consistent with the following state diagram, with appropriately gated state transitions.

As such, arbitrary BIP32 paths cannot be used for either signing or extracting the public

key since successful execution of these operations goes through calls to

pathRequireAuth() or pathDontRequireAuth() , which check that the path provided is

contained in the static authPaths or noAuthPaths arrays. Furthermore, the do_sign()

function is gated by the strict state transitions depicted above, thereby ensuring that the

generation of a signature follows the defined process.

Re-test Notes

None.

Transaction signature operation authorization cannot be bypassed

The previous section presented a walkthrough of the process used to derive and utilize

derived keys. As seen in the state diagram presented earlier, the code enforces two

potential outcomes based on the behavior of auth_sign_handle_path() :

If pathRequireAuth() returns true, we transition to the AUTH_ST_BTCX and must proceed

though the remaining states before signing takes place;

If pathDontRequireAuth() returns true, then we proceed directly to signing.

The resulting signature is computed in auth.c:

•

•

•

1.

2.

87

88

89

90

91

┌──────────┐ ┌──────────┐ ┌──────────┐

│ AUTH_ST_ │ │ AUTH_ST_ │ │ AUTH_ST_ │

──────► PATH ├─────► BTCTX ├─────► RECEIPT │

└─┬────────┘ └──────────┘ └─────────┬┘

│ │

│ │

│ │

│ ┌──────────┐ ┌─────────────┐ │

└─────► AUTH_ST_◄─────┤ AUTH_ST_ ◄───┘

│ SIGN │ │ MERKLEPROOF │

└────┬─────┘ └─────────────┘

│

└►

if (auth.state != AUTH_ST_SIGN)

THROW(AUTH_ERR_INVALID_STATE); // Invalid state

tx = do_sign(auth.path,

RSK_PATH_LEN,

32 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth.c#L87-L95
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth.c#L87-L95

This represents the only instance within the code where the do_sign() function is called.

Therefore, a signature will never be generated unless the current state is AUTH_ST_SIGN ,

and this state can only be reached by validly progressing through the state transitions as

described earlier.

Re-test Notes

None.

Blockchain state cannot be manipulated without the corresponding PoW

The blockchain state maintained on the Ledger can be updated using functions defined in

the bc_advance.c and bc_ancestor.c source files.

The specific algorithms to perform these state updates are provided in the reference

blockchain-bookkeeping.md documentation. Specifically, the Updating section describes

the operation advanceBlockchain and resetAdvanceBlockchain to update the blockchain

state of an initialized powHSM device. This section additionally provides a number of

checks and validation rules to ensure that illegitimate state transitions may not occur.

The NCC Group team gathered these validation rules and checked whether they were

correctly enforced in the implementation, in order to prevent malicious manipulation of the

blockchain state without the corresponding Proof-of-Work. The following list summarizes

these validation criteria and provides code pointer

This blocks array is indexed from 0 to m-1 and blocks must be ordered from newest to

oldest, i.e. blocks[0].number == num_0; blocks[1].number == num_0-1; ...;

blocks[n-1].number == num_0-(m-1) . This order is not assumed, but validated within

the operation.

This check does not seem to be performed, as also described in finding "Block

Number Validation in Blockchain State Update Does Not Match Documentation".

Blocks must also be valid, i.e. pow_valid(blocks[i]) == true for 0 < i < m . This is

also validated within the operation.

While no function called pow_valid() currently exists in the C code base, the

bc_advance() function seems to perform all the necessary checks on lines 955-957

For each 0 <= i < n , with p being the length of brothers[i] , it must be the case that

for every 0 <= j < p ,

blocks[i].parent_hash == brothers[i][j].parent_hash

Checking that the blocks are actually brothers is performed in the function

str_end() on line 619

pow_valid(brothers[i][j]) == true

While no function called pow_valid() currently exists in the C code base, the

bc_advance() function also seems to perform all the necessary checks on lines

955-957.

hash(blocks[i]) <> hash(brothers[i][j])

Ensuring that the block and its brother are different is performed on line 676 in

the function str_end()

92

93

94

95

•

◦

•

◦

•

◦

-

◦

-

◦

-

auth.sig_hash,

sizeof(auth.sig_hash),

APDU_DATA_PTR,

APDU_TOTAL_DATA_SIZE_OUT);

33 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_ancestor.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_ancestor.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md#updating
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md#updating
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L955-L957
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L955-L957
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L955-L957
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L619
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L619
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L619
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L955-L957
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L955-L957
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L955-L957
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L676
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L676
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L676
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L676

j < (p-1) => hash(brothers[i][j]) < hash(brothers[i][j+1]) .

