

Aleo snarkVM Implementation

Review

Aleo Systems
Version 1.0 – December 13, 2023

©2023 – NCC Group

Prepared by NCC Group Security Services, Inc. for Aleo Systems Inc. Portions of this document and the

templates used in its production are the property of NCC Group and cannot be copied (in full or in part)

without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the

information contained herein. Use of NCC Group’s services does not guarantee the security of a system,

or that computer intrusions will not occur.

Prepared By

Paul Bottinelli

Kevin Henry

Thomas Pornin

Eli Sohl

Prepared For

Collin Chin

Raymond Chu

Victor Sint Nicolaas

Howard Wu

1 Executive Summary

Synopsis
During late summer 2023, Aleo Systems Inc. engaged NCC Group’s Cryptography Services

team to conduct an implementation review of several components of snarkVM, a virtual

machine for zero-knowledge proofs. The snarkVM platform allows users to write and

execute smart contracts in an efficient, yet privacy-preserving manner by leveraging zero-

knowledge succinct non-interactive arguments of knowledge (zk-SNARKs). The review was

performed remotely by 4 consultants with a combined total of 60 person-days of effort,

including a retest phase performed a few months after the original engagement.

Scope
NCC Group’s evaluation targeted the snarkVM repository at https://github.com/AleoHQ/

snarkVM, on branch testnet3-audit-ncc , at commit 0b151b9 . The following components

were in scope:

synthesizer: Responsible for translating higher-level code into circuits that are

compatible with the underlying zk-SNARK proof system.

algorithms: Implementation and execution of the proof system, along with the primitives

needed to support it.

ledger: Data structures and methods for storing and interacting with the Aleo blockchain.

The review was supplemented with the documentation at https://developer.aleo.org/, as well

as the internal documents DRAFT: Aleo Protocol Specification (August 11, 2023) and Aleo

Varuna Specification (September 7th, 2023).

Limitations
The review targeted specific sub-components of snarkVM, and not the library as a whole.

Unless otherwise noted, findings in this report are limited to the behavior within a specific

component and may not fully consider behaviors that affect out-of-scope components.

Key Findings
The assessment uncovered a number of findings across the in-scope components,

including:

Finding "Incorrect Ratification Bound Check" describes how the number of ratifications

on a block may not be correctly enforced.

Finding "Batch Proof Building and Verifying May Skip Inputs" describes how some inputs

may be omitted when building or verifying proofs.

Finding "Trailing Zeros in Polynomials After Arithmetic Operations or Random Generation"

describes how inconsistent handling of leading zeros in polynomials may lead to panics

or incorrect results.

Additional engagement notes and comments are provided in the section Engagement Notes.

After retesting, NCC Group found that the majority of the findings had been addressed. Out

of a total of seventeen (17) original findings, fifteen (15) were marked as “Fixed”, one (1)

medium-severity finding was marked as “Risk Accepted” and one (1) informational finding

was marked as “Not Fixed”.

Strategic Recommendations
In order to provide more assurance regarding the lack of exploitable vulnerabilities (for

example, in the presence of adverse input parameters), more comprehensive unit tests

could be written. Every code path should ideally be exercised by tests. In particular, this also

includes error scenarios, which should be triggered by so-called negative tests. Randomized

•

•

•

•

•

•

2 / 58 – Executive Summary

https://github.com/AleoHQ/snarkVM
https://github.com/AleoHQ/snarkVM
https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/
https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/
https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/
https://developer.aleo.org/

input testing via fuzzing might also be a valuable approach to uncover potential additional

edge cases. The Rust cargo fuzz subcommand is an easy-to-use wrapper around libFuzzer.

Due to the deep function hierarchy, it might not always be evident if and where parameter

validation is performed. As such, consider revisiting some of the existing functions to assess

whether stricter input validation is necessary, and clearly document if and where it is the

caller’s responsibility to perform such input validation. Avoid the use of Rust code that can

cause panics, for example via calls to assert , expect , unwrap and panic , and consider

replacing these instances by idiomatic Rust constructions involving Result or Option .

The code base could also benefit from more specific and detailed comments, given the

complex nature of the performed operations. Additionally, ensuring that the reference

papers and the implementation use the exact same terminology for variable and function

naming and adding references in the code comments to the Varuna paper would greatly help

readers follow the flow of complex cryptographic operations.

3 / 58 – Executive Summary

https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/cargo-fuzz

2 Dashboard

Target Data Engagement Data

Name Aleo snarkVM Type Cryptography

Implementation Review

Type Cryptographic Libraries Method Code-assisted

Platforms Rust Dates 2023-08-24 to 2023-10-17

Environment Local Consultants 4

Level of Effort 60

Targets

snarkVM/

synthesizer

Responsible for translating higher-level code into circuits that are

compatible with the underlying zk-SNARK proof system, located at

snarkVM/synthesizer.

snarkVM/

algorithms

Implementation and execution of the proof system, along with the

primitives needed to support it, located at snarkVM/algorithms.

snarkVM/

ledger

Data structures and methods for storing and interacting with the Aleo

blockchain, located at snarkVM/ledger.

Finding Breakdown

Critical issues 0

High issues 1

Medium issues 5

Low issues 8

Informational issues 3

Total issues 17

Category Breakdown

Cryptography 5

Data Validation 7

Denial of Service 2

Error Reporting 1

Patching 1

Uncategorized 1

4 / 58 – Dashboard

https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer
https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer
https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms
https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms
https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger
https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger

Component Breakdown

algorithms/polynomial 3

algorithms/varuna 2

ledger/block 1

snarkVM 2

synthesizer/process 4

synthesizer/program 3

synthesizer/snark 1

synthesizer/src/vm 1

 Critical High Medium Low Informational

5 / 58 – Dashboard

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Incorrect Ratification Bound Check Fixed JBV High

Batch Proof Building and Verifying May Skip Inputs Fixed ADN Medium

Missing Sanity Checks Compared to the Aleo Protocol

Specification

Risk Accepted 2MK Medium

Incorrect Logic in Speculation of Aborted

Transactions

Fixed W4E Medium

Missing Bounds Checks when Deserializing from

Buffers

Fixed 69B Medium

Trailing Zeros in Polynomials After Arithmetic

Operations or Random Generation

Fixed GKE Medium

Function ID Hash Computations May Result in

Collisions

Fixed Y7H Low

Incomplete Reserved Keywords List Fixed CDE Low

Missing Bound Check on Minimum Struct Entries Fixed C6R Low

Inconsistent or Absent Bounds Checks on Inputs Fixed UV3 Low

Incorrect Polynomial Division When Both Operands

Are Zero

Fixed FYM Low

Polynomial Serialization and Deserialization Does Not

Strip Trailing Zeros

Fixed 72V Low

Missing Subset Membership Check for Gamma

Challenge

Fixed PVG Low

Incorrect Loop Exit Condition in Evaluation Generation Fixed XL9 Low

Outdated Dependencies, Cargo Audit Vulnerabilities

and Missing Toolchain File

Not Fixed Q9J Info

Wrapped Shift Operators Do Not Follow Their

Documented Semantics

Fixed VBV Info

Incorrect Random Vector Generation Fixed THN Info

6 / 58 – Table of Findings

4 Finding Details

Incorrect Ratification Bound Check

Overall Risk High

Impact High

Exploitability High

Finding ID NCC-E008901-JBV

Component ledger/block

Category Data Validation

Status Fixed

Impact
An incorrect size comparison on the number of ratifications may result in a denial-of-service

attack induced by a panic, or in correct blocks not being accepted.

Description
As part of the block generation process, the proposed next blocks go through extensive

verification procedures. Among them, the function verify_ratifications() in the file ledger/

block/src/verify.rs is tasked with ensuring the ratifications on a given block are correct. The

first step in this verification procedure is to ensure there are at least 2 ratifications, as can

be seen in the highlight of the code excerpt below.

However, the highlighted line above contains an extra ! (exclamation mark) preceding the

expression self.ratifications.len() , rendering the test incorrect. Indeed, in Rust, the

expression !self.ratifications.len() performs the bitwise negation of the integer value

represented by self.ratifications.len() . As a result, this conditional test would pass

successfully even if self.ratifications.len() were zero or one. Similarly, the maximum

usize value (as well as that value minus 1), despite being larger than two, would be rejected

by this check since its negation corresponds to zero, which is not >= 2 .

Note that an incorrect number of ratifications would be caught a few lines below, when

attempting to access the self.ratifications array at a non-existing index, which would

result in a panic.

Recommendation
Delete the extra ! in the highlighted expression, that is:

Location
ledger/block/src/verify.rs

High

218

219

220

221

222

223

224

225

226

/// Ensures the block ratifications are correct.

fn verify_ratifications(&self, expected_block_reward: u64, expected_puzzle_reward: u64) ->

Result<()> {

let height = self.height();

// Ensure there are sufficient ratifications.

ensure!(!self.ratifications.len() >= 2, "Block {height} must contain at least 2

ratifications");

// Retrieve the block reward from the first block ratification.

let block_reward = match self.ratifications[0] {

// Ensure there are sufficient ratifications.

ensure!(self.ratifications.len() >= 2, "Block {height} must contain at least 2

ratifications");

7 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger/block/src/verify.rs#L219
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger/block/src/verify.rs#L219

Retest Results
2023-12-04 – Fixed

NCC Group reviewed changes introduced in pull request 2187 (and merged into the

testnet3 branch at commit 710b12d) and observed that the superfluous integer negation

had been removed, as recommended. As such, this finding has been marked “Fixed”.

8 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/pull/2187/
https://github.com/AleoHQ/snarkVM/commit/710b12db9fd2569e02985c23b367c58774299b70
https://github.com/AleoHQ/snarkVM/commit/710b12db9fd2569e02985c23b367c58774299b70
https://github.com/AleoHQ/snarkVM/commit/710b12db9fd2569e02985c23b367c58774299b70

Batch Proof Building and Verifying May Skip

Inputs

Overall Risk Medium

Impact Medium

Exploitability Undetermined

Finding ID NCC-E008901-ADN

Component synthesizer/snark

Category Cryptography

Status Fixed

Impact
Verification of a batch proof may skip some inputs, thus failing to report some invalid inputs.

Proof building may also skip some inputs, implying that some created batch proof may fail to

cover all inputs, but will still be (incorrectly) accepted by the current batch proof verifier.

Description
In synthesizer/snark/src/proving_key/mod.rs, the ProvingKey::prove_batch() function

receives assignments for which to prove inputs as a sequence (a slice) of pairs “proving key

+ list of assignments related to that key”. In order to comply with the Varuna API, and also to

process the inputs in a predictable order, all pairs are stored in a BTreeMap indexed by the

proving key:

A matching construction appears in synthesizer/snark/src/verifying_key/mod.rs: the Verifyin

gKey::verify_batch() function receives the inputs to verify against the batch proof as a

sequence (a vector) of pairs “verifying key + list of inputs”:

In both cases, the collect() call on the mapped iterator will fill the map in order of entry

appearance, as if they had been set into the map through so many insert() calls. This

silently removes duplicates: if a “key + value” pair is inserted into a BTreeMap , and another

value already existed in the map under the same key, then the old value is discarded and

Medium

59

60

61

62

63

64

65

66

67

68

69

70

71

64

65

66

67

68

69

70

pub fn prove_batch<R: Rng + CryptoRng>(

locator: &str,

assignments: &[(ProvingKey<N>, Vec<circuit::Assignment<N::Field>>)],

rng: &mut R,

) -> Result<Proof<N>> {

#[cfg(feature = "aleo-cli")]

let timer = std::time::Instant::now();

// Prepare the instances.

let instances: BTreeMap<_, _> = assignments

.iter()

.map(|(proving_key, assignments)| (proving_key.deref(), assignments.as_slice()))

.collect();

pub fn verify_batch(locator: &str, inputs: Vec<(VerifyingKey<N>, Vec<Vec<N::Field>>)>,

proof: &Proof<N>) -> bool {

#[cfg(feature = "aleo-cli")]

let timer = std::time::Instant::now();

// Convert the instances.

let keys_to_inputs: BTreeMap<_, _> =

inputs.iter().map(|(verifying_key, inputs)| (verifying_key.deref(),

inputs.as_slice())).collect();

9 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/snark/src/proving_key/mod.rs#L68-L71
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/snark/src/proving_key/mod.rs#L68-L71
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/snark/src/verifying_key/mod.rs#L69-L70
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/snark/src/verifying_key/mod.rs#L69-L70

replaced with the new value. The consequence here is that if the list of assignments or

inputs, in either batch proof building or verification, contains two pairs that relate to the

same ProvingKey or VerifyingKey , the first pair will be skipped: it will not be covered by the

proof, and the verifier will ignore the fact that it is not covered. This issue can potentially

lead to consensus breaches if the prover and verifier do not obtain the inputs in the same

initial order (since that would lead them to skip different inputs); it may also allow invalid

inputs to be accepted, since the skipped inputs end up not being verified. Moreover, in case

of duplicate keys, the current proof builder outputs proofs that do not cover all the inputs,

thus vulnerable to malicious alteration of the uncovered inputs.

