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Executive Summary

Synopsis

From February 26 to March 18, 2018, IronCore Labs

engaged NCC Group's Cryptographic Services Practice

to perform a review of their proxy re-encryption protocol

and implementation. The review aimed at validating the

specific choice of the pairing-friendly elliptic curve in the

protocol, and verifying that the Scala implementation is

a secure incarnation of that protocol. The Scala code

targets both the Java virtual machine, and in-browser

execution through Scala-js; this translates Scala code to

JavaScript or WebAssembly.

The review covered IronCore's recrypt library im-

plementation, using internal version numbers 7.0.2-

SNAPSHOT, then 8.0.1-SNAPSHOT, and finally 11.0.0-

SNAPSHOT. This last version was verified to be strictly

equivalent to the first open-source version,1 save for

some extra source code comments, and a version

renumbered to 1.3.0-SNAPSHOT. The protocol was

described in a draft version of an article, which was

ultimately published.2 This review did not cover any

of IronCore's commercial offerings. One consultant

performed the engagement, which consisted of 15

person-days of effort, and an additional one-day retest

on April 24, 2018.

Scope

Two specific questions were expressed by IronCore:

1. Are the chosen pairing and elliptic curve3 crypto-

graphically sound and secure?

2. Is the Scala implementation a faithful and correct

embodiment of the protocol?

The protocol itself is derived from a 2009 proposal

by Wang and Cao; it was however slightly modified

by IronCore Labs to make it better fit their use case,

in which a single proxy is used for many users and

devices, and also to address security weaknesses that

were discovered a few years after the original protocol

publication. Proxy re-encryption actors (proxies, users,

devices, etc.) own public/private key pairs; the binding

of public keys to actor identities was not in scope.

Limitations

The underlying Wang-Cao protocol, modified by Cai

and Liu, is relatively recent, and has not yet received

an extensive academic review. NCC Group's review

focuses onwhether IronCore's choice of parameters and

implementation faithfully follow the protocol, but we

cannot guarantee that the protocol itself is secure.

The current IronCore implementation is not ``constant-

time'' and thus may allow secret values to leak

through timing-based side channels. This was already

known, and a constant-time implementation would

require substantial reengineering of the code. Some

more information on that subject is detailed in find-

ing NCC-IronCore-recrypt-006 on page 11.

Key Findings

The main findings were the following:

• A key derivation process, to obtain a symmetric

encryption key, was identical to a hash valuemeant for

authentication and traveling unprotected on the wire.

• Input curve points were not validated to really belong

to the curve, leading to the possibility of small

subgroup attacks by using points on alternate curves.

Both issues were fixed in internal version 8.0.1.

Strategic Recommendations

The chosen curve was secure with regards to current

technology, but fell short of the expected goal of

``128-bit security'', at a level of about 100 bits. We

recommended switching to a Barreto-Naehrig curve

with a larger base field. This recommendation was

followed by IronCore Labs. In internal version 11.0.0-

SNAPSHOT, a new Barreto-Naehrig curve was defined,

with a 480-bit base field, thus ensuring 128-bit security

against the best-known discrete logarithm methods in

the field extensions used by BN curves.

The current implementation of base field operations

uses Scala's standard scala.math.BigInt class, which

is not optimized for modular arithmetics. We recom-

mend switching to a custom implementation, using

Montgomery's multiplication; this would allow bet-

ter performance, especially when targeting a plain

JavaScript output with no WebAssembly support, and

is necessary in order to achieve, as a long-term goal,

an implementation that is free of timing-based side

channels.

Some other improvements on curve operations and

Miller's algorithm implementation are detailed in Ap-

pendix A on page 13. Internal version 11.0.0-SNAPSHOT

includes some of the suggested improvements.

1https://github.com/IronCoreLabs/recrypt/commit/4fb521d1c68668f1af5c90ac1993242b96f5a221
2Cryptographically Enforced Orthogonal Access Control at Scale, https://dl.acm.org/citation.cfm?id=3201602
3New software speed records for cryptographic pairings, https://eprint.iacr.org/2010/186
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Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application's

exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group's

risk rating and finding categorization, see Appendix B on page 16.