Ensuring that the brothers are sent in ascending hash order is performed on line

683 in the function str_end()

The following code excerpt shows these last two validation checks.

Also, it must be the case (although it is also not assumed and therefore validated) that:

blockchain_state.updating.in_progress == false or,

blockchain_state.updating.in_progress == true and hash(blocks[0]) ==

blockchain_state.updating.next_expected_block

The function bc_adv_prologue() , which is called as soon as a whole BTC merge

mining header is received, ensures that either N_bc_state.updating.in_progress

and block.block_hash == N_bc_state.updating.next_expected_block are both

true, or that blockchain_state.updating.in_progress is false, in which case it

kicks off the updating process.

Last but not least, in the last invocation of a single advance operation, it must also be

the case (this is also validated before updating the state) that blocks [m-1].parent_hash

== blockchain_state.best_block , i.e. the last given block header’s parent hash must

correspond to the best block stored in the current HSM state.

This check seems to be correctly performed on line 389 of the function (bc_mm_head

er_received)

Re-test Notes

None.

◦

-

•

◦

◦

-

•

◦

// Check that the brother is not the same as the main block

if (!PROCESSING_BLOCK() &&

HEQ(block.main_block_hash, block.block_hash)) {

FAIL(BROTHER_SAME_AS_BLOCK);

}

// Check that the brothers are sent in ascending order

// wrt their block hash

if (!PROCESSING_BLOCK() &&

!HLT(block.prev_brother_hash, block.block_hash)) {

FAIL(BROTHER_ORDER_INVALID);

}

} else if (HNEQ(aux_bc_st.prev_parent_hash, block.block_hash)) {

LOG_HEX("PAR", aux_bc_st.prev_parent_hash, HASH_LEN);

LOG_HEX("BLK", block.block_hash, HASH_LEN);

FAIL(CHAIN_MISMATCH);

}

34 / 43 – Review Goals

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L683
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L683
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L683
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L683
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L293-L305
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L293-L305
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L293-L305
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L389
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L389
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L389
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L389
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L389
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_advance.c#L389

7 Engagement Notes

This informal section contains notes and observations generated during the project. There

are no security issues that are not already reported in the preceding findings, but the

following content may be useful for discussion purposes. This section is not intended to be

exhaustive.

General

Error Propagation in Arithmetic Functions

The function mpAdd() defined in ledger/src/signer/src/bigdigits.c performs multi-precision

addition of two big integer values. This function returns a carry if the computation

overflowed. Thus, the expected return value is either 0 or 1. However, that function may

alternatively return an error, in the form of a MAX_DIGIT value, as shown in the code

excerpt below.

Calling functions may not realize that an error scenario occurred. For example, the function

accum_difficulty() in ledger/src/signer/src/bc_diff.c returns that carry value directly,

even though its documentation states that it may only return 0 or 1 upon success, as can

be seen in the code excerpt below.

This also happens in the function spDivide() in ledger/src/signer/src/bigdigits.c, which

may return an overflow value. This function is not used directly by the IOV code, but it is

called within the same file by the function mpShortDiv() , again without checking for a

potential error in the overflow.

Re-test Notes

As of release 3.0.1, the accum_difficulty() function has been updated to return the

documented error code.

Hard-Coded Data Type Sizes

Some inconsistencies can be observed in the parameters provided to the different

SAFE_MEMMOVE() calls; consider for example the following two excerpts where the length

parameter provided is computed with a sizeof() call in ledger/src/signer/src/auth_path.c:

/* w can't be the same as v

Stop if assert is working, else return error (overflow = -1)

*/

if (w == v) {

assert(w != v);

return MAX_DIGIT;

}

* @ret

* 1 if there's carry

* 0 if there's no carry

* BCDIFF_ERR_INVALID if an error occurs

*/

DIGIT_T accum_difficulty(DIGIT_T difficulty[], DIGIT_T total_difficulty[]) {

DIGIT_T aux[BIGINT_LEN];

DIGIT_T carry = mpAdd(aux, difficulty, total_difficulty, BIGINT_LEN);

// <snip>

return carry;

}

// Read derivation path

SAFE_MEMMOVE(auth.path,

sizeof(auth.path),

35 / 43 – Engagement Notes

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bigdigits.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bigdigits.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_diff.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_diff.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bigdigits.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bigdigits.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_path.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth_path.c

and by using a constant in ledger/src/signer/src/hsm.c.