Internal calls to VerifyingKey::verify_batch() seem to currently avoid duplicates by

constructing the list of inputs to verify through a HashMap , though an extra input is appended

to the obtained list (in Trace::verify_batch() , which calls VerifyingKey::verify_batch()),

which may potentially induce such key collisions. In any case, the

ProvingKey::prove_batch() and VerifyingKey::verify_batch() functions are public,

therefore callable from applications that use snarkVM as a library, and may thus receive

arbitrary inputs. The documentation for these functions does not state whether duplicate

keys are supposed to be acceptable, or must be avoided by the caller.

Recommendation
If duplicate keys may not legitimately happen in the snarkVM batch proof mechanism, then

that should be documented in the API, and the ProvingKey::prove_batch() and VerifyingKey

::verify_batch() functions should detect and reject duplicates explicitly (presence of

duplicates is easily detected by checking whether the constructed map contains the exact

same number of elements as the source sequence). On the other hand, if duplicate keys can

legitimately happen, then the current implementation does not support them correctly, and

should perform an appropriate merging step, in both functions.

Location
synthesizer/snark/src/proving_key/mod.rs, lines 68-71

synthesizer/snark/src/verifying_key/mod.rs, lines 69-70

Retest Results
2023-12-06 – Fixed

NCC Group reviewed changes introduced in pull request 2032 (and not merged into the

testnet3 branch at this moment) and observed that a number of improvements had been

added. Among these changes, the function prove_batch() in synthesizer/snark/src/

proving_key/mod.rs now ensures no duplicate keys are inserted and the function

verify_batch() in synthesizer/snark/src/verifying_key/mod.rs ensures the constructed map

contains the exact same number of elements as the source sequence. This is aligned with

the recommendation above and this finding has been marked “Fixed” as a result.

•

•

10 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/verify_execution.rs#L49
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/verify_execution.rs#L49
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/verify_execution.rs#L49
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/trace/mod.rs#L314
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/trace/mod.rs#L314
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/trace/mod.rs#L314
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/snark/src/proving_key/mod.rs#L68-L71
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/snark/src/proving_key/mod.rs#L68-L71
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/snark/src/verifying_key/mod.rs#L69-L70
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/snark/src/verifying_key/mod.rs#L69-L70
https://github.com/AleoHQ/snarkVM/pull/2032/
https://github.com/AleoHQ/snarkVM/blob/acf3f243d27f4b7c2a5fa0b8f618a133e0fabdb4/synthesizer/snark/src/proving_key/mod.rs#L68-L72
https://github.com/AleoHQ/snarkVM/blob/acf3f243d27f4b7c2a5fa0b8f618a133e0fabdb4/synthesizer/snark/src/verifying_key/mod.rs#L73-L76
https://github.com/AleoHQ/snarkVM/blob/acf3f243d27f4b7c2a5fa0b8f618a133e0fabdb4/synthesizer/snark/src/verifying_key/mod.rs#L73-L76

Missing Sanity Checks Compared to the Aleo

Protocol Specification

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E008901-2MK

Component synthesizer/process

Category Data Validation

Status Risk Accepted

Impact
Insufficient input validation leads to many of the major vulnerabilities in applications due to

undesired or undetermined behavior of downstream logic and may enable denial-of-service

attacks or further exploitation. Specifically, validation steps that are explicitly described in

the reference but missing from the implementation may result in serious issues.

Description
The draft document DRAFT: Aleo Protocol Specification (dated 2023-08-11 and provided to

the NCC Group consultants as a resource) describes various important concepts in the Aleo

ecosystem. Among the different data structures, cryptographic primitives and workflows,

the document also specifies a few algorithms in detail, including stack-related algorithms

such as Stack.Authorize or Stack.VerifyDeployment.

The NCC Group team observed that some of the algorithms listed in the Protocol

Specification document included sanity checks that were currently not performed by the

implementation. For example, the Stack.VerifyDeployment diagram states that the number of

functions and keys shall be checked to be larger than 0; see the sanity checks specified

under step 4 of the figure below.

Medium

11 / 58 – Finding Details

In comparison, the corresponding implementation of verify_deployment() located in the file

synthesizer/process/src/stack/deploy.rs fails to perform these checks; see the code snippet

excerpted below. Specifically, note that the loop starting on line 78 proceeds to iterate over

all functions in the program, without checking that there is at least one of them, contrary to

the protocol specification.

Similarly, the diagram for the Stack.Authorize algorithm explicitly specifies some sanity

checks under step 2 of the figure below. For example, the third sub-step specifies that the

function shall Sanity check the function inputs.

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

/// Checks each function in the program on the given verifying key and certificate.

#[inline]

pub fn verify_deployment<A: circuit::Aleo<Network = N>, R: Rng + CryptoRng>(

&self,

deployment: &Deployment<N>,

rng: &mut R,

) -> Result<()> {

let timer = timer!("Stack::verify_deployment");

// Sanity Checks //

// Ensure the deployment is ordered.

deployment.check_is_ordered()?;

// Ensure the program in the stack and deployment matches.

ensure!(&self.program == deployment.program(), "The stack program does not match the

deployment program");

// Check Verifying Keys //

let program_id = self.program.id();

// Construct the call stacks and assignments used to verify the certificates.

let mut call_stacks = Vec::with_capacity(deployment.verifying_keys().len());

// Iterate through the program functions and construct the callstacks and corresponding

assignments.

for function in deployment.program().functions().values() {

// Initialize a burner private key.

let burner_private_key = PrivateKey::new(rng)?;

// ...

12 / 58 – Finding Details

The corresponding implementation located in the file synthesizer/process/src/stack/

authorize.rs under function authorize() also seems to be missing these sanity checks; see

code excerpt below.

Note that the two examples listed here may not be exhaustive; the other algorithms defined

in the specification may have validation checks that are also missing from their respective

implementations. It may also be the case that these checks are performed at a higher level

in the code base, by the respective calling functions, which would reduce the exploitability

of this finding. Nevertheless, mismatches between specification and implementation may

result in unexpected issues.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

pub fn authorize<A: circuit::Aleo<Network = N>, R: Rng + CryptoRng>(

&self,

private_key: &PrivateKey<N>,

function_name: impl TryInto<Identifier<N>>,

inputs: impl ExactSizeIterator<Item = impl TryInto<Value<N>>>,

rng: &mut R,

) -> Result<Authorization<N>> {

let timer = timer!("Stack::authorize");

// Prepare the function name.

let function_name = function_name.try_into().map_err(|_| anyhow!("Invalid function

name"))?;

// Retrieve the input types.

let input_types = self.get_function(&function_name)?.input_types();

lap!(timer, "Retrieve the input types");

// Compute the request.

let request = Request::sign(private_key, *self.program.id(), function_name, inputs,

&input_types, rng)?;

// ...

13 / 58 – Finding Details

Recommendation
Consider adding the checks listed in the descriptions of the VerifyDeployment and Authorize

algorithms to their corresponding implementations. Additionally, perform a pass over the

other algorithms in the Aleo Protocol Specification document and add missing checks to

their respective implementations. If these sanity checks are performed at appropriate

locations higher up the call stack, consider adding documentation in the lower-level

functions to indicate that checks are performed elsewhere. Alternatively, if these sanity

checks are no longer necessary, consider amending the protocol specification.

Location
synthesizer/process/src/stack/deploy.rs

synthesizer/process/src/stack/authorize.rs

Retest Results
2023-12-04 – Not Fixed

Upon reporting this finding, the Aleo team indicated that some of the missing checks

described above were performed in other locations of the code base. The team also

indicated that this finding was “Not really an actionable finding” and this finding has been

marked as “Risk Accepted” as a result.

•

•

14 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/stack/deploy.rs#L56
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/stack/deploy.rs#L56
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/stack/authorize.rs#L20
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/stack/authorize.rs#L20

Incorrect Logic in Speculation of Aborted

Transactions

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E008901-W4E

Component synthesizer/src/vm

Category Data Validation

Status Fixed

Impact
A bug in the validation logic of the number of transactions handled during the speculation

process means that any aborted transaction in a batch will abort the entire process and not

return the aborted transactions expected by the function caller.

Description
The function atomic_speculate() defined in the file synthesizer/src/vm/finalize.rs is

responsible for speculating over a list of transactions and returns a tuple containing the

confirmed and aborted transactions. That function starts by setting up two empty lists to

keep track of the successful and failed transactions (confirmed and aborted highlighted in

the code excerpt below), and then iterates over all transactions, simulating their execution

depending on the transaction type (such as Deploy , Execute or Fee) and adding the

transaction to the aborted list (see highlight on line 138) in case the transaction was

rejected.

Medium

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

// Initialize a list of the confirmed transactions.

let mut confirmed = Vec::with_capacity(num_transactions);

// Initialize a list of the aborted transactions.

let mut aborted = Vec::new();

// Finalize the transactions.

'outer: for (index, transaction) in transactions.enumerate() {

// Convert the transaction index to a u32.

// Note: On failure, this will abort the entire atomic batch.

let index = u32::try_from(index).map_err(|_| "Failed to convert transaction

index".to_string())?;

// Process the transaction in an isolated atomic batch.

// - If the transaction succeeds, the finalize operations are stored.

// - If the transaction fails, the atomic batch is aborted and no finalize operations

are stored.

let outcome = match transaction {

// The finalize operation here involves appending the 'stack',

// and adding the program to the finalize tree.

Transaction::Deploy(_, program_owner, deployment, fee) => {

match process.finalize_deployment(state, store, deployment, fee) {

// Construct the accepted deploy transaction.

Ok((_, finalize)) => {

ConfirmedTransaction::accepted_deploy(index, transaction.clone(),

finalize)

.map_err(|e| e.to_string())

}

// Construct the rejected deploy transaction.

Err(_error) => {

15 / 58 – Finding Details

Alternatively, once a transaction has been successfully simulated (resulting in a positive

outcome), the transaction is appended to the confirmed list, highlighted on line 196 below.

Once all the transactions have been simulated in the 'outer for-loop, the function execution

exits the loop and checks whether the original number of transactions matches the number

of successful transactions, tracked in the confirmed list, and excerpted on line 207 below.

However, since failed transactions are added to a different list (the aborted list), that check

will fail if any transaction was unsuccessful, and an error will be returned. The function will

hence never successfully return a non-empty list of aborted transactions (in the return

statement highlighted on line 222 below).

132

133

134

135

136

137

138

139

140

141

194

195

196

197

198

199

200

201

202

203

204

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

// Finalize the fee, to ensure it is valid.

if let Err(error) = process.finalize_fee(state, store, fee) {

// Note: On failure, skip this transaction, and continue speculation.

#[cfg(debug_assertions)]

eprintln!("Failed to finalize the fee in a rejected deploy -

{error}");

// Store the aborted transaction.

aborted.push(transaction.clone());

continue 'outer;

}

// ...

match outcome {

// If the transaction succeeded, store it and continue to the next transaction.

Ok(confirmed_transaction) => confirmed.push(confirmed_transaction),

// If the transaction failed, abort the entire batch.

Err(error) => {

eprintln!("Critical bug in speculate: {error}\n\n{transaction}");

// Note: This will abort the entire atomic batch.

return Err(format!("Failed to speculate on transaction - {error}"));

}

}

}

// Ensure all transactions were processed.

if confirmed.len() != num_transactions {

// Note: This will abort the entire atomic batch.

return Err("Not all transactions were processed in

'VM::atomic_speculate'".to_string());

}

/* Perform the ratifications after finalize. */

if let Err(e) = Self::atomic_post_ratify(store, state, post_ratifications, solutions) {

// Note: This will abort the entire atomic batch.

return Err(format!("Failed to post-ratify - {e}"));

}

finish!(timer);

// On return, 'atomic_finalize!' will abort the batch, and return the confirmed &

aborted transactions.

Ok((confirmed, aborted))

16 / 58 – Finding Details

Recommendation
Consider replacing the check on line 207 with the following line, ensuring the number of

simulated transactions is equal to the total length of the confirmed list added to the

aborted list.

Additionally, write negative test cases to exercise all code paths, simulating various

scenarios where failing transactions are speculated.

Location
synthesizer/src/vm/finalize.rs

Retest Results
2023-12-05 – Fixed

NCC Group reviewed changes introduced as part of pull request 2081 (and merged into the

testnet3 branch at commit 7ac6979). Among a number of additional safety improvements,

the check towards the end of the function atomic_speculate() has been replaced with the

condition suggested in the recommendation above; see line 247 of the PR. This finding has

been marked “Fixed” as a result.

if confirmed.len() + aborted.len() != num_transactions

17 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/src/vm/finalize.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/src/vm/finalize.rs
https://github.com/AleoHQ/snarkVM/pull/2081/
https://github.com/AleoHQ/snarkVM/commit/7ac69798d8752f2caf42c5c4b9bf0fab932821d8
https://github.com/AleoHQ/snarkVM/commit/7ac69798d8752f2caf42c5c4b9bf0fab932821d8
https://github.com/AleoHQ/snarkVM/commit/7ac69798d8752f2caf42c5c4b9bf0fab932821d8
https://github.com/AleoHQ/snarkVM/pull/2081/files#diff-0accda075535a9bb27fbe2d62888746cc34c05a78a3652a89225eec8614743cdR247

Missing Bounds Checks when Deserializing

from Buffers

Overall Risk Medium

Impact Medium

Exploitability High

Finding ID NCC-E008901-69B

Component synthesizer/program

Category Denial of Service

Status Fixed

Impact
When loading a function, finalize, or closure from a buffer, bounds checks are not applied,

with the result that deserialized entities may contain unacceptably large numbers of inputs

or outputs. This may lead to panics or violated constraints later on in program execution.