Title Status ID Risk

Derived Keys Are Identical to Authentication Hashes Fixed 002 High

Input Points Are Not Verified to Belong to the Curve Fixed 003 Medium

Selected Curve Security Is Lower Than Expected Fixed 001 Low

Per-Signature Secret Values Are Biased Reported 004 Low

Random Value Range Is Not Validated Reported 005 Low

Implementation Is Not Constant-Time Reported 006 Informational
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Finding Details

Finding Derived Keys Are Identical to Authentication Hashes

Risk High Impact: High, Exploitability: Medium

Identifier NCC-IronCore-recrypt-002

Status Fixed

Category Cryptography

Component Protocol

Location • internal/InternalApi.scala, methods encrypt() and decrypt()

• CoreApi.scala, methods deriveSymmetricKey() and derivePrivateKey()

Impact Eavesdroppers may observe the AuthHash value, which is sent unencrypted, and is equal to

the value of symmetric keys derived from the random plaintext; they may thus decrypt all

data encrypted with that key.

Description The proxy re-encryption protocol handles encryption of plaintext messages which must have

a specific format (they are elements of a subgroup of order r of the multiplicative group of

invertible elements in the field extension Fp12 ). Since encoding arbitrary data into such a

format is complicated and expensive, the plaintext messages are actually random elements,

which derived symmetric keys with a SHA-256 hash are derived from, to be used with a

classic symmetric encryption algorithm. This process is described in the documentation of

the InternalApi.encrypt()method:

/*

* Encrypt plaintext to publicKey. This public key encryption is not

* meant to encrypt arbitrary data; instead, you should generate a

* random plaintext value (an element of G_T), apply a SHA256 hash to

* it to generate a 32-bit number, and use that as a key for a

* symmetric algorithm like AES256-GCM to encrypt the data. Then use

* this method to encrypt the plaintext.

*/

Themethods CoreApi.deriveSymmetricKey() and CoreApi.derivePrivateKey(), which

are part of the public API, embody this hashing step.

The encryption protocol also includes computation of a value ah, which is sent as part of

the ciphertext (but is not itself encrypted). ah serves as proof that the sender knows the

plaintext value; it is defined to be the SHA-256 hash of the plaintext. This is implemented in

InternalApi.encrypt() and InternalApi.decrypt().

This implies that the ah value, which travels unprotected on the wire, and the derived sym-

metric key, to be used for further data encryption, are identical. An attacker observing the

exchanged traffic can learn the symmetric key, and then easily decrypt all the data.

Recommendation The authentication hash ah and/or the key derivation process must be modified to ensure

that the symmetric key cannot be inferred from the authentication hash.

Client Response This issue was fixed in version 8.0.1 of the recrypt library: the authentication hash ah is

now defined to be the hash of the concatenation of the ephemeral public key (also part of

the ciphertext) and the plaintext.
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Finding Input Points Are Not Verified to Belong to the Curve

Risk Medium Impact: High, Exploitability: Low

Identifier NCC-IronCore-recrypt-003

Status Fixed

Category Cryptography

Component Decryption Engine

Location internal/point/AffinePoint.scala, method apply()

(removed in version 11.0.0-SNAPSHOT)

Impact Attackers may send carefully crafted invalid messages and observe the recipient's behavior

to infer information on the recipient's private key.

Description An encryptedmessage is a ciphertext consisting of (among other values) an ephemeral public

key (epk), which is a curve point. That point is sent as two coordinates x and y that should

nominally match the curve equation (y2 = x3 + 3). However, the recipient code does not

verify that property. The sender may craft messages where epk is on an alternate curve, and

specifically on a subgroup of small order of such a curve. For instance, the curve y2 = x3+1

has small subgroups of order 2, 3, 4, 13, 139, 1868033…

Invalid Curve Attacks4 use points on small subgroups to obtain some partial information on

a private key, usually the remainder of the private key modulo the small subgroup order.