Re-test Notes

As of release 3.0.1, the highlighted code block above has been updated to correctly use

sizeof(auth.path) .

Potentially Incorrect Event Handler

The handler for BOLOS_UX_BOOT_RECOVERY has been commented out in bolos_ux.c

Note that both the call to screen_boot_recovery_init() and the subsequent break have

been commented out. Therefore, the switch statement will fall through to the

BOLOS_UX_DASHBOARD case. It was not clear if this is intended behavior, as the intention may

have been to remove the recovery case rather than to change its behavior. If the intention

is a “no op” for the BOLOS_UX_BOOT_RECOVERY case, then the code appears incorrect. If the

intention is to fall through to the dashboard, then the behavior appears correct. In either

case, an additional comment clarifying the behavior would remove any outstanding

ambiguity.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

MEMMOVE_ZERO_OFFSET,

APDU_DATA_PTR,

APDU_TOTAL_DATA_SIZE,

1, // Skip path length (first byte)

sizeof(auth.path),

THROW(0x6A87));

// Derive the public key

SAFE_MEMMOVE(auth.path,

sizeof(auth.path),

MEMMOVE_ZERO_OFFSET,

APDU_DATA_PTR,

APDU_TOTAL_DATA_SIZE,

MEMMOVE_ZERO_OFFSET,

RSK_PATH_LEN * sizeof(uint32_t),

THROW(0x6A8F));

case BOLOS_UX_BOOT_RECOVERY:

/*

screen_boot_recovery_init();

break;

*/

case BOLOS_UX_DASHBOARD:

screen_wake_up();

// apply settings when redisplaying dashboard

screen_settings_apply();

// when returning from application, the ticker could have been

// disabled

io_seproxyhal_setup_ticker(100);

// Run first application once

if (autoexec) {

autoexec = 0;

run_first_app();

}

screen_dashboard_init();

break;

36 / 43 – Engagement Notes

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/hsm.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L929-L950
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/ui/src/bolos_ux.c#L929-L950

Re-test Notes

As of release 3.0.1, the commented code and the line case BOLOS_UX_BOOT_RECOVERY: have

been deleted, so the code will no longer fall through to a potentially incorrect case.

Code quality and documentation

Notation Deviation from Documentation

The various references define many constants, functions and algorithms that the

implementation defines under different names, making the process of ensuring the

correctness of algorithms more complex. As an example, consider the constant MINIMUM_CU

MULATIVE_DIFFICULTY and the functions hash() and pow_valid() that do not exist as such

in the implementation (but are defined in docs/blockchain-bookkeeping.md).

Stale Code and Debug Code

Some portions of the code base still have commented code, such as in the ledger/src/

signer/src/keccak256.c file:

Similarly, there is a commented printf() call in ledger/src/signer/src/trie.c:

Re-test Notes

As of release 3.0.1, the commented code snippets highlighted above have been deleted.

Stale Links in Documentation

The links to the Ledger documentation in docs/attestation.md are dead

[the ledger documentation](https://ledger.readthedocs.io/en/latest/bolos/

features.html#attestation)

They should be replaced by https://developers.ledger.com/docs/nano-app/bolos-features/.

Re-test Notes

As of release 3.0.1, the documentation has been updated with current links.

Incorrect Code Comment

In the file ledger/src/signer-certificate/src/main.c, the following comment indicates that a

given length should be 32, when in fact the conditional statement checks for 37 (5 + 32).

Re-test Notes

As of release 3.0.1, the signer-certificate component has been removed.

Unnamed Result Codes

Several functions throw result codes as raw hex values (e.g., see previous code that does

THROW(0x6A87);). The use of raw hex values results in code that is difficult to read and

validate. It is recommended to use named constants for such values to aid in readability. It

is worth noting that the described value is in fact defined in auth.h as #define

AUTH_ERR_INVALID_DATA_SIZE (0x6A87) .