Description
Function, finalize, and closure entities can be constructed in multiple ways. One method is

to deserialize them from bytestrings. This is implemented in bytes.rs, e.g., synthesizer/

program/src/closure/bytes.rs:

Medium

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

impl<N: Network, Instruction: InstructionTrait<N>> FromBytes for ClosureCore<N,

Instruction> {

/// Reads the closure from a buffer.

#[inline]

fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {

// Read the closure name.

let name: ! = Identifier::<N>::read_le(&mut reader)?;

// Read the inputs.

let num_inputs: i32 = u16::read_le(&mut reader)?;

let mut inputs: Vec<Input<N>> = Vec::with_capacity(num_inputs as usize);

for _ in 0..num_inputs {

inputs.push(Input::read_le(&mut reader)?);

}

// Read the instructions.

let num_instructions: u32 = u32::read_le(&mut reader)?;

if num_instructions > u32::try_from(N::MAX_INSTRUCTIONS).map_err(op: |e|

error(e.to_string()))? {

return Err(error(format!("Failed to deserialize a closure: too many instructions

({num_instructions})")));

}

let mut instructions: Vec<Instruction> = Vec::with_capacity(num_instructions as

usize);

for _ in 0..num_instructions {

instructions.push(Instruction::read_le(&mut reader)?);

}

// Read the outputs.

let num_outputs: i32 = u16::read_le(&mut reader)?;

let mut outputs: Vec<Output<N>> = Vec::with_capacity(num_outputs as usize);

for _ in 0..num_outputs {

outputs.push(Output::read_le(&mut reader)?);

}

18 / 58 – Finding Details

Note that the first two highlighted lines have implicit constraints: these values are not

allowed to exceed N::MAX_INPUTS and N::MAX_OUTPUTS respectively. These constraints could

be immediately enforced, as in fact the analogous constraint on num_instructions is

enforced; however, instead, the values are taken as-is and used as bounds for loops which

construct data structures. Large values of num_inputs and/or num_outputs could therefore

lead to significant overhead, potentially resulting in a denial-of-service attack if sufficient

memory overhead is reached.

The above excerpt focused on ClosureCore ; however the same comments can be made

regarding FinalizeCore and FunctionCore .

As a note, the impact of this issue is somewhat contained, as bounds checks are performed

within the latter two highlighted calls (to add_instruction and add_output respectively).

However, as observed in finding "Inconsistent or Absent Bounds Checks on Inputs", these

bounds checks also contain their own issues, and may permit more inputs than they should.

In addition to the instances described above, the NCC Group team observed many

additional occurrences of the above pattern (that is, a length is read from a potentially

untrusted source, followed by a buffer allocation). For example, many of the read_le()

functions, such as in algorithms/src/polycommit/sonic_pc/data_structures.rs also exhibit this

behavior. In general, a vector allocation with a with_capacity() call may panic if the

capacity is larger than isize::MAX , which is smaller than a usize . While many examples in

the code base cast the length to a usize , e.g. Vec::with_capacity(powers_len as usize) , in

all instances checked, the capacity is a type strictly smaller than a usize , such as a u32 or

a u16 and hence would not result in panics.

Recommendation
Insert the aforementioned omitted bounds checks; in general, make a point of failing as soon

as possible when bad user input is provided. Additionally, consider performing a pass

throughout the code base to identify and mitigate other instances of the offending pattern.

Location
synthesizer/program/src/closure/bytes.rs

synthesizer/program/src/finalize/bytes.rs

synthesizer/program/src/function/bytes.rs

Retest Results
2023-12-04 – Fixed

NCC Group reviewed changes introduced in pull request 1988 (and merged into the

testnet3 branch at commit e4a86e3) and observed that bound checks for Closure, Finalize

and Function objects had been added to their respective FromBytes implementations. This is

aligned with the recommendation above. This finding has been marked “Fixed” as a result.

48

49

50

51

52

53

54

55

•

•

•

// Initialize a new closure.

let mut closure: ClosureCore<N, Instruction> = Self::new(name);

inputs.into_iter().try_for_each(|input: Input<N>|

closure.add_input(input)).map_err(|e| error(e.to_string()))?;

instructions Vec<Instruction>

.into_iter() IntoIter<Instruction>

.try_for_each(|instruction: Instruction| closure.add_instruction(instruction))

Result<(), {unknown}>

.map_err(|e| error(e.to_string()))?;

outputs.into_iter().try_for_each(|output:

Output<N>| closure.add_output(output)).map_err(|e| error(e.to_string()))?;

19 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/closure/bytes.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/closure/bytes.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/finalize/bytes.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/finalize/bytes.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/function/bytes.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/function/bytes.rs
https://github.com/AleoHQ/snarkVM/pull/1988/
https://github.com/AleoHQ/snarkVM/commit/e4a86e3f018fa376b60824a43f45a81ff265a380
https://github.com/AleoHQ/snarkVM/commit/e4a86e3f018fa376b60824a43f45a81ff265a380
https://github.com/AleoHQ/snarkVM/commit/e4a86e3f018fa376b60824a43f45a81ff265a380

Trailing Zeros in Polynomials After Arithmetic

Operations or Random Generation

Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-E008901-GKE

Component algorithms/polynomial

Category Data Validation

Status Fixed

Impact
Polynomials are assumed to have no trailing zeros in many instances. The presence of

trailing zero coefficients may cause incorrect results, panics, or inconsistent behavior. Such

invalid states may be triggered as the output of arithmetic operations on otherwise valid

polynomials, or in corner cases during the sampling of random polynomials.

Description
The file algorithms/src/fft/polynomial/dense.rs provides an implementation of dense

polynomials to be used for FFTs. These polynomials are represented by vectors in which

each entry corresponds to a coefficient. These coefficients are elements of a finite field, and

as such, the sum of two coefficients may take any value in the range , where

is the order of the prime field.

When adding two polynomials of the same degree using the function add() , trailing

coefficients that sum to zero are not trimmed. This contradicts an underlying assumption on

the shape of polynomial representations, namely that the coefficient of the highest-degree

term is non-zero. Note that the code base sometimes refers to them as “leading

coefficients” (instead of “trailing”) and we follow that convention in the rest of the finding for

clarity.

As an example, summing the polynomials and (using the

function add() provided below for reference) represented by the vectors [3, 2, 1] and [1,

0, p-1] will result in the vector [4, 2, 0] , namely the trailing position is equal to zero.

Medium

0,… , p− 1 p

3 + 2x+ x2 1 + (p− 1)x2

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

fn add(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {

if self.is_zero() {

other.clone()

} else if other.is_zero() {

self.clone()

} else if self.degree() >= other.degree() {

let mut result = self.clone();

// Zip safety: `result` and `other` could have different lengths.

cfg_iter_mut!(result.coeffs).zip(&other.coeffs).for_each(|(a, b)| *a += b);

result

} else {

let mut result = other.clone();

// Zip safety: `result` and `other` could have different lengths.

cfg_iter_mut!(result.coeffs).zip(&self.coeffs).for_each(|(a, b)| *a += b);

// If the leading coefficient ends up being zero, pop it off.

while let Some(true) = self.coeffs.last().map(|c| c.is_zero()) {

result.coeffs.pop();

}

20 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/b9ec8ab4e839b84839fef0de190dea82850ef84b/algorithms/src/fft/polynomial/dense.rs
https://github.com/AleoHQ/snarkVM/blob/b9ec8ab4e839b84839fef0de190dea82850ef84b/algorithms/src/fft/polynomial/dense.rs

The function contains two non-trivial cases based on which of the two operands has a

larger degree. In the case highlighted above, no trimming of leading zeros occurs when the

degree of the left-hand side is larger or equal to the right-hand side. Therefore, as

highlighted earlier, leading zeros may be present in the result when the degrees are equal.

Such a result is not incorrect mathematically but may present issues elsewhere in the code.

For example, the function degree() returns the degree of a polynomial based on the number

of stored coefficients, and panics if the leading coefficient is zero:

In contrast, the function leading_coefficient() in algorithms/src/fft/polynomial/mod.rs will

return a leading 0 coefficient, if present, which may contradict assumptions made by callers

of this function:

Some uses of Polynomial within the code base do correctly account for leading zeros, such

as skip_leading_zeros_and_convert_to_bigints() in algorithms/src/polycommit/kzg10/

mod.rs. In general, it is recommended to maintain consistency in the handling of leading

zeros to avoid redundant computation.

This finding also applies to the implementations of add_assign() , sub() , and sub_assign()

for DensePolynomial .

Leading Zeros in Random Polynomials

The function DensePolynomial::rand() generates a random polynomial of degree d over the

associated field:

With very small probability, the polynomial generated by this function may have degree less

than d when one or more of the leading coefficients are zero. This may contradict

assumptions elsewhere in the code base, such as in the generation of the blinding

208

209

210

211

87

88

89

90

91

92

93

94

95

155

156

157

158

159

160

115

116

117

118

119

120

result

}

}

}

/// Returns the degree of the polynomial.

pub fn degree(&self) -> usize {

if self.is_zero() {

0

} else {

assert!(self.coeffs.last().map_or(false, |coeff| !coeff.is_zero()));

self.coeffs.len() - 1

}

}

pub fn leading_coefficient(&self) -> Option<&F> {

match self {

Sparse(p) => p.coeffs().last().map(|(_, c)| c),

Dense(p) => p.last(),

}

}

/// Outputs a polynomial of degree `d` where each coefficient is sampled uniformly at

random

/// from the field `F`.

pub fn rand<R: Rng>(d: usize, rng: &mut R) -> Self {

let random_coeffs = (0..(d + 1)).map(|_| F::rand(rng)).collect();

Self::from_coefficients_vec(random_coeffs)

}

21 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs
https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs
https://github.com/AleoHQ/snarkVM/blob/8990366ea71fc8ef9606107eddb45e2af80fe8a5/algorithms/src/polycommit/kzg10/mod.rs
https://github.com/AleoHQ/snarkVM/blob/8990366ea71fc8ef9606107eddb45e2af80fe8a5/algorithms/src/polycommit/kzg10/mod.rs
https://github.com/AleoHQ/snarkVM/blob/8990366ea71fc8ef9606107eddb45e2af80fe8a5/algorithms/src/polycommit/kzg10/mod.rs
https://github.com/AleoHQ/snarkVM/blob/8990366ea71fc8ef9606107eddb45e2af80fe8a5/algorithms/src/polycommit/kzg10/mod.rs
https://github.com/AleoHQ/snarkVM/blob/889d9c3c27dc89f718de496345a0a86d5121cd18/algorithms/src/polycommit/kzg10/data_structures.rs#L351-L356

polynomial in the KZG10 PolyCommit implementation, which assumes the generated

polynomial is of the expected degree.

Note that the above has been fixed in the upstream arkworks-rs repo as part of PR 667

(commit d2005a7), which ensures the leading coefficient is non-zero.

Recommendation
Revise the affected arithmetic operations to correctly trim leading zeros in all cases

where they may occur.

Ensure randomly generated polynomials are of the specified degree. Rejection sampling

may be used, where the leading coefficient is resampled until it is non-zero.

Consider adding regression tests to enforce the above changes.

Location
algorithms/src/fft/polynomial/dense.rs

Retest Results
2023-12-05 – Fixed

NCC Group reviewed changes introduced in pull request 2147 (and merged into the

testnet3 branch at commit cd0f6d4) and observed that the arithmetic operations add() ,

add_assign() , sub() , and sub_assign() for DensePolynomial had been updated to perform

the trimming step unconditionally. The function DensePolynomial::rand() was also amended

to ensure the leading coefficient is re-sampled as long as it is zero. This is aligned with the

recommendation above. This finding has been marked “Fixed” as a result.

•

•

•

22 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/889d9c3c27dc89f718de496345a0a86d5121cd18/algorithms/src/polycommit/kzg10/data_structures.rs#L351-L356
https://github.com/arkworks-rs/algebra/pull/667/commits
https://github.com/arkworks-rs/algebra/pull/667/commits/d2005a7ef15e5e7df6247ec0f0e29c12e3ccb822
https://github.com/arkworks-rs/algebra/pull/667/commits/d2005a7ef15e5e7df6247ec0f0e29c12e3ccb822
https://github.com/arkworks-rs/algebra/pull/667/commits/d2005a7ef15e5e7df6247ec0f0e29c12e3ccb822
https://github.com/AleoHQ/snarkVM/blob/b9ec8ab4e839b84839fef0de190dea82850ef84b/algorithms/src/fft/polynomial/dense.rs
https://github.com/AleoHQ/snarkVM/blob/b9ec8ab4e839b84839fef0de190dea82850ef84b/algorithms/src/fft/polynomial/dense.rs
https://github.com/AleoHQ/snarkVM/pull/2147/
https://github.com/AleoHQ/snarkVM/commit/cd0f6d49be1f7f0ff631c82333dd54c8906c9314
https://github.com/AleoHQ/snarkVM/commit/cd0f6d49be1f7f0ff631c82333dd54c8906c9314
https://github.com/AleoHQ/snarkVM/commit/cd0f6d49be1f7f0ff631c82333dd54c8906c9314

Function ID Hash Computations May Result in

Collisions

Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E008901-Y7H

Component synthesizer/process

Category Cryptography

Status Fixed

Impact
Non-canonical serialization of data may allow attackers to craft colliding function IDs, which

could lead to various types of issues such as signature forgery.