The attack requires subgroups small enough for an exhaustive search in that subgroup to

be feasible; on the other hand, there are many potential curves, leading to a wide choice

of subgroups to work with. In the case of the proxy re-encryption protocol, the attack must

go through the pairing computation, and thus depends on how the pairing implementation

works when used with invalid inputs; this is a currently unexplored subject.

Recommendation Incoming points, when decoded, should be systematically verified to belong to the intended

curve. The cost of verifying the curve equation (three multiplications in the base field) is

negligible with regards to a pairing evaluation or even a generic point multiplication.

Retest Results Version 8.0.1 of recrypt contains a modified AffinePoint class that systematically checks

the incoming data against the curve equation.

In version 11.0.0, the AffinePoint class has been removed, and its functionality merged

into HomogeneousPoint, which now includes the systematic validity check on incoming point

data.

4https://web-in-security.blogspot.com/2015/09/practical-invalid-curve-attacks.html
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Finding Selected Curve Security Is Lower Than Expected

Risk Low Impact: High, Exploitability: None

Identifier NCC-IronCore-recrypt-001

Status Fixed

Category Cryptography

Component Algorithm Parameters

Location Choice of elliptic curve.

Impact By solving discrete logarithm in the field extension, attackers could recover private keys and

decrypt all messages.

Description The proxy re-encryption protocol requires the use of a pairing-friendly elliptic curve. Such a

curve is characterized by the following parameters:

• The base field order (p, usually prime).

• The curve order (n).

• The subgroup order r (a prime number, that divides n).

• The curve embedding degree, which is the smallest integer k > 0 such that r divides pk−1.

The pairing operation transforms the Discrete Logarithm (DL) problem in the base elliptic

curve, into a multiplicative DL problem in the extension field Fpk . The achieved ``security

level'' will then be the minimum of the difficulties of DL in the elliptic curve, and DL in the field

extension.

The curve chosen by IronCore is the one described by Naehrig, Niederhagen and Schwabe

in 20105; this is a specific instance of the Barreto-Naehrig curves.6 That curve offers the

following characteristics:

• Base field order is a 256-bit prime p.

• Curve order n is a 256-bit prime; the subgroup is then the complete curve (i.e. r = n).

• The curve embedding degree is k = 12.

There is no known DL solving algorithm for elliptic curves with better efficiency than generic

group algorithms, which have cost proportional to
√
r. Thus, for elliptic curve DL, this curve

achieves ``128-bit security'', which is the target security level.

For multiplicative DL in the field extension, the traditional analysis is to infer the cost from the

best-known generic algorithm for moduli of that size. That algorithm is the General Number

Field Sieve. GNFS has two variants, for solving discrete logarithmand for integer factorization;

they have the same asymptotic cost, andmeasures on the current DL record (a 768-bit prime

modulus7) show that the actual costs are similar. We can thus apply cost estimates for integer

factorization onDL in a prime field or field extension of similar size. According to that analysis,

the 3072-bit field extension (Fp12 ) should offer multiplicative DL complexity of 124 to 128 bits.

However, it has been recently discovered that this is an overestimate. Indeed, the base field

modulus p in a BN curve is expressed as the value of a polynomial p = P (u) = 36u4 +

5M. Naehrig, R. Niederhagen, and P. Schwabe, New software speed records for cryptographic pairings, https://eprint

.iacr.org/2010/186
6P. Barreto and M. Naehrig, Pairing-Friendly Elliptic Curves of Prime Order, https://eprint.iacr.org/2005/133
7T. Kleinjung, C. Diem, A. Lenstra, C. Priplata, and C. Stahlke, Computation of a 768-bit prime field discrete logarithm,

https://eprint.iacr.org/2017/067
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36u3+24u2+6u+1, for a small parameter u (less than 64 bits). This polynomial P has small

enough coefficients to allow the use of a Special Number Field Sieve, which is more efficient

than GNFS. Barbulescu and Duquesne8 estimated, for a BN curve with a 256-bit base field

and embedding degree k = 12, a multiplicative DL cost of a bit less than 2100. The specific

curve selected by IronCore uses a different u parameter, but should yield a similar cost (or

even a smaller attack cost, since that u happens to be a perfect cube, a property which allows

a slight speed-up in computations, but is not a requirement of ``normal'' BN curves).