/* apply Keccak rho() transformation */

for (uint8_t i = 1; i < 25; i++) {

//state[i] = ROTL64(state[i], pgm_read_byte(&rhoTransforms[i - 1]));

state[i] = ROTL64(state[i], getConstant(TYPE_RHO_TRANSFORM, i - 1));

}

// printf("st: %u, i: %u/%u, val: 0x%02x\n", ctx->state, i, len,

// buf[i]);

if (rx != 5 + 32)

THROW(0x6A87); // Wrong buffer size (has to be 32)

37 / 43 – Engagement Notes

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/blockchain-bookkeeping.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/keccak256.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/keccak256.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/keccak256.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/keccak256.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/trie.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/trie.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/attestation.md
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/docs/attestation.md
https://developers.ledger.com/docs/nano-app/bolos-features/
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth.h#L49
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/auth.h#L49

Re-test Notes

As of release 3.0.1, the signer-certificate component has been removed, and non-

named constant result codes appear to be uniformly replaced with more informative named

result codes.

Uncommented enum/const Values

Building on the previous point, when constants are defined for various purposes, such as

return codes, it would aid in readability to ensure that they are commented with a short

description of their intent. For example, the enum values within bc_err.h are individually

commented in a manner that makes their use clear. By comparison, the file btctx.h contains

several definitions that might not be clear to someone without pre-existing knowledge of

BTC transaction processing.

Re-test Notes

Aside from replacing raw hex return codes with named return codes, no additional changes

were made in response to the above comment.

Ledger Development Best Practices

The Ledger developer portal provides a number of helpful advice and best practices. In

particular, the following two resources are particularly relevant:

Security: https://developers.ledger.com/docs/nano-app/secure-app/

Common Pitfalls and Troubleshooting https://developers.ledger.com/docs/nano-app/

troubleshooting/

Regarding the latter, Finding "Potentially Unsafe Exception Handling" details instances of

exception handling within the codebase that violate requirements for exception handling.

The other guidance items are relevant when an application crashes and must be

diagnosed, but are not as prescriptive as the exception handling guidance.

The remainder of this subsection briefly surveys best practices from the Ledger Security

Guidelines. Note that these guidelines are meant to guide apps wishing to be submitted to

Ledger for listing on Ledger Live, but do provide meaningful general guidance for safely

developing secure apps.

Perform Manual Code Reviews

A substantial portion of this report is the result of manual code review. Additionally, it is

understood that code review is part of IOV Labs regular development process.

Automate Code Reviews with Static Code Analysis

A GitHub Workflow is defined to lint the library, see lint-c.yml. This runs the lint-c script

in the repo, which primarily performs the following:

1.

2.

7

8

9

10

11

12

13

14

15

16

if [[$1 == "exec"]]; then

if [["$(basename $0)" == "lint-c"]]; then

CLANG_ARGS="--dry-run --Werror"

else

CLANG_ARGS="-i"

fi

SRC_DIR="ledger/src"

SEARCH_DIRS="$SRC_DIR/signer $SRC_DIR/ui $SRC_DIR/tcpsigner $SRC_DIR/common $SRC_DIR/

signer-certificate"

38 / 43 – Engagement Notes

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_err.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/bc_err.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/btctx.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/btctx.h
https://developers.ledger.com/docs/nano-app/secure-app/
https://developers.ledger.com/docs/nano-app/troubleshooting/
https://developers.ledger.com/docs/nano-app/troubleshooting/
https://github.com/rsksmart/rsk-powhsm/actions/workflows/lint-c.yml
https://github.com/rsksmart/rsk-powhsm/actions/workflows/lint-c.yml

A review of the script reveals that it primarily runs the clang-format tool on selected

source files, but does not perform any meaningful static analysis on the code. A tool, such

as the Clang Static Analyzer, as suggested in the Ledger docs, is recommended.