Description
When serializing data, especially for use in cryptographic protocols, care should be taken to

ensure that the serialization of different inputs does not result in the same output. If that

were the case, attackers could, for example, craft new messages for which the signature on

an existing, but different message would also be valid.

Best practice on this topic is to use a variant of a TLV (type-length-value) encoding, where

the value to be encoded is prefixed with a non-ambiguous representation of its type, as well

as the length of the data to be encoded.

The NCC Group team noted that data serialization (prior to being fed to the hash function

call for the function ID generation) was susceptible to non-canonical encodings, potentially

giving attackers the ability to forge signatures. Specifically, the function ID is computed as

Hash(network_id, program_id, function_name) , where the program_id is composed of the

program name and the network name. The code snippet below, excerpted from the file

verify_fee.rs to illustrate the issue, shows the call to the hash_bhp1024() function where the

inputs are a sequence of strings.

Since these values do not have fixed lengths, and are not prepended by their respective

lengths either, some trivial collisions might be computed, at least in theory. For example, for

a given network ID of 3 , the function ID of a hypothetical function foo located in the

program bar.aleo would be the same as the function ID of the function ofoo in bar.ale ,

since

Note that other calls to hash functions may also be vulnerable to the issue described above.

For example, the hash_bhp1024() function is also used in the context of a checksum

computation in synthesizer/process/src/stack/execute.rs, or in synthesizer/program/src/

logic/command/rand_chacha.rs without the precautions listed above.

Low

79

80

81

82

83

// Compute the function ID as `Hash(network_id, program_id, function_name)`.

let function_id = N::hash_bhp1024(

&(U16::<N>::new(N::ID), fee.program_id().name(), fee.program_id().network(),

fee.function_name())

.to_bits_le(),

)?;

H([3, "bar", "aleo", "foo"]) = H([3, "bar", "ale", "ofoo"]).

23 / 58 – Finding Details

Recommendation
Consider prepending each hash function input with its length. In the toy example above, we

observe that the two inputs to the hash function would differ, leading to different digests.

That is

Additionally, review other calls to hash functions in the code base, determine whether

similar hash collision attacks can be performed and mitigate the issues by updating the

encoding scheme to follow a variant of TLV encoding.

Location
synthesizer/process/src/verify_fee.rs

synthesizer/process/src/stack/execute.rs

synthesizer/program/src/logic/command/rand_chacha.rs

Retest Results
2023-12-05 – Fixed

NCC Group reviewed changes introduced in pull request 2154 (and not merged into the

testnet3 branch at this moment) and observed that a function compute_function_id() had

been introduced, which now prepends the length of the fields program_id.name ,

program_id.network and function_name in the computation of the function ID. This is aligned

with the recommendation above. This finding has been marked “Fixed” as a result.

•

•

•

H([1, "3", 3, "bar", 4, "aleo", 3, "foo"]) != H([1, "3", 3, "bar", 3, "ale", 4, "ofoo"]).

24 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/verify_fee.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/verify_fee.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/stack/execute.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/stack/execute.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/command/rand_chacha.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/command/rand_chacha.rs
https://github.com/AleoHQ/snarkVM/pull/2154/

Incomplete Reserved Keywords List

Overall Risk Low

Impact Undetermined

Exploitability Medium

Finding ID NCC-E008901-CDE

Component synthesizer/process

Category Data Validation

Status Fixed

Impact
Malicious Aleo developers may create misleading programs with instructions having different

meanings than that of their reserved counterparts. This could lead to unexpected issues

with the parser and the program initialization logic.

Description
The file synthesizer/program/src/lib.rs defines a static KEYWORDS list, which aims to capture

all the keywords used by the Aleo instructions language. This includes literals like u8 or

boolean , program-logic keywords like function or struct , and a catch all category for

keywords not currently in use. A excerpt of that list definition is provided below.

This list is used by the is_reserved_keyword() function to check whether a given name uses

one of the reserved keywords in the list. That function, excerpted below for reference, is

called from various locations within the code base to ensure that a given name does not use

one of the reserved keywords. Notably, the function is used throughout the synthesizer/

program/src/lib.rs source file by functions such as add_struct() and add_function() to add

the given instruction to the program being parsed.

The NCC Group team noted that a few keywords were missing from that list. Most notably,

the finalize keyword is currently not present in the list, even though it is an important

function type in the Aleo ecosystem. Failure to reserve this keyword means that a malicious

(or simply unaware) developer could declare a struct, a record, or a function called

finalize . Not only would this be misleading, but it may also result in unexpected issues

with the parser and the program initialization logic.

Low

540

541

542

543

544

545

546

547

548

549

550

619

620

621

622

623

624

625

const KEYWORDS: &'static [&'static str] = &[

// Mode

"const",

"constant",

"public",

"private",

// Literals

"address",

"boolean",

"field",

// ...

/// Returns `true` if the given name uses a reserved keyword.

pub fn is_reserved_keyword(name: &Identifier<N>) -> bool {

// Convert the given name to a string.

let name = name.to_string();

// Check if the name is a keyword.

Self::KEYWORDS.iter().any(|keyword| *keyword == name)

}

25 / 58 – Finding Details

https://developer.aleo.org/leo/language/#finalize-function

Additionally, a few other keywords found in either the Aleo Instructions Language Guide or

the Leo Language Guide are also missing from the KEYWORDS list. While not necessarily

exhaustive, the following list of keywords could be added to the static KEYWORDS list.

bool

inline

transition

import

Recommendation
Review all the keywords in the current instruction set and add missing keywords to the

KEYWORDS list. Additionally, consider introducing a process whereby each time the keywords

in the Aleo/Leo language are modified, the KEYWORDS list must be reviewed and updated

accordingly.

Location
synthesizer/program/src/lib.rs, lines 540-607

Retest Results
2023-11-14 – Fixed

NCC Group reviewed changes introduced in pull request 2148 (and merged into the

testnet3 branch at commit e284218) and observed that the import keyword had been

added to the list of reserved keywords. The other (potentially missing) keywords highlighted

in the finding only exist in the Leo language, and adding them was deemed unnecessary.

This finding has been marked “Fixed” as a result.

•

•

•

•

26 / 58 – Finding Details

https://developer.aleo.org/aleo/language/
https://developer.aleo.org/leo/language/
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/lib.rs#L540-L607
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/lib.rs#L540-L607
https://github.com/AleoHQ/snarkVM/pull/2148/
https://github.com/AleoHQ/snarkVM/commit/e284218f88b1d0e8254f71e2c4bb1340f9e4deb6
https://github.com/AleoHQ/snarkVM/commit/e284218f88b1d0e8254f71e2c4bb1340f9e4deb6
https://github.com/AleoHQ/snarkVM/commit/e284218f88b1d0e8254f71e2c4bb1340f9e4deb6

Missing Bound Check on Minimum Struct

Entries

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E008901-C6R

Component synthesizer/process

Category Data Validation

Status Fixed

Impact
A missing lower bound check may result in invalid structs being processed, resulting in

unexpected consequences.

Description
In the file synthesizer/process/src/stack/helpers/matches.rs, the function

matches_plaintext_internal() is used to check that the plaintext argument matches the

layout of the plaintext type. In case that plaintext is of type Struct , a bound check is

performed on the maximum number of struct entries, as can be seen in the code excerpt

below.

However, this code branch does not check against the minimum number of entries, i.e., the

constant MIN_STRUCT_ENTRIES defined in the file console/network/src/lib.rs. As a comparison,

other places where such a bound check is performed ensure both the upper and lower

bounds are validated, for example in synthesizer/process/src/stack/finalize_types/

matches.rs:

Recommendation
In the function matches_plaintext_internal() , ensure that num_members is larger than or

equal to MIN_STRUCT_ENTRIES .

Location
synthesizer/process/src/stack/helpers/matches.rs

Low

218

219

220

221

222

223

224

30

31

32

33

34

35

36

37

// Ensure the number of struct members does not exceed the maximum.

let num_members = members.len();

ensure!(

num_members <= N::MAX_STRUCT_ENTRIES,

"'{struct_name}' cannot exceed {} entries",

N::MAX_STRUCT_ENTRIES

);

// Ensure the operands length is at least the minimum required.

if operands.len() < N::MIN_STRUCT_ENTRIES {

bail!("'{struct_name}' must have at least {} operand(s)", N::MIN_STRUCT_ENTRIES)

}

// Ensure the number of struct members does not exceed the maximum.

if operands.len() > N::MAX_STRUCT_ENTRIES {

bail!("'{struct_name}' cannot exceed {} entries", N::MAX_STRUCT_ENTRIES)

}

27 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/stack/helpers/matches.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/process/src/stack/helpers/matches.rs

Retest Results
2023-12-05 – Fixed

NCC Group reviewed changes introduced in pull request 2149 (and merged into the

testnet3 branch at commit b23de19) and observed that a check has been added to ensure

that num_members is larger than or equal to MIN_STRUCT_ENTRIES . This is aligned with the

recommendation above. This finding has been marked “Fixed” as a result.

28 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/pull/2149/
https://github.com/AleoHQ/snarkVM/commit/b23de19c512b298d07466cda87747e640e892a44
https://github.com/AleoHQ/snarkVM/commit/b23de19c512b298d07466cda87747e640e892a44
https://github.com/AleoHQ/snarkVM/commit/b23de19c512b298d07466cda87747e640e892a44

Inconsistent or Absent Bounds Checks on

Inputs

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E008901-UV3

Component synthesizer/program

Category Denial of Service

Status Fixed

Impact
An off-by-one error permits closure, finalize, and function entities to be instantiated with 17

inputs, whereas SnarkVM is only designed to support a maximum of 16 inputs.

Description
Bounds checks are enforced on input counts and operand counts throughout the code base;

as an example, in synthesizer/program/src/function/mod.rs, the following test is applied:

Contrast this with synthesizer/program/src/closure/mod.rs:

Or the neighbor module synthesizer/program/src/finalize/mod.rs:

These lines clearly are all intended to enforce the same bound, however they disagree on

whether to include N::MAX_INPUTS as a valid number of inputs; the latter two include it, while

the former does not.

Venturing momentarily outside of the scope for this portion of this review, we note the

motivation for this limit: in ledger/block/src/transition/merkle.rs, inputs and outputs are

combined as leaves in a (binary) Merkle tree; in order to fit into a fixed-height tree, their

combined counts must not exceed a specific power of 2 (currently 2
5
=32); as such, we

cannot have more than 16 inputs or outputs.

The context of these checks is that they precede adding an input; as such, if the operation

is successful, we can expect that the length of self.inputs will increase by 1 after the

check is performed. This is problematic: if the length was 16 prior to adding an input, it will

be 17 afterwards, and the system will have reached an invalid state. Therefore, in this

context, a strict < check is appropriate, whereas if the list of inputs is simply being

validated, not modified, a <= check would be correct.

It is observed in passing that the analogous checks against N::MAX_OUTPUTS all use the

proper < comparison. NCC Group inspected other checks against these constants

throughout the code base and did not identify any other instances of this issue.

Low

116

117

85

86

94

95

// Ensure the maximum number of inputs has not been exceeded.

ensure!(self.inputs.len() < N::MAX_INPUTS, "Cannot add more than {} inputs",

N::MAX_INPUTS);

// Ensure the maximum number of inputs has not been exceeded.

ensure!(self.inputs.len() <= N::MAX_INPUTS, "Cannot add more than {} inputs",

N::MAX_INPUTS);

// Ensure the maximum number of inputs has not been exceeded.

ensure!(self.inputs.len() <= N::MAX_INPUTS, "Cannot add more than {} inputs",

N::MAX_INPUTS);

29 / 58 – Finding Details

Though NCC did not dynamically test this edge case due to it falling partially out of scope

for this review, we do observe that it appears this invalid state will be caught in ledger/

block/src/transition/merkle.rs, which checks inputs.len() against N::MAX_INPUTS ; hence,

the impact and severity of this issue are limited.

Recommendation
The following recommendation is conditional on: N::MAX_INPUTS == 16 ==

2
TRANSITION_DEPTH-1

.

Whenever an N::MAX_INPUTS bounds check precedes the addition of an input, the check

should be < . Whenever this bounds check is performed as a validation pass, without any

associated modification of the size of the data structure being checked, the check should

be <= .

Location
synthesizer/program/src/function/mod.rs

synthesizer/program/src/finalize/mod.rs

synthesizer/program/src/closure/mod.rs

Retest Results
2023-12-05 – Fixed

NCC Group reviewed changes introduced in pull request 1986 (and merged into the

testnet3 branch at commit 3fe597e) and observed that the checks in synthesizer/program/

src/closure/mod.rs and in synthesizer/program/src/finalize/mod.rs had been updated to < ,

as suggested in the recommendation above. This finding has been marked “Fixed” as a

result.