The curve selected by IronCore thus offers a security level of only 100 bits or so, possibly less

if the special format of the u parameter can be further exploited in SNFS. A 100-bit security

level is still beyond current technology; it is roughly as resistant as RSA-2048, which is in

commonwide usage. It is, however, substantially lower than the expected and targeted ``128-

bit'' security level.

Recommendation We recommend switching to a larger curve that provides the expected 128-bit security level.

Barbulescu and Duquesne suggest new parameters for a BN curve, with a 114-bit u value,

yielding a 462-bit base field modulus, and 5544-bit field extension. The currently selected

curve is not breakable by current technology, but may induce user distrust by failing to meet

the perceived security level of ``128 bits'' and associated notion of a ``security margin''.

Retest Results Version 11.0.0 of the recrypt library includes support for a new BN curve with a 480-bit base

field size, which is enough to ensure a 128-bit security level. The curve was selected with the

samemethodology as the Naehrig-Niederhagen-Schwabe BN-256 curve, with a u parameter

chosen as a cube of a low Hamming weight integer, with an adequate size to ensure a 480-bit

base field. The curve order is prime and has extension degree exactly 12.

8R. Barbulescu and S. Duquesne, Updating key size estimations for pairings, https://hal.archives-ouvertes.fr/hal-015

34101/file/main.pdf
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Finding Per-Signature Secret Values Are Biased

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-IronCore-recrypt-004

Status Reported

Category Cryptography

Component Schnorr Signature

Location CoreApi.scala, method schnorrSign()

Impact Observation of many signatures could theoretically allow reconstruction of the signature

private key.

Description A Schnorr signature involves creation of a random private non-zero element k modulo the

curve order n. A new k is generated for each signature value. In the context of the DSA

and ECDSA signature algorithms, an unpublished attack by D. Bleichenbacher shows how

the signature private key can be recovered from analysis of many signature values if the per-

signature element generation process is biased. If the bias is as little as 3 known bits in the

value of k, then the private key may be recovered with only a hundred signature values, as

explained by Nguyen and Shparlinski in 2003.9 If the bias is smaller, it can still be exploited,

but with a rapidly increasing number of required signatures.

In the recrypt library, the value of k is obtained by generating a sequence of 256 random

bits, interpreting it as an integer, and reducing it modulo the curve order. Since the curve

order n is close to 0.561 ·2256, values below 0.439 ·2256 are twice as likely to be selected than
values above that threshold. Since all values are still possible, the bias is much lower than in

the Nguyen and Shparlinski analysis. In a 2001 report from S. Vaudenay10 (section 5), some

extra information is provided on Bleichenbacher's attack, stating that such a small bias could

still be exploited with 222 signatures, and a substantial computational cost (263 operations).

The intended use of Schnorr signatures in the IronCore systems is to compute a single

signature as part of a device initial configuration. As such, it is expected that there will never

be a sufficient number of available signature values, for a given private key, to allow the attack

to apply. Nevertheless, Vaudenay states that the attack might be made more efficient, and

very little has been published on that subject since.

Recommendation We recommend amending the per-signature random generation process in order to make it

uniform. Two main strategies are available:

1. Generate a random value of exactly 256 bits, but reject it if it does not fall in the proper

[1..n−1] range, instead of using amodular reduction. This involves using a loop to repeat

the process until it succeeds; the loop is already present in the code, to handle rare cases

where the resulting curve point turns out to be the point at infinity.