Avoid Warnings During Compilation

A cursory review of the build output reveals several warnings. A non-exhaustive list of

different warning types encountered while building the UI follows:

warning: incompatible integer to pointer conversion passing ‘unsigned int’ to parameter

of type ‘const void *’ [-Wint-conversion]

warning: incompatible pointer types passing ‘unsigned char [20]’ to parameter of type

‘unsigned int *’ [-Wincompatible-pointer-types]

warning: invalid conversion specifier ‘H’ [-Wformat-invalid-specifier]

warning: data argument not used by format string [-Wformat-extra-args]

warning: result of comparison of constant 257 with expression of type ‘volatile unsigned

char’ is always true [-Wtautological-constant-out-of-range-compare]

warning: passing ‘unsigned char [9]’ to parameter of type ‘const char *’ converts

between pointers to integer types with different sign [-Wpointer-sign]

warning: incompatible integer to pointer conversion passing ‘unsigned int’ to parameter

of type ‘const void *’ [-Wint-conversion]

warning: unused variable ‘i’ [-Wunused-variable]

warning: redefinition of typedef ‘int8_t’ is a C11 feature [-Wtypedef-redefinition]

warning: comparison of integers of different signs: ‘int’ and ‘unsigned int’ [-Wsign-

compare]

warning: implicit declaration of function ‘screen_display_init’ is invalid in C99 [-Wimplicit-

function-declaration]

These warnings do not necessarily indicate issues or vulnerabilities within the code, but in

many cases may identify fragile or incorrect assumptions that can be remedied. Some of

the identified warnings, such as the tautological comparison, may guard against future

changes to the code. Similarly, signed/unsigned comparisons may work correctly in the

current configuration, but trigger undefined behavior if data sizes change. Others, such as

the use of H as a format string specifier may indicate actual bugs, where the intended

behavior may be to use X to force hex output.

It is recommended to proactively address warnings in the current codebase, and to

potentially fail builds on future warnings.

Re-test Notes

As part of release 3.0.1, commit ba41f89 addressed any remaining warnings within the

codebase, and added the -Werror flag to the build process, ensuring that future warnings

are also addressed. This addresses the recommendation above.

Test Requirements and Code Review

A GitHub Workflow is defined to run tests. The Ledger guide also recommends

Linting: It was noted earlier in this section that the linting process appears to simply run

clang-format , and could be expanded.

Fuzzing: Some fuzzing functionality is provided in ledger/fuzz.

Static Analysis: As noted earlier, static analysis does not appear to be used.

17

18

19

20

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

find $SEARCH_DIRS -name "*.[ch]" | \

egrep -v "(bigdigits|bigdtypes|keccak256)\.[ch]$" | \

egrep -v "ledger/src/ui/src/glyphs.[ch]" | \

xargs clang-format-10 --style=file $CLANG_ARGS

39 / 43 – Engagement Notes

Client Confidential

https://clang-analyzer.llvm.org/
https://github.com/rsksmart/rsk-powhsm/commit/ba41f89f4f429322e8607bd7020addce49a502fb
https://github.com/rsksmart/rsk-powhsm/actions/workflows/run-tests.yml
https://github.com/rsksmart/rsk-powhsm/tree/3.0.0/ledger/fuzz
https://github.com/rsksmart/rsk-powhsm/tree/3.0.0/ledger/fuzz

Ask for External Security Audits

IOV Labs proactively engaged NCC Group for this purpose, and has been actively involved

in the process.

Application flags

Any use of a flag other than APPLICATION_FLAG_BOLOS_SETTINGS must be justified

in the Makefile otherwise Ledger will not sign the application.

The UI uses appFlags 0x248 which includes:

APPLICATION_FLAG_BOLOS_SETTINGS : the application can read and modify system

parameters such as the device’s name.

APPLICATION_FLAG_GLOBAL_PIN : the application can request a user PIN verification or

query the number of tries left before the device erases its own memory.

APPLICATION_FLAG_BOLOS_UX

These flags are necessary for the UI app to serve as the device UI, but it was noted that

they are not explicitly documented within the makefile , as recommended.

Restrict Apps to Coin-Specific BIP32 Prefix

Confirming that arbitrary BIP32 paths cannot be used was a core goal of the assessment,

and is reviewed in detail in Review Goals.

The recommendations also suggests that supported curves can also be restricted using

the --curve parameter. It may be prudent to include --curve secp256k1 in the makefile

as an additional precaution, as this is the only curve currently supported.