•

•

•

30 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/function/mod.rs#L116-L117
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/function/mod.rs#L116-L117
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/finalize/mod.rs#L94-L95
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/finalize/mod.rs#L94-L95
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/closure/mod.rs#L85-L86
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/closure/mod.rs#L85-L86
https://github.com/AleoHQ/snarkVM/pull/1986/
https://github.com/AleoHQ/snarkVM/commit/3fe597ed4e282139b6e31d5c1ae47551e425d0dc
https://github.com/AleoHQ/snarkVM/commit/3fe597ed4e282139b6e31d5c1ae47551e425d0dc
https://github.com/AleoHQ/snarkVM/commit/3fe597ed4e282139b6e31d5c1ae47551e425d0dc
https://github.com/AleoHQ/snarkVM/pull/1986/files#diff-a87a1e8beb53c4857ce0f17e6702fd562bdea3a50c7645881c60321195f8452dR86
https://github.com/AleoHQ/snarkVM/pull/1986/files#diff-a87a1e8beb53c4857ce0f17e6702fd562bdea3a50c7645881c60321195f8452dR86
https://github.com/AleoHQ/snarkVM/pull/1986/files#diff-a87a1e8beb53c4857ce0f17e6702fd562bdea3a50c7645881c60321195f8452dR86
https://github.com/AleoHQ/snarkVM/pull/1986/files#diff-a87a1e8beb53c4857ce0f17e6702fd562bdea3a50c7645881c60321195f8452dR86
https://github.com/AleoHQ/snarkVM/pull/1986/files#diff-a00699b11632f8c05f61c0da6d709173272a87676d38aa63ae44f7d4db5f3ec4R95
https://github.com/AleoHQ/snarkVM/pull/1986/files#diff-a00699b11632f8c05f61c0da6d709173272a87676d38aa63ae44f7d4db5f3ec4R95

Incorrect Polynomial Division When Both

Operands Are Zero

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E008901-FYM

Component algorithms/polynomial

Category Error Reporting

Status Fixed

Impact
Polynomial division will not return an error when both operands are 0, despite the result

being undefined. Continued computation on invalid data may invalidate security proofs and

compromise the security or privacy of data.

Description
The function divide_with_q_and_r() is defined in algorithms/src/fft/polynomial/mod.rs and is

used to multiply two polynomials together, returning both the quotient and remainder:

The function implements a short-circuit return of 0 when the dividend is 0, followed by a

check that the divisor is non-zero, which causes a panic due to the undefined result.

Because the short-circuit return is performed before the divisor.is_zero() check, the

function will incorrectly return a result of 0 when both inputs are 0, when it should instead

panic.

Based on the observed usage of this function within the existing code base, the above case

should not be triggered during regular use, as divisor inputs to the function are explicitly

non-zero in all observed cases. The one exception is the test divide_polynomials_random()

in algorithms/src/fft/polynomial/dense.rs, which may trigger the error case with negligible

probability if both generated operands are zero. Nevertheless, future use of

DensePolynomial may end up triggering the incorrect case.

As an additional observation, the divide_polynomials_random() test will fail in general with

negligible probability should the random divisor be 0.

Recommendation
Swap the order of the self.is_zero() and divisor.is_zero() checks to ensure that a zero

divisor always results in an error. Consider adding a regression test to enforce this result

going forward.

Location
algorithms/src/fft/polynomial/mod.rs

Low

214

215

216

217

218

219

/// Divide self by another (sparse or dense) polynomial, and returns the quotient and

remainder.

pub fn divide_with_q_and_r(&self, divisor: &Self) -> Option<(DensePolynomial<F>,

DensePolynomial<F>)> {

if self.is_zero() {

Some((DensePolynomial::zero(), DensePolynomial::zero()))

} else if divisor.is_zero() {

panic!("Dividing by zero polynomial")

31 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs
https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs
https://github.com/AleoHQ/snarkVM/blob/b9ec8ab4e839b84839fef0de190dea82850ef84b/algorithms/src/fft/polynomial/dense.rs
https://github.com/AleoHQ/snarkVM/blob/b9ec8ab4e839b84839fef0de190dea82850ef84b/algorithms/src/fft/polynomial/dense.rs
https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs
https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs

Retest Results
2023-12-05 – Fixed

NCC Group reviewed changes introduced in pull request 2151 (and merged into the

testnet3 branch at commit 1856d4a) and observed that the function divide_with_q_and_r()

now starts by ensuring the divisor polynomial is non-zero. This finding has been marked

“Fixed” as a result.

32 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/pull/2151/
https://github.com/AleoHQ/snarkVM/commit/1856d4a0c96b4cb07071cc1121e6d7d9a2fdc3d9
https://github.com/AleoHQ/snarkVM/commit/1856d4a0c96b4cb07071cc1121e6d7d9a2fdc3d9
https://github.com/AleoHQ/snarkVM/commit/1856d4a0c96b4cb07071cc1121e6d7d9a2fdc3d9

Polynomial Serialization and Deserialization

Does Not Strip Trailing Zeros

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008901-72V

Component algorithms/polynomial

Category Data Validation

Status Fixed

Impact
Polynomials are assumed to have no trailing zeros in many instances, and may lead to

incorrect results, panics, or inconsistent behavior when not correctly stripped. Serialization

validation checks do not strip trailing zeros if present, which may lead to unexpected errors.

Description
Finding "Trailing Zeros in Polynomials After Arithmetic Operations or Random Generation"

detailed instances where arithmetic operations may result in a polynomial with unexpected

trailing zero coefficients, which may cause the program to panic or behave incorrectly when

computing the degree or highest-degree coefficient of the polynomial. This finding details

another instance where unexpected trailing zeros may be present. Note that the code base

sometimes refers to them as “leading coefficients” (instead of “trailing”) and we follow that

convention in the rest of the finding for clarity.

The Polynomial type, defined in algorithms/src/fft/polynomial/mod.rs, serves as a wrapper

for a SparsePolynomial or a DensePolynomial . This includes methods for serialization and

deserialization, which are implemented via the traits CanonicalSerialize and

CanonicalDeserialize .

The used serialization traits support the Valid trait, which calls a check() function on data

during the serialization process. For Polynomial , the associated function is:

As seen above, the check() function always returns Ok , meaning no additional validation is

performed on the data.

In algorithms/src/fft/polynomial/dense.rs, the underlying serialization operations are derived

from generic macros for the serialization and deserialization of structs:

Therefore, if a Polynomial incorrectly contains leading zeros, then these will be serialized

and deserialized as-is. It is possible that such a result may occur mistakenly via one of the

affected arithmetic operations detailed in finding "Trailing Zeros in Polynomials After

Arithmetic Operations or Random Generation". This is also in contrast to other methods of

constructing a Polynomial where leading zeros are explicitly stripped; e.g., DensePolynomial:

:from_coefficients_vec() .

Low

70

71

72

73

74

37

impl<'a, F: Field> Valid for Polynomial<'a, F> {

fn check(&self) -> Result<(), SerializationError> {

Ok(())

}

}

#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]

33 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs
https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs
https://github.com/AleoHQ/snarkVM/blob/b9ec8ab4e839b84839fef0de190dea82850ef84b/algorithms/src/fft/polynomial/dense.rs
https://github.com/AleoHQ/snarkVM/blob/b9ec8ab4e839b84839fef0de190dea82850ef84b/algorithms/src/fft/polynomial/dense.rs

Given the presence of the check() function and its implied use when serializing data, it may

be prudent to strip leading zeros or fail serialization operations when leading zeros are

present. For example, check() could return an error if self.leading_coefficient() is zero.

Recommendation
Consider stripping leading zeros in Polynomial instances on serialization/deserialization or

reporting an error if leading zeros are present.

Location
algorithms/src/fft/polynomial/mod.rs

Retest Results
2023-12-05 – Fixed

NCC Group reviewed changes introduced in pull request 2152 (and merged into the

testnet3 branch at commit ce4103f) and observed that the check() function now returns a

SerializationError in case the trailing coefficient is zero. This is aligned with the

recommendation above. This finding has been marked “Fixed” as a result.

34 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs
https://github.com/AleoHQ/snarkVM/blob/d83e4af9929eed30cfa067e5c31447b7743b1da4/algorithms/src/fft/polynomial/mod.rs
https://github.com/AleoHQ/snarkVM/pull/2152/
https://github.com/AleoHQ/snarkVM/commit/ce4103fdc64534bfe6879443660c1ae612c92831
https://github.com/AleoHQ/snarkVM/commit/ce4103fdc64534bfe6879443660c1ae612c92831
https://github.com/AleoHQ/snarkVM/commit/ce4103fdc64534bfe6879443660c1ae612c92831

Missing Subset Membership Check for Gamma

Challenge

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008901-PVG

Component algorithms/varuna

Category Cryptography

Status Fixed

Impact
Implementation discrepancies with the reference paper may invalidate the security proofs

and breach security guarantees.

Description
The Varuna specification describes the interactive version of the proof generation procedure

for multi-circuit batching. In the algorithm description, the verifier generates a few random

challenges throughout the course of the protocol. Specifically, in the fifth round, the verifier

generates a random challenge, , which is mandated to be in a restricted subset:

.

Using the Fiat-Shamir heuristic, the interactive protocol is rendered non-interactive by

having the prover simulate the challenge generation by obtaining them as outputs of a

random oracle, instantiated in the implementation by a hash function based on a sponge

construction.

The NCC Group team noticed that the generation of in the code base was not properly

restricted to the domain specified in the Varuna reference, as can be seen in the

verifier_fifth_round() function below, located in algorithms/src/snark/varuna/ahp/verifier/

verifier.rs.

In comparison, other challenge generation functions ensure the challenge was sampled from

the correct domain by checking that the vanishing polynomial evaluated at that challenge

was non-zero, see example below.

Low

γ

γ ← F ∖K

γ

188

189

190

191

192

193

194

195

196

197

198

149

150

151

/// Output the next round state.

pub fn verifier_fifth_round<BaseField: PrimeField, R: AlgebraicSponge<BaseField, 2>>(

mut state: State<TargetField, MM>,

fs_rng: &mut R,

) -> Result<State<TargetField, MM>, AHPError> {

let elems = fs_rng.squeeze_nonnative_field_elements(1);

let gamma = elems[0];

state.gamma = Some(gamma);

Ok(state)

}

pub fn verifier_third_round<BaseField: PrimeField, R: AlgebraicSponge<BaseField, 2>>(

mut state: State<TargetField, MM>,

fs_rng: &mut R,

35 / 58 – Finding Details

Recommendation
Add the following line to the verifier_fifth_round() function:

Additionally, assess whether panicking upon the generation of a challenge in the wrong

subset is appropriate; performing rejection sampling in these cases could be more

appropriate.

Location
algorithms/src/snark/varuna/ahp/verifier/verifier.rs

Retest Results
2023-10-16 – Fixed

This finding was discovered and fixed independently by the Aleo team during the

engagement, see pull request 1947 (merged into the testnet3 branch at commit bdc931e).

As a result, this finding is marked “Fixed”.

152

153

154

155

) -> Result<(ThirdMessage<TargetField>, State<TargetField, MM>), AHPError> {

let elems = fs_rng.squeeze_nonnative_field_elements(1);

let beta = elems[0];

assert!(!state.max_constraint_domain.evaluate_vanishing_polynomial(beta).is_zero());

assert!(!state.max_non_zero_domain.evaluate_vanishing_polynomial(gamma).is_zero());

36 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/src/snark/varuna/ahp/verifier/verifier.rs#L193-L196
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/src/snark/varuna/ahp/verifier/verifier.rs#L193-L196
https://github.com/AleoHQ/snarkVM/pull/1947/
https://github.com/AleoHQ/snarkVM/blob/bdc931e69543750c35edf879b5a47b07482c8184/algorithms/src/snark/varuna/ahp/verifier/verifier.rs#L195
https://github.com/AleoHQ/snarkVM/blob/bdc931e69543750c35edf879b5a47b07482c8184/algorithms/src/snark/varuna/ahp/verifier/verifier.rs#L195
https://github.com/AleoHQ/snarkVM/blob/bdc931e69543750c35edf879b5a47b07482c8184/algorithms/src/snark/varuna/ahp/verifier/verifier.rs#L195

Incorrect Loop Exit Condition in Evaluation

Generation

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008901-XL9

Component algorithms/varuna

Category Uncategorized

Status Fixed

Impact
An incorrect loop exit condition may result in the Evaluations structure not being correctly

instantiated, which could affect the correctness of the proof generation procedure.

Description
In the file algorithms/src/snark/varuna/data_structures/proof.rs, the function from_map()

instantiates an Evaluations data structure from a BTreeMap containing individual polynomial

evaluations indexed by their respective labels. The function, excerpted below for

convenience, iterates over elements of the map parameter, and adds evaluations to the

corresponding local data structures.

However, upon coming across the "g_1" label, the from_map() function exits the loop with a

break statement, as can be seen in the code snippet highlighted. As a result, all evaluations

with labels greater than "g_1" (in terms of lexicographic order) will not be added to the

Evaluations data structure. This is because iteration over a BTreeMap is performed in an

order defined by the keys, and since keys are string, the ordering in this case is

lexicographic.

Low

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

pub(crate) fn from_map(

map: &std::collections::BTreeMap<String, F>,

batch_sizes: BTreeMap<CircuitId, usize>,

) -> Self {

let mut g_a_evals = Vec::with_capacity(batch_sizes.len());

let mut g_b_evals = Vec::with_capacity(batch_sizes.len());

let mut g_c_evals = Vec::with_capacity(batch_sizes.len());

for (label, value) in map {

if label == "g_1" {

break;

}

if label.contains("g_a") {

g_a_evals.push(*value);

} else if label.contains("g_b") {

g_b_evals.push(*value);

} else if label.contains("g_c") {

g_c_evals.push(*value);

}

}

Self { g_1_eval: map["g_1"], g_a_evals, g_b_evals, g_c_evals }

}

37 / 58 – Finding Details

Fortunately, the implementation does not seem to ever trigger this condition, since the

current circuit labels are prefixed with "circuit_" , which comes before "g_1" when ordered

lexicographically. As a result, the loop exit condition is only triggered after having handled

all other evaluations.