2. Generate a random value substantially longer than 256 bits, and apply a modular reduc-

tion. It is easily shown that doubling the length, i.e. generating a random 512-bit value, is

more than enough to make any bias negligible.

9P. Nguyen and I. Shparlinski, The Insecurity of the Elliptic Curve Digital Signature Algorithmwith Partially KnownNonces,

https://pdfs.semanticscholar.org/0eb1/8a42b623dd8e7cdd4221085a6fd5503708ea.pdf
10S. Vaudenay, Evaluation Report on DSA, https://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1002_reportDSA.

pdf
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Finding Random Value Range Is Not Validated

Risk Low Impact: Medium, Exploitability: None

Identifier NCC-IronCore-recrypt-005

Status Reported

Category Data Validation

Component Random Generation

Location CoreApi

Impact An improper random source behavior would fail to be detected, and then lead to breaches

in confidentiality of data.

Description Random values must be generated for all key generation and encryption operations. Current

recrypt implementation takes an IO[ByteVector] object as one of its parameters, and this

is supposed to produce sequences of random bytes on demand. The documentation states

that the object ``should return a new cryptographically random ByteVector that is at least

32 bytes long on each invocation.'' Whenever a random value is needed, either modulo the

base field order (p) or modulo the curve order (r), a single ByteVector instance is obtained,

interpreted as a big integer (with unsigned big-endian convention), and reduced modulo the

relevant value (p or r).11

Nothing in the implementation verifies that the source value has a length of at least 32 bytes.

If the externally provided implementation returns shorter values, then this is equivalent to

setting upper bits of the private value to zero, correspondingly reducing the cryptographic

strength. For instance, if the random ByteVector is only 16 bytes long, then generic discrete

logarithm algorithms will recover the private elements, and decrypt data, with cost only 264.

Such an issue would go undetected, because biased random generation does not have any

functional consequences.

Moreover, when a larger curve is used, the ``32 bytes'' would not be enough.

Recommendation The provided IO[ByteVector] object should be invoked only by a dedicated function that

will check that the length of the returned sequence of bytes fulfills the security requirements;

that function may also invoke the source repeatedly and concatenate the obtained chunks

until the target length is reached. Extra care should be applied to the following points:

• The number of random bytes depends on the target modulus. Larger curves need more.

• To ensure uniform generation of values modulo an integerm of e bits (i.e. 2e−1 ≤ m < 2e),

the generator should get exactly e random bits (possibly accumulating or truncating the

obtained random bytes), then interpret the random bits as an integer; if the resulting value

is not in the proper range, then it should be rejected, and the process restarted.

• The generation function should be parameterized with the proper range, e.g. ``1 to p − 1''

for a random non-zero field element.

11In the case of random values modulo the curve order, the reduction is implicit in the point multiplication algorithm.
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Finding Implementation Is Not Constant-Time

Risk Informational Impact: Medium, Exploitability: Undetermined

Identifier NCC-IronCore-recrypt-006

Status Reported

Category Data Exposure

Component Algebraic Primitives

Location Fp, HomogeneousPoint

Impact Side-channel attacks may reveal parts of private keys and secret data.

Description The current recrypt implementation is not ``constant-time,'' which means that timing attacks

may recover some secret data elements. Generally speaking, timing attacks exploit the fol-

lowing types of operations:

• Elementary operations with a data-dependent execution time (e.g. integer divisions).

• Data-dependent conditional jumps.

• Memory accesses at addresses that depend on secret data.

These last two elements can be exploited through cache attacks, which measure cache con-

tent status through timing.

In the current recrypt implementation, the following elements in particular are not constant-

time:

• BigInt: Scala's standard implementation of big integers (which is Java's BigInteger when

running on the JVM) truncates values to their minimal mathematical length, and contains

many conditional jumps to handle special cases (e.g. zero).

• Curve operations: classic curve point doubling addition formulas include special cases:

– When one of the operands is the ``point at infinity''

– When adding two points that are opposite to each other

– When adding two identical points

Management of such cases uses conditional jumps that depend on secret data.