Re-test notes

IOV Labs provided the following feedback:

This would not improve powHSM’s security, since we only allow our own specific

apps to run on these devices, and have mechanisms in place to enforce this. This

in turn implies that we know exactly what each of these applications do, and

which curves it does and does not use.

The provided feedback is consistent with the implementation, and the only identified

mechanism for a different curve to be used would be the authorization of a Signer update

that does so, implying that this restriction is already enforced externally.

Never Store or Export Secrets Derived from Seed

Within the Signer and UI components, each call to cx_ecdsa_init_private_key() is

followed by call to securely zero the private key data. The derived private key is then used

either for signing, or to generate the corresponding public key. In each case, the private

key is zeroed out immediately after use.

It was observed that within the signer-certificate component, keys do not appear to be

zeroed out as above. Instead, global variables are defined to store the public and private

keys, which are populated as part of the signing process based on the provided path; see

main.c:

•

•

•

370

371

cx_ecfp_public_key_t publicKey;

cx_ecfp_private_key_t privateKey;

40 / 43 – Engagement Notes

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L370-L371
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L370-L371

As part of the handler for INS_SIGN , these variables will be populated with the derived key

via calls to os_perso_derive_node_bip32() and cx_ecdsa_init_private_key() . The

derived private key data is not zeroed out here. Eventually, this handler leads to

io_seproxyhal_touch_approve() where the actual sign operation takes place, also in

main.c:

As seen above, the private key persists in privateKey . Legacy code also appears to be

present on lines 402-404. This was not documented as a formal finding as the impact was

limited to the signer-certificate component, and therefore not part of the core scope.

Re-test Notes

As of release 3.0.1, the signer-certificate component has been removed, so the above

comments are no longer relevant.

Avoid Blindly Signing Data

The current interface/implementation does not facilitate the signing of arbitrary data. To-

be-signed hashes are derived from data within the library, and not supplied directly by the

user.

Signing/Disclosing Keys Without user Approval

No interfaces or functionality are exposed for this purpose, and an explicit goal of this

review involved the validation that the seed cannot be extracted from the device.

Don’t Roll Your Own Crypto Primitives

The library makes use of a SHA-256 implementation by Brad Conte, with light modifications

to expose intermediate state; see sha256.h.

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

25

26

27

28

29

30

31

#else

tx = cx_ecdsa_sign((void *)&privateKey,

CX_RND_RFC6979 | CX_LAST,

CX_SHA256,

result,

sizeof(result),

G_io_apdu_buffer);

#endif

G_io_apdu_buffer[0] &= 0xF0; // discard the parity information

// Sign output buffer with attestation key

// attestation_len =

// os_endorsement_key2_derive_sign_data(G_io_apdu_buffer,tx,attestation);

G_io_apdu_buffer[tx++] = 0x90;

G_io_apdu_buffer[tx++] = 0x00;

// Send back the response, do not restart the event loop

io_exchange(CHANNEL_APDU | IO_RETURN_AFTER_TX, tx);

// Display back the original UX

ui_idle();

return 0; // do not redraw the widget

}

/***

* Filename: sha256.h

* Author: Brad Conte (brad AT bradconte.com)

* Copyright:

* Disclaimer: This code is presented "as is" without any guarantees.

* Details: Defines the API for the corresponding SHA1 implementation.

***/

41 / 43 – Engagement Notes

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L392-L413
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer-certificate/src/main.c#L392-L413
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/sha256.h#L25-L31
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/sha256.h#L25-L31

Note that the file comment references SHA1 instead of SHA2. A third-party Keccak (SHA3)

implementation is leveraged in keccak256.h. The Ledger OS is leveraged for all other

cryptographic functionality.

Avoid Exceptions for Cryptographic Code

From the 2.0 version of the SDK (for Nano S, S Plus and X) every cryptographic

function has a version that returns an error code instead of raising an exception.

As an example cx_ecdsa_sign_no_throw performs the same computation as

cx_ecdsa_sign but does not raise any exception and returns CX_OK if everything

went fine.

We recommend using all _no_throw equivalents when available, as the ones raising

exceptions will be deprecated in a future SDK release.

The current library is not utilizing the “no throw” variants of these functions. While no

specific issues were identified due to exception handling around cryptographic library calls,

it is nevertheless recommended to plan a port to the newer functions before the old

variants are deprecated.