Recommendation
Update the conditional statement in the from_map() function to

Location
algorithms/src/snark/varuna/data_structures/proof.rs

Retest Results
2023-11-14 – Fixed

NCC Group reviewed changes introduced in pull request 2153 (and merged into the

testnet3 branch at commit 13718c2) and observed that the break statement had been

changed to a continue , as recommended. As such, this finding has been marked “Fixed”.

if label == "g_1" {

continue;

}

38 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/src/snark/varuna/data_structures/proof.rs#L177
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/src/snark/varuna/data_structures/proof.rs#L177
https://github.com/AleoHQ/snarkVM/pull/2153/
https://github.com/AleoHQ/snarkVM/commit/13718c28a47b79af3fdd04aa0b63b05fbd26f75b
https://github.com/AleoHQ/snarkVM/commit/13718c28a47b79af3fdd04aa0b63b05fbd26f75b
https://github.com/AleoHQ/snarkVM/commit/13718c28a47b79af3fdd04aa0b63b05fbd26f75b

Outdated Dependencies, Cargo Audit

Vulnerabilities and Missing Toolchain File

Overall Risk Informational

Impact Low

Exploitability Undetermined

Finding ID NCC-E008901-Q9J

Component snarkVM

Category Patching

Status Not Fixed

Impact
Outdated or unmaintained dependencies may introduce issues in the code base and limit

the ability to respond to discovered vulnerabilities. Usage of dependencies with known

published vulnerabilities may also affect the perceived security of the software, even if they

do not affect any leveraged functionality. Additionally, an unspecified toolchain version may

cause divergence in application behavior between developers and users with different

environments, as well as allowing silently changing toolchain versions that can introduce

consensus instability which is difficult to debug and audit. A specific toolchain version also

highlights support expectations.

Description
Outdated Dependencies

The Rust ecosystem has several tools to help manage dependencies, such as cargo audit

and cargo outdated . Several outdated dependencies were observed, alongside several

unmaintained crates. Given the complexity of dependency graphs, the continuous

development of many crates, and the fixed target of this review, slightly outdated

dependencies are expected and normal. Nevertheless, careful attention should be given to

security-related dependencies and RustSec vulnerabilities.

Running the cargo outdated tool with the -R argument (in order to only check root

dependencies) results in the following output:

Additionally, running the cargo audit tool highlights one vulnerability and two warnings:

Info

$ cargo outdated -R

Name Project Compat Latest Kind Platform

---- ------- ------ ------ ---- --------

anstyle 1.0.2 1.0.4 1.0.4 Normal ---

clap 4.4.0 4.4.6 4.4.6 Normal ---

indexmap 2.0.0 2.0.2 2.0.2 Normal ---

rayon 1.7.0 1.8.0 1.8.0 Normal ---

self_update 0.37.0 --- 0.38.0 Normal ---

serde_json 1.0.105 1.0.107 1.0.107 Normal ---

thiserror 1.0.47 1.0.49 1.0.49 Normal ---

ureq 2.7.1 2.8.0 2.8.0 Normal ---

walkdir 2.3.3 2.4.0 2.4.0 Build ---

$ cargo audit

...

Crate: rustls-webpki

Version: 0.101.3

Title: rustls-webpki: CPU denial of service in certificate path building

Date: 2023-08-22

ID: RUSTSEC-2023-0053

39 / 58 – Finding Details

Missing Toolchain File

The Cargo package manager for Rust
1
 allows developers to specify the exact toolchain

version to be used via the rust-toolchain
2
 file. This allows a consistent, known and

auditable process for building applications that will reduce the potential for confusion and

poor debug visibility. This is particularly important for consensus-oriented projects that are

currently undergoing rapid development and change. The missing rust-toolchain file

typically indicates both a channel along with an exact numeric or dated version.

Stale Dependabot Ignore List

The dependabot configuration in .github/dependabot.yml runs a daily check for updated

dependencies and opens up to 10 PRs to perform these updates. It was observed that the

ignore list is non-empty, but none of the ignored versions appear to be used in the current

code base. These include syn, bech32, self_update, rand, quote, blake2, digest,

rand_xorshift, rand_core, rand_chacha, and tokio. Several of the ignored updates are for

security-related dependencies.

It may be beneficial to audit this ignore list and remove the ignored entries if no longer

relevant. Ignored entries should be annotated with a justification, and the ignore list should

be audited before major releases and kept to those entries which are necessary and

justified.

Recommendation
Consider automating dependency management to some degree, either through a GitHub

action or a tool like cargo deny . This can ensure that any RustSec vulnerabilities are

detected, reviewed and explicitly allowed only after careful consideration. Release

ceremonies should include an explicit audit of dependencies.

Specify an explicit version of the Rust toolchain in a rust-toolchain file placed at the root of

the code. Place this file under version control to ensure consistent builds across all users

and environments. Add a periodic gating milestone to the development process that involves

reviewing and updating the toolchain version along with project dependencies.

Ensure that the dependabot ignore list is maintained over time so that all entries remain

necessary and justified.

URL: https://rustsec.org/advisories/RUSTSEC-2023-0053

Severity: 7.5 (high)

Solution: Upgrade to >=0.100.2, <0.101.0 OR >=0.101.4

Dependency tree:

...

Crate: encoding

Version: 0.2.33

Warning: unmaintained

Title: `encoding` is unmaintained

Date: 2021-12-05

ID: RUSTSEC-2021-0153

URL: https://rustsec.org/advisories/RUSTSEC-2021-0153

...

Crate: dashmap

Version: 5.5.1

Warning: yanked

Dependency tree:

...

1. https://rust-lang.github.io/rustup/concepts/toolchains.html

2. https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file

40 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/b7f091aa5b8115c7d8ebc89ba2f7858002219314/.github/dependabot.yml
https://github.com/AleoHQ/snarkVM/blob/b7f091aa5b8115c7d8ebc89ba2f7858002219314/.github/dependabot.yml
https://rust-lang.github.io/rustup/concepts/toolchains.html
https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file

Retest Results
2023-12-06 – Not Fixed

The Aleo team did not provide a remediation response for this finding. It is marked “Not

Fixed” as a result.

41 / 58 – Finding Details

Wrapped Shift Operators Do Not Follow Their

Documented Semantics

Overall Risk Informational

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E008901-VBV

Component synthesizer/program

Category Cryptography

Status Fixed

Impact
The wrapped shift operators do not exactly follow their documented semantics, which can

lead to unexpected numerical outcomes.

Description
The shift operators are documented in the definition of the contents of the Instruction

enumeration, in synthesizer/program/src/loginc/instruction/mod.rs:

The Shl and Shr operations implement strict checks on the shift count: if the operand is an

integer type with n bits, then they explicitly verify that the shift count (the second operand)

is between 0 and n-1. Thus, if a value x has type U64 , then Shr on x with a shift count of 65

will trigger an error. On the other hand ShlWrapped and ShrWrapped accept shift counts of n

or more bits. The API documentation, shown above, seems to indicate that the input is

repeatedly shifted as many times as indicated; for instance, in the case of a value x of type

U64 , a shift count of 65 should yield an output value of zero, regardless of the initial value of

x.

This is not what ShlWrapped and ShrWrapped actually implement. In practice, they use the

semantics of Rust’s wrapping_shl() and wrapping_shr() functions, and, indeed, call these

functions explicitly for code execution. These semantics are that the shift count is reduced

modulo the target type size. For instance, in the case of a value x of type U64 , a ShrWrapped

with a shift count of 65 is fully equivalent to a Shr with a shift count of 1; if x is not initially 0

or 1, then such a shift will yield a non-zero output, not matching what could have been

expected from the documentation.

The circuit implementation matches the semantics used by the code interpreter; the

discrepancy reported here is really between the implementation and its documentation.

Info

/// Shifts `first` left by `second` bits, storing the outcome in `destination`.

Shl(Shl<N>),

/// Shifts `first` left by `second` bits, continuing past the boundary of the type,

storing the outcome in `destination`.

ShlWrapped(ShlWrapped<N>),

/// Shifts `first` right by `second` bits, storing the outcome in `destination`.

Shr(Shr<N>),

/// Shifts `first` right by `second` bits, continuing past the boundary of the type,

storing the outcome in `destination`.

ShrWrapped(ShrWrapped<N>),

/// Computes whether `signature` is valid for the given `address` and `message`.

42 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/instruction/mod.rs#L166-L174
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/instruction/mod.rs#L166-L174
https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_shl
https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_shl
https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_shl
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/console/types/integers/src/bitwise.rs#L197
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/circuit/types/integers/src/shl_wrapped.rs#L31

Recommendation
The documentation should match what the implementation does. It seems more

straightforward to adjust the documentation since both implementation targets (interpreter

and circuit) already agree with each other.

Location
synthesizer/program/src/loginc/instruction/mod.rs, lines 166-174

Retest Results
2023-12-05 – Fixed

NCC Group reviewed changes introduced in pull request 2190 (and merged into the

testnet3 branch at commit 8edd368) and observed that the documentation of the

ShlWrapped and ShrWrapped had been updated to properly reflect the implementation. This is

aligned with the recommendation above. This finding has been marked “Fixed” as a result.

43 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/instruction/mod.rs#L166-L174
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/instruction/mod.rs#L166-L174
https://github.com/AleoHQ/snarkVM/pull/2190/
https://github.com/AleoHQ/snarkVM/commit/8edd368621c54235542780530e6326d7bd2333a4
https://github.com/AleoHQ/snarkVM/commit/8edd368621c54235542780530e6326d7bd2333a4
https://github.com/AleoHQ/snarkVM/commit/8edd368621c54235542780530e6326d7bd2333a4

Incorrect Random Vector Generation

Overall Risk Informational

Impact Undetermined

Exploitability None

Finding ID NCC-E008901-THN

Component snarkVM

Category Cryptography

Status Fixed

Impact
The inadequate generation of vectors of random elements may skew some of the

benchmarks and test results.

Description
The generation of vectors with random elements is an important process happening

throughout the code base, such as for the generation of random polynomials. The NCC

Group team observed a (repeated) pattern in the code base, where these vectors were

generated in an inadequate manner.

Consider the following excerpt from the function sponge_2_1_absorb_10() in the file

algorithms/benches/crypto_hash/poseidon.rs, whose goal is to generate a vector containing

10 random elements:

Instead of sampling a vector with 10 random elements, this construction effectively samples

a single random element and duplicates it 10 times. Fortunately, all instances present in the

code base seem to occur in benchmarking or testing code. Thus, the severity of this finding

is set to Informational. In total, 13 instances following the offending pattern were found

(using the Rust regular expression \[(\w)+::rand\((\w)+\);) in the current code base; see

the Location field below for details.

Recommendation
Update the random vector generation procedures to produce vectors of distinct random

elements, for example by using the map() and collect() operators on a range, akin to the

construction provided below as example.

Location
algorithms/benches/crypto_hash/poseidon.rs on line 36

algorithms/src/snark/varuna/tests.rs on line 124

algorithms/src/snark/varuna/data_structures/proof.rs on lines 405-407 and on line 475

console/algorithms/benches/poseidon.rs on line 33 and on lines 47 and 61

ledger/block/src/transition/input/mod.rs on line 201

ledger/block/src/transition/output/mod.rs on line 245

ledger/test-helpers/src/lib.rs on line 67 and on line 99

Retest Results
2023-12-05 – Fixed

NCC Group reviewed changes introduced in pull request 2191 (and merged into the

testnet3 branch at commit 9f956e1) and observed that all instances identified in this

Info

•

•

•

•

•

•

•

let input = vec![Fq::rand(rng); 10];

let input: Vec<Fq> = (0..bound).map(|_| Fq::rand(rng)).collect();

44 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/benches/crypto_hash/poseidon.rs#L36
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/benches/crypto_hash/poseidon.rs#L36
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/src/snark/varuna/tests.rs#L124
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/src/snark/varuna/tests.rs#L124
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/src/snark/varuna/data_structures/proof.rs#L405-L407
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/algorithms/src/snark/varuna/data_structures/proof.rs#L405-L407
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/console/algorithms/benches/poseidon.rs#L33
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/console/algorithms/benches/poseidon.rs#L33
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger/block/src/transition/input/mod.rs#L201
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger/block/src/transition/input/mod.rs#L201
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger/block/src/transition/output/mod.rs#L245
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger/block/src/transition/output/mod.rs#L245
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger/test-helpers/src/lib.rs#L67
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/ledger/test-helpers/src/lib.rs#L67
https://github.com/AleoHQ/snarkVM/pull/2191/
https://github.com/AleoHQ/snarkVM/commit/9f956e1745a8e35d41f0dddb54f2e28d7c03f444
https://github.com/AleoHQ/snarkVM/commit/9f956e1745a8e35d41f0dddb54f2e28d7c03f444
https://github.com/AleoHQ/snarkVM/commit/9f956e1745a8e35d41f0dddb54f2e28d7c03f444

finding had been updated to the the method suggested in the recommendation above

(barring the instance in algorithms/benches/crypto_hash/poseidon, which had been updated

as part of an earlier pull request). This finding has been marked “Fixed” as a result.