• NAF: When multiplying a curve point by a scalar, recrypt uses a double-and-add algo-

rithm optimized through the use of a non-adjacent form, which allows making only one

curve point addition for every two doubling operations. Unfortunately, the use of a NAF

necessarily leaks information about the scalar, since additions will occur at data-dependent

moments.

Whether timing attacks are feasible depends on the library usage context. Most demon-

strations of timing attacks have been performed locally, i.e. from attacker-controlled code

running on the same hardware (possibly from another virtual machine running on a distinct

core on the same CPU). However, in lab conditions, remote timing attacks have been demon-

strated.12

Recommendation As a long-term goal, we recommend modifying the recrypt implementation to become

constant-time. This will require the following:

1. Replace the implementation of modular arithmetics (Fp class, and BigInt) with a dedi-

12D. Boneh and D. Brumley, Remote timing attacks are practical, https://crypto.stanford.edu/~dabo/abstracts/ssl-timi

ng.html
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cated class that would use Montgomery's multiplication.

2. Switch curve operations to constant-time formulas. In particular, ``complete'' formulas13

remove the need for special case management code.

3. Replace NAF with a window-based optimization (with a constant-time array lookup) when

multiplying a curve point with a secret scalar value. Note that the use of NAF in Miller's

algorithm is not a problem, since in that case the non-adjacent form is over a fixed public

value.

13See for instance: https://eprint.iacr.org/2015/1060
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Appendix A: Optimization Notes

This section describes various possible optimization strategies to help with secure integration and performance of the

library.

Operations on the Base Field

Current recrypt implementation of operations in the base fieldFp is based on the standard scala.math.BigInt from

the Scala library, which itself wraps around java.math.BigInteger. In Oracle's JDK, BigInteger is implemented in

pure Java; in Scala-js, a pure Scala implementation14 is used. Both are based on the same structure: big integers

are represented as a sign, and a positive mantissa as a base-232 value (each ``digit'' is traditionally called a ``limb''),

which is contained in an array of 32-bit integers. These big-integer implementations provide little support formodular

computations, though.

Multiplications

recrypt's internal.Fp class performs multiplications by applying the operation on the underlying big integers, then

reducing modulo the field order p with the remainder operator (%). This internally triggers the generic integer division

algorithm.

A faster implementation strategy would be to use Montgomery multiplication. If a modular integer is represented as

an array of n limbs in baseW (e.g. n = 8 andW = 232, for a 256-bit integer represented as an array of 32-bit integers),

thenwe define the valueR = Wn mod p. TheMontgomery representation of amodular integer x is equal to xR mod p.

The Montgomery product of x by y is xy/R mod p. The Montgomery product of the Montgomery representation of

two integers is then the Montgomery representation of the product of the two integers:

(xR)(yR)/R = (xy)/R mod p

Converting to and from Montgomery representation is easily done by applying a Montgomery product with the con-

stants, respectively, R2 mod p and 1 mod p.

The implementation of the Montgomery product can be described as two regular intertwined multiplication loops.

Notably, it is amenable to constant-time implementations and efficient loop-unrolling, since most of the algorithm

jumps are independent of the processed values. For details on the Montogmery product, see chapter 14, especially

algorithm 14.36, of the Handbook of Applied Cryptography.15

The BigInt.modPow()method internally uses Montgomery multiplication. This allows a quick benchmark:

val e = java.math.BigInteger.ONE.shiftLeft(10000);

for (a <- 1 to 5) {

var begin = System.currentTimeMillis();

for (b <- 1 to 100) {

x = x.modPow(e, p)

}

var end = System.currentTimeMillis();

println(s"modPow: ${end - begin}")

begin = System.currentTimeMillis();

for (b <- 1 to 1000000) {

y = Fp(y * y)

}

end = System.currentTimeMillis();

println(s"Fp mul: ${end - begin}")

}

println(s"x = ${x}, y = ${y}")

Using OpenJDK 1.8.0_151 on an 64-bit x86 system, this benchmark shows the modPow()method (hence Montgomery

multiplication) to be about twice as fast as the implementation used in recrypt.