Private Key Management

You should minimize the code that works with private (ECDSA, RSA, etc.) or secret

(HMAC, AES, etc.) keys. Importantly, you should always clear the memory after

you use these keys. That includes key data and key objects.

The earlier section “Never Store or Export Secrets Derived from Seed” surveyed this

requirement, and found the requirement to be met.

Corner Cases

The best practices guide concludes with a set of potential corner cases:

Be Wary of Untrusted Input,

Properly protect data you wish to cache on the host computer,

Do not allow the host to freely manipulate key-pairs.

These did not appear to be relevant, although the last item includes guidance around

ensuring that state transitions for multi-message operations are strictly enforced. In

general, this appears to be the case within the Signer and UI applications.

Unexpected UI State

While performing various tests on the Ledger hardware device, the NCC Group team came

across a scenario leading to a possibly unexpected state. The steps to follow are

presented below, where the device is assumed to have been freshly reset and the PIN and

mnemonic have been set.

Setup

Recovery Mode is needed to install the signer and UI apps; in order to enter Recovery

Mode, press right button when plugging in the Ledger.

A screen requiring inputting the PIN pops up.

Install the UI and signer app; both of which require the PIN to proceed with installation.

Note: restarting the Ledger normally results in the “User interface is not genuine”

message.

1.

2.

3.

1.

2.

3.

4.

42 / 43 – Engagement Notes

Client Confidential

https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/keccak256.h
https://github.com/rsksmart/rsk-powhsm/blob/3.0.0/ledger/src/signer/src/keccak256.h

Note: plugging in the Ledger with the right button pressed boots up in Recovery Mode.

This appears to be in contradiction to the security goal that recovery mode cannot be

accessed without wiping the device first. However, it should be noted that this is an

edge case pertaining to the Ledger hardware itself and not specifically to the powHSM

solution and that the resulting state the device is left in does not allow users to interact

with it meaningfully.

Unexpected scenario

Now unplug the device and plug it in again in recovery mode.

Enter the wrong PIN 3 times. Device displays “Your device has been reset (3 wrong

PIN)”.

But then, the ledger still opens the menu, where we can see the previously installed

RSK Sign app (in addition to the Settings app).

The RSK app seems to work, it shows the “RSK: Waiting for msg” screen.

Now, restarting recovery mode does not require a PIN (which may not be unexpected

since it’s consistent with the fact that we have wiped the PIN).

Navigating to the Settings app only shows two options (Device and Assistance).

However, when navigating through the menus Device, then Firmware, and going back to

the Settings menu, the two other menu options are unlocked. Indeed, now the Settings

menu shows Display, Security, Device and Assistance.

The Security menu is particularly unexpected, since it allows to change the PIN (and

again, the PIN is wiped at this stage).

Now when trying to change the PIN, the Ledger prompts the user to enter the new PIN,

but when it asks for confirmation of the old PIN, the device hangs indefinitely.

Note: this scenario was also confirmed on a fresh Ledger-only installation (without

powHSM applications).

Re-test Notes

IOV Labs provided the following response regarding these observations:

Even though the Signer application can indeed still be opened, it can no longer be

operated through USB since a new mechanism was put in place to prevent such

operation in case the device was wiped.

5.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

43 / 43 – Engagement Notes

Client Confidential

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Additional Content

	Dashboard
	Table of Findings
	Finding Details
	Inconsistent Threshold Signature Validation Criteria
	Potentially Unsafe Exception Handling
	Block Number Validation in Blockchain State Update Does Not Match Documentation
	Failure to Validate Signer Authorizer Array Size May Lead to Out-of-Bound Memory Access
	Onboarding State May Not Be Correctly Tracked
	Flash Memory Endurance Considerations

	Finding Field Definitions
	Risk Scale
	Category

	Review Goals
	Seed cannot be extracted from the device
	Signature operation authorization cannot be bypassed
	Recovery mode cannot be accessed without wiping the device first
	An arbitrary app cannot be successfully used without wiping the device first
	Arbitrary BIP32 paths cannot be used for signing or extracting the public key)
	Transaction signature operation authorization cannot be bypassed
	Blockchain state cannot be manipulated without the corresponding PoW

	Engagement Notes
	General
	Code quality and documentation
	Ledger Development Best Practices
	Unexpected UI State