45 / 58 – Finding Details

https://github.com/AleoHQ/snarkVM/pull/2038/files#diff-8d1834dbcc246a81ad345ebebed7481239dcf3a6d086e86141d5ba195ca0b735L36

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these recommendations

are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a

small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability, as

well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

46 / 58 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

47 / 58 – Finding Field Definitions

6 Engagement Notes

This section includes various remarks and minor observations that are not considered

security vulnerabilities, but that the NCC Group team deemed worth reporting.

General Comments on snarkVM
Code Comments and Overall Documentation

While the synthesizer and ledger components were found to be overall fairly well

documented, the algorithms crate is not as mature in terms of code comments. A rough

computation of the ratio of line of comment per line of code shows that the first two are

close to 30% (that is, 3 lines of comments per 10 lines of code) while the latter is around

15%. The operations performed in the algorithms crate are very complex and the zero-

knowledge proof system implemented in the varuna subdirectory could greatly benefit from

more in-depth comments detailing the many complex steps in the protocol.

NCC Group recommends that a pass over the algorithms crate be performed in order to

better document the proof generation and verification processes. Additionally, a tight

coupling between the reference paper (once it is in a more finished state) and the

implementation would also support an easier understanding of some of the complex

operations performed in the varuna crate. Improvement opportunities could include adding

references in function documentation to their definitions in the reference paper, and naming

variables and functions according to the protocol description.

On Error Handling

In general, the code base was found to exhibit some inconsistencies in the way errors were

handled. Some examples of the different error handling methods are provided below:

Using calls to the panic!() macro, for example in the function divide_with_q_and_r() of

algorithms/src/fft/polynomial/mod.rs:

Using calls to the assert!() macro, for example in the function verifier_third_round()

of algorithms/src/snark/varuna/ahp/verifier/verifier.rs:

Using calls to the ensure!() macro, for example in the function reindex_by_subdomain()

of algorithms/src/fft/domain.rs

Using calls to the bail!() macro, for example in the function trim() of algorithms/src/

polycommit/sonic_pc/mod.rs

Using the unwrap and expect statements,

And using the standard Rust Result and Option types.

While there is no single right way to perform error handling, it is good practice to perform it

in a consistent manner. Triggering panics during execution is generally not recommended

and may be adversarially exploited to perform denial-of-service attacks. The Secure Rust

Guidelines states the following on the topic of panics:

•

•

•

•

•

•

} else if divisor.is_zero() {

panic!("Dividing by zero polynomial");

assert!(!state.max_constraint_domain.evaluate_vanishing_polynomial(beta).is_zero());

pub fn reindex_by_subdomain(&self, other: &Self, index: usize) -> Result<usize> {

ensure!(self.size() >= other.size(), "other.size() must be smaller than self.size()");

if !size.is_power_of_two() {

bail!("The Lagrange basis size ({size}) is not a power of two");

}

48 / 58 – Engagement Notes

https://anssi-fr.github.io/rust-guide/04_language.html#panics
https://anssi-fr.github.io/rust-guide/04_language.html#panics

Explicit error handling (Result) should always be preferred instead of calling panic.

The cause of the error should be available, and generic errors should be avoided.

Crates providing libraries should never use functions or instructions that can fail

and cause the code to panic.

Common patterns that can cause panics are:

using unwrap or expect,

using assert,

an unchecked access to an array,

integer overflow (in debug mode),

division by zero,

large allocations,

string formatting using format!.

Hence, NCC Group recommends that a pass over the code base be performed in order to

remove error handling resulting in panics (including assert , unwrap or expect statements)

and to introduce more idiomatic Rust constructions, such as ones returning Result and

Option .

Logical vs Arithmetic Boolean Operations

The Rust programming language defines both the “Bitwise AND operator”, & (resp. “Bitwise

OR operator”, |), and the so-called “Short-circuiting logical AND”, && (resp. “Short-circuiting

logical OR”, ||), see the online Rust documentation.

The code base seems to use both arithmetic and logical operators interchangeably, even

when both operands are bool types. An example of that can be found in the verify_batch()

function in algorithms/src/snark/varuna/varuna.rs and provided below, for reference.

The use of the arithmetic AND operator in this case forces both operands to be evaluated. In

contrast, if the logical AND operator were used, the left operand would be evaluated first

and, provided it were false , the expression would be evaluated to false without needing to

evaluate the right operand, potentially saving a few precious cycles.

Consider performing a pass over the code base looking for instances of & and | and assess

whether replacing them with their logical counterpart would be more efficient.

Notes on the algorithms Component
Inadequate Visibility and Unused Functions in MSM

The algorithms/src/msm/ subdirectory defines several functions and optimizations for

performing multi-scalar multiplication, such as to perform fixed- or variable-base MSM. A

few observations can be made about these functions.

The different specialized msm() functions called from the variable-base msm() function

defined in algorithms/src/msm/variable_base/mod.rs are defined pub , which makes them

accessible to the outside world; it can be argued that they should not be public.

•

•

•

•

•

•

•

703

704

705

706

707

•

let proof_has_correct_zk_mode = if MM::ZK {

proof.pc_proof.is_hiding() & comms.mask_poly.is_some()

} else {

!proof.pc_proof.is_hiding() & comms.mask_poly.is_none()

};

49 / 58 – Engagement Notes

https://doc.rust-lang.org/book/appendix-02-operators.html#operators

The function msm() defined in algorithms/src/msm/fixed_base.rs, and the helper

functions defined throughout that file, do not seem to be used anywhere in the code

base. Consider removing them, or if deemed useful, add better input validation. For

example, in the function msm() , there is a division by the window which is not checked to

be non-zero; in the function get_window_table() , there is a vector allocation with size

computed as 1 << window , which could lead to large memory allocations.

Unnecessary Work in Varuna Verification

In the function verify_batch() of algorithms/src/snark/varuna/varuna.rs, the function returns

the (arithmetic) AND of two boolean variables to indicate whether the proof verification was

successful:

Computing the logical AND with the variable proof_has_correct_zk_mode seems

unnecessary; there is a short-circuit earlier in the function returning false if this variable is

false , see below:

Thus, when reaching the return statement on line 908, the variable

proof_has_correct_zk_mode can only be true .

Redundant Stripping of Leading Zeros in Sparse Polynomials

The two implementations of AddAssign() for SparsePolynomial in algorithms/src/fft/

polynomial/sparse.rs include a step for stripping leading zero coefficients:

It was observed that the from_coefficients() function also performs this step:

Therefore, a redundant iteration over the coefficients could be avoided by only performing

this process once. This observation is related to finding "Trailing Zeros in Polynomials After

Arithmetic Operations or Random Generation" and finding "Polynomial Serialization and

Deserialization Does Not Strip Trailing Zeros", which highlighted inconsistent handling of

leading zeros in polynomials. Adoption of a standard approach to trimming leading zeros

would similarly avoid redundant computation as documented above.

•

908

703

704

705

706

707

708

709

710

711

712

713

714

63

64

65

66

67

Ok(evaluations_are_correct & proof_has_correct_zk_mode)

let proof_has_correct_zk_mode = if MM::ZK {

proof.pc_proof.is_hiding() & comms.mask_poly.is_some()

} else {

!proof.pc_proof.is_hiding() & comms.mask_poly.is_none()

};

if !proof_has_correct_zk_mode {

eprintln!(

"Found `mask_poly` in the first round when not expected, or proof has incorrect

hiding mode ({})",

proof.pc_proof.is_hiding()

);

return Ok(false);

}

*self = Self::from_coefficients(result.coeffs.into_iter().filter(|(_, f)| !f.is_zero()));

/// Constructs a new polynomial from a list of coefficients.

pub fn from_coefficients(coeffs: impl IntoIterator<Item = (usize, F)>) -> Self {

let coeffs: BTreeMap<_, _> = coeffs.into_iter().filter(|(_, c)| !

c.is_zero()).collect();

Self { coeffs }

}

50 / 58 – Engagement Notes

As a minor aside, it was also noted that one of the AddAssign implementations does not

include a semicolon on its final line, which is a notation typically used when the last line of

the function is the returned expression. This is generally not used when the return type is

() and is inconsistent when compared to similar functions in the code.

Potential Optimization When Multiplying Multiple Polynomials

The function multiply() in algorithms/src/fft/polynomial/multiplier.rs computes the product

of several polynomials. This function includes an early return if all inputs are empty, meaning

the product is 0:

The function could be further optimized to return 0 if any of the input polynomials are the

zero polynomial. It is understood that in the currently implemented use cases, such zero

inputs are not expected, but may be beneficial if the module is ever extended to generic use

cases.

Typos in Comments

The reference [KZG10] in algorithms/src/polycommit/kzg10/mod.rs contains a typo

erroneously citing [KZG11]:

Given that this occurs in a comment affecting the doc attributes, it may be worth correcting.

Notes on the ledger Component
Inefficient or Inconsistent Memory Allocation During Serialization

The ledger implements human-readable serialization functions for a variety of objects,

which manually implement serialization of various structs. These make use of the

serialize_struct function, which includes a length parameter to allow for pre-allocation of

a vec of struct fields; see ledger/block/src/serialize.rs for example:

69

70

71

72

73

18

19

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

pub fn multiply(mut self) -> Option<DensePolynomial<F>> {

if self.polynomials.is_empty() && self.evaluations.is_empty() {

Some(DensePolynomial::zero())

} else {

...

//! at a chosen point `x`. Our construction follows the template of the construction

//! proposed by Kate, Zaverucha, and Goldberg ([KZG11](http://cacr.uwaterloo.ca/techreports/

2010/cacr2010-10.pdf)).

impl<N: Network> Serialize for Block<N> {

/// Serializes the block to a JSON-string or buffer.

fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {

match serializer.is_human_readable() {

true => {

let mut block = serializer.serialize_struct("Block", 6)?;

block.serialize_field("block_hash", &self.block_hash)?;

block.serialize_field("previous_hash", &self.previous_hash)?;

block.serialize_field("header", &self.header)?;

block.serialize_field("authority", &self.authority)?;

block.serialize_field("transactions", &self.transactions)?;

block.serialize_field("ratifications", &self.ratifications)?;

if let Some(coinbase) = &self.coinbase {

block.serialize_field("coinbase", coinbase)?;

}

block.end()

}

51 / 58 – Engagement Notes

https://github.com/AleoHQ/snarkVM/blob/8990366ea71fc8ef9606107eddb45e2af80fe8a5/algorithms/src/polycommit/kzg10/mod.rs#L18-L19
https://github.com/AleoHQ/snarkVM/blob/8990366ea71fc8ef9606107eddb45e2af80fe8a5/algorithms/src/polycommit/kzg10/mod.rs#L18-L19

The highlighted line results in a call to Vec::with_capacity(6) ; however, the subsequent

code may serialize up to 7 fields. When the optional 7th field coinbase is serialized, a

reallocation will be necessary. In general, the rest of the library favors overallocation during

serialization, where a struct that may contain up to n values will always allocate sufficient

space for all n fields of the struct. It was noted that the contributor guide advocates for

avoiding unnecessary allocations:

At least one instance of unnecessary overallocation was observed in ledger/block/src/

transition/output/serialize.rs:

Here the serialized struct will never have more than 4 fields, despite allocating space for 5

fields.

As a final consideration, it was observed that structs which may have a variable number of

fields tend to be serialized using a match statement, such as in the example shown in the

code block above, where serialize_struct is called with the expected number of fields and

finalized within the match block. A deviation from this pattern was observed in ledger/

narwhal/transmission/src/serialize.rs, where overallocation may occur for a Ratification :

36

37

38

39

20

21

49

50

51

52

53

54

55

56

57

58

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

false => ToBytesSerializer::serialize_with_size_encoding(self, serializer),

}

}

}

Memory handling

- if the final size is known, pre-allocate the collections (`Vec`, `HashMap` etc.) using

`with_capacity` or `reserve` - this ensures that there are both fewer allocations (which

involve system calls) and that the final allocated capacity is as close to the required

size as possible

Self::Record(id, checksum, value) => {

let mut output = serializer.serialize_struct("Output", 5)?;

output.serialize_field("type", "record")?;

output.serialize_field("id", &id)?;

output.serialize_field("checksum", &checksum)?;

if let Some(value) = value {

output.serialize_field("value", &value)?;

}

output.end()

}

let mut transmission = serializer.serialize_struct("Transmission", 2)?;

match self {

Self::Ratification => {

transmission.serialize_field("type", "ratification")?;

}

Self::Solution(solution) => {

transmission.serialize_field("type", "solution")?;

transmission.serialize_field("transmission", solution)?;

}

Self::Transaction(transaction) => {

transmission.serialize_field("type", "transaction")?;

transmission.serialize_field("transmission", transaction)?;

}

}

transmission.end()

52 / 58 – Engagement Notes

https://github.com/AleoHQ/snarkVM/blob/43dae88e4cda9de7395e161e86489e28c6e15fe2/CONTRIBUTING.md

The above highlighted code blocks do not represent vulnerabilities but were documented as

observed inconsistencies. In general, the length hint provided to serialize_struct is used

to optimize memory allocation and does not affect the correctness of the implemented

serialization approach, provided the length hint is non-zero. Nevertheless, it may be

beneficial to unify the serialization approach used across the various subcomponents of

ledger .