14https://github.com/scala-js/scala-js/blob/master/javalib/src/main/scala/java/math/BigInteger.scala
15The Handbook is freely downloadable at: http://cacr.uwaterloo.ca/hac/
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Inversion

Modular inversion is performed in recrypt using a custom extended Euclidean algorithm implementation (in the

internal/package.scala file, method gcde()). However, scala.math.BigInt offers a dedicated modInverse()

method. In Oracle's JDK, this maps to a binary GCD implementation, which is both asymptotically and practically faster.

A simple benchmarck indicates that modInverse() is about four times faster than recrypt's implementation.

Even though inversion remains an expensive operation, with a cost of about 50 to 100 times that of a modular

multiplication, it is important for performance to avoid inversion when possible. The use of projective or Jacobian

coordinates for elliptic curve points, for instance, allows reducing the number of required inversions.

If a constant-time implementation is required, then inversion of x modulo p can be performed with a modular expo-

nentation (with exponent e = p− 2) that can be implemented in a constant-time way. For a 256-bit modulus, such an

exponentiation will cost about 300 multiplications, thus slower than a binary GCD, but still not intolerably slower if the

overall algorithm took care to reduce the total number of inversions.

Limb Size

Both java.math.BigInteger ( JVM) and scala.math.BigInt (Scala-js implementation) use 32-bit limbs. This is not

necessarily optimal.

WebAssembly offers explicit 32-bit and 64-bit integer types. The multiplication on 64-bit integers yields only the low

64 bits of the result; the high 64 bits are inaccessible, even though the underlying hardware may be able to compute

them (at least on 64-bit architectures). Thus, limbs shall be no more than 32 bits in size, so that intermediate products

are not truncated.

However, a slightly smaller limb size may yield better performance. When using limbs of t bits, the inner loop of a

Montgomery product uses intermediate values of 2t+1 bits in size; if using 32-bit limbs, then these values have a size

of 65 bits, which does not fit into a single variable or register. Instead, the operationsmust be broken into two separate

carry propagation loops, which impacts performance. Experiments on C implementations show that using 31-bit limbs

promotes performance, making multiplications up to twice as fast. The extra bit in each limb is also convenient for

expressing carry propagation in constant-time code.

Plain JavaScript, however, has a unique arithmetic type, which is double-precision floating point numbers. JavaScript

JIT compilers try to map operations to 32-bit integers when possible, but this cannot be done in all generality for

multiplications: the multiplication of two 32-bit integers yields a 64-bit value that exceeds the 53 bits of precision

allowed by IEEE 754 double-precision values. JavaScript semantics therefore mandate rounding, which does not yield

the same results as truncation to the low 32 bits. For that reason, asm.js, a predecessor to WebAssembly, mandated

a Math.imul function to provide the low 32 bits of a product of two 32-bit integers. Even if present on a specific

implementation, though, Math.imul does not help with big integers.

If targeting a pure JavaScript output, then a better implementation would use 26-bit limbs, encoded as floating-point

values. Specifically, a limb of value w (with 0 ≤ w < 226) would be encoded as a double-precision value 2−13w. A

product of two such values yields a result that can be represented with no loss of information; moreover, the ``high''

half of the result (26 bits) can be obtained with an efficient truncating conversion to integers (cvttsd2si opcode in

x86 assembly).

Elliptic Curve Point Additions

The AffinePoint and HomogeneousPoint classes implement operations on elliptic curve points.16 AffinePoint is

a straightforward application of the curve formulas, thus requiring a modular division, which is expensive. Homoge-

neousPoint uses projective coordinates to avoid modular inversions (one inversion will still be needed at some point,

but possibly after many point additions).

16The AffinePoint class was removed from version 11.0.0-SNAPSHOT.
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The formulas used in HomogeneousPoint entail the following costs:

• double(): 12 multiplications

• add(): 20 multiplications (including 4 multiplications for an initial comparison, to use double() instead when

required)

Some of thesemultiplications are squarings. These counts do not includemultiplications by small integers, since these

can be implemented more efficiently than generic products.

Better formulas exist. Classic implementations use Jacobian coordinates, in which a point (x, y) is represented by a

triplet (X : Y : Z), which is such that x = X/Z2 and y = Y /Z3. In such a representation, the costs of double() and

add() are 8 and 16 multiplications, respectively.17 Mixed-coordinates addition, when one of the operands is in affine

coordinates (i.e. Z = 1) is only 11 multiplications. Moreover, the equality test to fall back to doubling can be integrated

in the evaluation with negligible cost.

Complete formulas have later been found byMarc Joye,18 and then even better formulas by Joost Renes, Craig Castello

and Lejla Batina.19 These formulas work over projective coordinates and have a cost of 12 multiplications for a curve of

equation y2 = x3 + b with a small constant b (11 multiplications for mixed-coordinates addition). These are complete

formulas, that have no special case,20 and thus also work when the two inputs are the same point, or are two opposite

points. There are nevertheless specialized doubling formulas that require only 8 multiplications, a cost similar to that

offered by Jacobian coordinates.

Use of the Renes-Castello-Batina formulas would provide substantial performance improvements over the current

implementation in recrypt, while at the same time removing special cases, which would make the implementation

simpler and more amenable to a future constant-time implementation.

Miller's Algorithm

Miller's Algorithm powers the first half of the Ate pairing computation, an essential and computationally expensive part

of the proxy re-encryption protocol. Conceptually, it consists in an evaluation of a high-degree rational function over a

curve point. That function can be expressed as a product of simple rational functions that correspond to lines on the

plane. Evaluation will consist of log r ``doublings'' (function InternalApi.doubleLineEval() in recrypt) and about

(log r)/2 ``adds'' (InternalApi.addLineEval()), following a non-adjacent form representation of the base curve order

r.

Each of doubleLineEval() and addLineEval(), in its current form, implies two inversions in Fp2 . Each inversion

requires one inversion in Fp. Since such operations are very expensive (cost is similar to 50 to 100 multiplications),

these inversions represent the vast majority of the current implementation cost.

A more efficient strategy would use rational numbers. Since the values obtained are simply multiplied together,

each could be represented as a fraction numerator/denominator. The numerators and denominators would then

be multiplied together. Only at the end of Miller's algorithm would a single inversion (in Fp12 ) be needed.

Retest result: the representation of intermediate values as fractions, as suggested above, has been implemented in

version 11.0.0-SNAPSHOT.

17Cost is 9 multiplications for doubling in general; however, in curve y2 = x3 + ax+ b, one multiplication can be avoided if a = 0 or a = −3.
18M. Joye, Complete Addition Formulæ for Elliptic Curves, http://joye.site88.net/techreps/complete.pdf
19J. Renes, C. Castello, and L. Batina, Complete addition formulas for prime order elliptic curves, https://eprint.iacr.org/2015/1060
20The formulas have one case that they do not support correctly, which is when the difference of the two operands is a point of order 2. However,
when working on the r-torsion subgroup of a curve, with r an odd prime, there are no points of order 2, and this case does not happen in practice.
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Appendix B: Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk, application's exposure and

user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group's recommended

prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group's estimation of the risk that a finding poses to the target system or systems. It takes

into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale

breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the

application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,

functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation upon the target system or systems. It takes into account

potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate

their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or

gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system

performance. May have a negative public perception of security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access

required, availability of exploitation information, requirements relating to social engineering, race conditions, brute

forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,

already have privileged access, or otherwise overcome moderate hurdles in order to exploit the

finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-

guess data, or is otherwise unlikely.

16 | IronCore Labs Proxy Re-Encryption Protocol



Category

NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations

identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.
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