Inaccurate Code Comments

In the file ledger/block/src/helpers/target.rs, the function anchor_block_reward_at_height()

contains some inaccuracies in its code comments.

The highlighted comment appears to incorrectly represent the size of the operands. If

num_remaining_blocks_to_year_10 is a u64 , then the computation of the numerator may

result in overflow, as starting_supply is a u64 and anchor_height is a u32 . In practice, the

block_height_at_year function returns a u32 , and the computed value num_remaining_blocks

_to_year_10 will always fit within a u32 , thereby ensuring that overflow does not occur in

the numerator . The casting of all operands to u128 obscures this without deeper inspection

of the code.

The annotations could be updated to correctly specify “Compute the remaining blocks until

year 10, as a u32.”

Notes on the synthesizer Component
Arithmetic and Logic Operations

In synthesizer/program/src/logic/instruction/operation/mod.rs, the allowed operand types on

each instruction are listed. Arithmetic and logic operations are defined over Booleans,

signed and unsigned integer types of various sizes, and the two finite fields represented by

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

/// Calculates the anchor block reward for the given block height.

/// R_anchor = floor((2 * S * H_A * H_R) / (H_Y10 * (H_Y10 + 1))).

/// S = Starting supply.

/// H_A = Anchor block height.

/// H_R = Remaining number of blocks until year 10.

/// H_Y10 = Expected block height at year 10.

const fn anchor_block_reward_at_height(

block_height: u32,

starting_supply: u64,

anchor_height: u32,

block_time: u16,

) -> u128 {

// Calculate the block height at year 10.

let block_height_at_year_10 = block_height_at_year(block_time, 10) as u128;

// Compute the remaining blocks until year 10, as a u64.

let num_remaining_blocks_to_year_10 = block_height_at_year_10.saturating_sub(block_heigh

t as u128);

// Compute the numerator.

let numerator = 2 * starting_supply as u128 * anchor_height as u128 * num_remaining_bloc

ks_to_year_10;

// Compute the denominator.

let denominator = block_height_at_year_10 * (block_height_at_year_10 + 1);

// Return the anchor block reward.

numerator / denominator

}

53 / 58 – Engagement Notes

https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/instruction/operation/mod.rs
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/instruction/operation/mod.rs

the Field and Scalar types (both integers modulo a big prime). Some combinations are

missing, even though they seem easy to support:

Most operations are missing on Scalar : subtraction, negation, multiplication, squaring,

square roots, inversion, and division. However, addition and comparisons are supported,

which makes at least lack of subtraction and negation somewhat inconsistent.

The nand and nor operations are defined only on Booleans, not on signed and unsigned

integers. However, or , and and not are defined on integers; since nand and nor can be

computed as a combination of a not with an and or an or , the lack of support of

integers in nand and nor seems spurious.

Also, some other operations behave in ways which are not fully mathematically sound:

Inequality comparisons are implemented on Field and Scalar , even though such finite

fields do not have a well-defined order. The implementation (in fields/src) appears to

compare such values by first converting them to integers in the 0 to m-1 range, with m

being the field modulus. In that sense, Field and Scalar are here used as crude

emulation of large integers, though they “wrap around” when reaching the modulus, in a

way which is not detected by the implementation.

The pow operation computes an exponentiation; when applied on a Field element, the

exponent is also provided as a Field . Mathematically, when exponentiating integers

modulo a prime m, exponents should live in the ring of integers modulo m-1, not m. This

is similar to the previous remark: the second Field operand is being used as a disguised

big integer.

Finally, some operations are redundant, while others which could be convenient are missing:

The lt (“less than”) and lte (“less than or equal”) operations are redundant with the gt

(“greater than”) and gte (“greater than or equal”) operations, which implement the same

functionality by simply swapping the two operands.

Filtering by Exclusion

In some places, a check that a given input is of an acceptable type for an intended operation

is performed by verifying that the type is not one of a specific exclusion list, based on an

implicit analysis that the value can only be part of a specific set of types:

In synthesizer/program/src/logic/command/mod.rs, the is_cast_to_record() function

checks whether a given cast targets a record type by verifying that it does not target a

plaintext type.

In synthesizer/program/src/logic/instruction/operation/hash.rs, the is_valid_destination_

type() function checks that the target of a hash operation can receive the output by

verifying that it is not a Boolean or a character string.

Generally speaking, exclusion lists are not robust against future evolution of the system: if a

new type is added, then all operations must be revisited, because functions that work on

exclusion lists may implicitly assume that the new type does not exist. Such functions

cannot be readily located, save by a full detailed source code review. It is thus

recommended to only use inclusion lists for such checks.

Slightly Overkill Rust Iterating

In the file synthesizer/process/src/verify_fee.rs, an iterator over a list of outputs is

instantiated (see highlighted lines below) in order to verify that each individual output is

•

•

•

•

•

•

•

54 / 58 – Engagement Notes

https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/fields/src/
https://github.com/AleoHQ/snarkVM/tree/0b151b93f81c89dc5b0b39c36500089ce37c14f8/fields/src/
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/command/mod.rs#L133
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/command/mod.rs#L133
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/instruction/operation/hash.rs#L88
https://github.com/AleoHQ/snarkVM/blob/0b151b93f81c89dc5b0b39c36500089ce37c14f8/synthesizer/program/src/logic/instruction/operation/hash.rs#L88

correct. However, there is only a single output, a condition which is ensured a few lines

above the iteration.

Missing Length Check on Transaction Length

In the function atomic_speculate() in synthesizer/src/vm/finalize.rs, a vector of confirmed

transactions is instantiated with a capacity equal to the length of the transaction list passed

as parameter. Later on in the function execution, an index in that vector is converted to a

u32 using the try_into function; see second highlight below.

The conversion to a u32 should never raise an error, since there is a theoretical upper bound

on the number of transactions. That upper limit is tracked in the MAX_TRANSACTIONS constant

defined in ledger/block/src/transactions/mod.rs and currently set to 216
, well below the

maximum unsigned 32-bit integer. However, the NCC Group team noted that this upper

bound is not used in this function. Additionally, it is unclear whether this check on the

maximum number of allowed transactions is performed by higher-level calling functions in all

code paths leading to the atomic_speculate() function. Consider investigating whether all

code paths leading to the atomic_speculate() function are guarded against an arbitrarily

large number of transactions and add a bound check in the function if deemed appropriate.

// Ensure the number of outputs is correct.

ensure!(

fee.outputs().len() == 1,

"The number of outputs in the fee transition should be 1, found {}",

fee.outputs().len()

);

// Ensure each output is valid.

if fee

.outputs()

.iter()

.enumerate()

.any(|(index, output)| !output.verify(function_id, fee.tcm(), num_inputs + index))

{

bail!("Failed to verify a fee output")

}

let num_transactions = transactions.len();

// ...

// Initialize a list of the confirmed transactions.

let mut confirmed = Vec::with_capacity(num_transactions);

// Initialize a list of the aborted transactions.

let mut aborted = Vec::new();

// Finalize the transactions.

'outer: for (index, transaction) in transactions.enumerate() {

// Convert the transaction index to a u32.

// Note: On failure, this will abort the entire atomic batch.

let index = u32::try_from(index).map_err(|_| "Failed to convert transaction

index".to_string())?;

55 / 58 – Engagement Notes

Slightly Misleading Comment

In the file synthesizer/src/vm/helpers/rewards.rs, the function proving_rewards() has the

following comment before performing a sum.

This comment is slightly misleading since if the amount of u64 elements were large enough,

the result could still overflow. Consider adding a statement supporting the fact that the

number of elements is bounded and thus the summation cannot overflow.

Typos

In the function sample_record_internal() in synthesizer/process/src/stack/helpers/

sample.rs the error message incorrectly refers to a Plaintext while it should be a Record

here.

This also applies to the function matches_record_internal() in synthesizer/process/src/

stack/helpers/matches.rs:

Outstanding TODOs
The code base currently contains a few outstanding TODOs. While their presence is

generally common for projects under active development, the NCC Group team wanted to

highlight a few items that seemed of higher importance.

In synthesizer/src/vm/mod.rs, in the function add_next_block() :

•

•

// Compute the combined proof target. Using '.sum' here is safe because we sum u64s into a

u128.

let combined_proof_target = proof_targets.iter().map(|(_, t)| *t as u128).sum::<u128>();

fn sample_record_internal<R: Rng + CryptoRng>(

&self,

burner_address: &Address<N>,

record_name: &Identifier<N>,

depth: usize,

rng: &mut R,

) -> Result<Record<N, Plaintext<N>>> {

// If the depth exceeds the maximum depth, then the plaintext type is invalid.

ensure!(depth <= N::MAX_DATA_DEPTH, "Plaintext exceeded maximum depth of {}",

N::MAX_DATA_DEPTH);

fn matches_record_internal(

&self,

record: &Record<N, Plaintext<N>>,

record_type: &RecordType<N>,

depth: usize,

) -> Result<()> {

// If the depth exceeds the maximum depth, then the plaintext type is invalid.

ensure!(depth <= N::MAX_DATA_DEPTH, "Plaintext exceeded maximum depth of {}",

N::MAX_DATA_DEPTH);

match self.finalize(state, block.ratifications(), block.coinbase(), block.transactions()) {

Ok(_) => {

// TODO (howardwu): Check the accepted, rejected, and finalize operations match the

block.

Ok(())

}

56 / 58 – Engagement Notes

In synthesizer/src/vm/verify.rs, in the function check_fee() :

In ledger/src/check_next_block.rs, in the function check_next_block() , the following code

block preceded by a TODO is commented out, and could probably be deleted.

Aleo Draft Specification
To aide the review, the document DRAFT: Aleo Protocol Specification dated August 11, 2023

was provided.

Incorrect Description of Symmetric Key Encryption

The specification defines a symmetric encryption scheme as follows:

A scheme SymmEnc must satisfy the correctness property, which means that

encryption undoes decryption and vice-versa. A scheme SymmEnc is secure if it

semantically secure under a chosen plaintext attack. For security reasons, a user

will only encrypt at most one message per key (c.f. A Graduate Course in Applied

Cryptography by Boneh and Shoup).

The above description is not correct, as it is not generally required that encryption “undoes”

decryption; see https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf

We require that decryption “undoes” encryption; that is, the cipher must satisfy the

following correctness property: for all keys k and all messages m, we have D(k, E(k,

m)) = m.

The same property is specified for public key encryption as well, where it also generally not

required.

•

•

// TODO (howardwu): This check is technically insufficient. Consider moving this upstream

// TODO (howardwu): Remove this after moving the total supply into credits.aleo.

{

// // Retrieve the latest total supply.

// let latest_total_supply = self.latest_total_supply_in_microcredits();

// // Retrieve the block reward from the first block ratification.

// let block_reward = match block.ratifications()[0] {

// Ratify::BlockReward(block_reward) => block_reward,

// _ => bail!("Block {height} is invalid - the first ratification must be a block

reward"),

// };

// // Retrieve the puzzle reward from the second block ratification.

// let puzzle_reward = match block.ratifications()[1] {

// Ratify::PuzzleReward(puzzle_reward) => puzzle_reward,

// _ => bail!("Block {height} is invalid - the second ratification must be a

puzzle reward"),

// };

// // Compute the next total supply in microcredits.

// let next_total_supply_in_microcredits =

// update_total_supply(latest_total_supply, block_reward, puzzle_reward,

block.transactions())?;

// // Ensure the total supply in microcredits is correct.

// if next_total_supply_in_microcredits != block.total_supply_in_microcredits() {

// bail!("Invalid total supply in microcredits")

// }

}

57 / 58 – Engagement Notes

https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf

The specification also presents SymmEnc as a pair of algorithms (Encrypt, Decrypt), but

does not tend to specify which of these algorithms is used. Instead SymmEnc.Eval is called

on various inputs, where it would be more clearly specified as SymmEnc.Encrypt.Eval or

SymmEnc.Decrypt.Eval as relevant, or perhaps just SymmEnc.Encrypt and

SymmEnc.Decrypt as relevant. These occur on pages 8, 9, and 21 of the reviewed

document.

58 / 58 – Engagement Notes

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Incorrect Ratification Bound Check
	Batch Proof Building and Verifying May Skip Inputs
	Missing Sanity Checks Compared to the Aleo Protocol Specification
	Incorrect Logic in Speculation of Aborted Transactions
	Missing Bounds Checks when Deserializing from Buffers
	Trailing Zeros in Polynomials After Arithmetic Operations or Random Generation
	Function ID Hash Computations May Result in Collisions
	Incomplete Reserved Keywords List
	Missing Bound Check on Minimum Struct Entries
	Inconsistent or Absent Bounds Checks on Inputs
	Incorrect Polynomial Division When Both Operands Are Zero
	Polynomial Serialization and Deserialization Does Not Strip Trailing Zeros
	Missing Subset Membership Check for Gamma Challenge
	Incorrect Loop Exit Condition in Evaluation Generation
	Outdated Dependencies, Cargo Audit Vulnerabilities and Missing Toolchain File
	Wrapped Shift Operators Do Not Follow Their Documented Semantics
	Incorrect Random Vector Generation

	Finding Field Definitions
	Risk Scale
	Category

	Engagement Notes
	General Comments on snarkVM
	Notes on the algorithms Component
	Notes on the ledger Component
	Notes on the synthesizer Component
	Outstanding TODOs
	Aleo Draft Specification

