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Abstract
The Internet of Things (IoT) is an emerging phenomenon where different kinds of

devices that were previously not networked are being connected to networks. Ex-

amples include network connected thermostats, light bulbs, and door locks. These

newly networked devices present additional attack surfaces, and due to the ad hoc

nature of their implementations, many do not follow current security best practices. We

assessed the security of several currently available IoT devices targeted at consumers.

We considered all user-facing interfaces and all networking components to be in scope

of our investigation, and evaluated the devices for common security vulnerabilities. All

of the devices we investigated had numerous exploitable security flaws. We discuss in

detail the vulnerabilities and the processes used to discover them.
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1 Introduction

Internet of Things (IoT) is a broad term encompassing a wide range of embedded devices that interface with or

are controlled over the Internet. By combining the versatility and affordability of embedded microcontrollers

with the convenience of Internet access, these devices aim to bring increased connectivity to our everyday

lives. The emergence of the IoT market is relatively new, but its popularity has been expanding quickly and is

expected to continue growing.

Typically, Internet of Things devices relies on low power, local wireless networks that allow a number of devices

to communicate. Frequently, these devices are also connected to a hub, which acts as a bridge to the outside

world. Users will generally only interact with a hub, often via a web interface, which translates and transmits

their commands to each individual device.

Particularly interesting to us are home automation and security systems. These systems are meant to give

users fine-grained control over their homes, regardless of where the users may be. This includes integrating

and automating door locks, light bulbs, motion sensors, thermometers, cameras, and other similar devices.

With such obvious implications for users' privacy and security, these systems are bound to become a magnet

for malicious activity. In this paper, we take a closer look at how they operate, as well as their overall security.

What we found was concerning: although most devices attempt to protect their users, none of the devices we

looked at did so successfully. We identified vulnerabilities which allow malicious actors to open door locks,

disable motion sensors, lie about the status of various devices, and in the general case, use home automation

systems to the detriment of their owners.

Organization of the Paper: In Section 2 we briefly introduce the protocols these IoT devices utilize. Section 3

presents a detailed overview of the systems we investigated. We describe the procedures used to examine

each device in Section 4 and include a concise listing of the vulnerabilities we uncovered in Section 5. Finally,

Section 6 identifies areas we were unable to research but believe would be worth investigating in the future.
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2 Wireless Protocols Overview

In this section we provide a brief overview of the different wireless protocols that are commonly used for

communication between devices in a low power wireless network. These protocols allow devices which are

not connected directly to the Internet to join the Internet of Things.

2.1 IEEE 802.15.4

The 802.15.4 protocol is a standard published by the IEEE for low power, low data rate, wireless networks. It

defines the physical layer (PHY) andmedium access control sublayer (MAC) upon which many other networking

standards are built. All of the following protocols discussed in this section are built upon the PHY and MAC

layers specified by IEEE 802.15.4. This will only provide a brief overview of the features of 802.15.4 relevant to

our research, see IEEE Standard for Local and metropolitan area networks - Part 15.4 [IEE11] for the complete

specification.

The IEEE 802.15.4 standard supports both star and peer to peer topologies. In the star topology, communica-

tion is established between devices and a central controller acting as the network coordinator. This topology

is appropriate for systems needing a simple network such as home automation or PC peripherals. In the peer

to peer topology there is still a node which acts as a network coordinator, but any two nodes are able to

communicate with one another. This setup allows more complicated networks, such as mesh networks, to be

established.

IEEE 802.15.4 specifies security services providing data confidentiality, data authenticity, and replay protection.

This is controlled on a per packet basis, with each packet specifying what security level it was sent with.

The different security levels allow the device to choose to enable encryption in combination with a message

authentication code of varying lengths. If used, the message authentication code authenticates both the frame

header, which is sent in the clear, and the payload which can be encrypted.

Replay protection is provided by a frame counter field in the auxiliary security header. This is a four byte value

that is incremented with each message a device sends. The frame counter serves two purposes. When a

device receives a packet it compares the frame counter of the packet to the most recently received frame

counter for that source. If the received frame counter is less than or equal to the most recently received frame

counter, the message should be ignored. This protects a device from responding to a replay of a packet. The

frame counter is also used to construct the nonce used to initialize counter mode encryption. This ensures

that the nonce is unique per message, and that if you attempt to circumvent replay protection by sending a

packet with a new frame counter, but the same cipher text, the cipher text will not be properly decrypted, and

the replay attack will fail.

2.1.1 6LoWPAN

IPv6 Over Low Power Wireless Personal Area Network (6LoWPAN) is a standard for compressing IPv6 packets

within 802.15.4 data frames, and is specified in [Int11]. Its advantages include easy connectivity to other

IP-based devices, the ability to use existing network infrastructure, and a widely used socket API [SB11].

2.1.2 ZigBee

ZigBee is a wireless networking specification built on IEEE 802.15.4, designed for low power and low date rate

communication. It takes advantage of the network capabilities of IEEE 802.15.4 to transmit data through mesh

networks that are often large and sparse, while addingmany helpful features thatmake implementing a wireless

network easy. ZigBee sees wide use in the automation market, and defines several application communication

standards such as building automation, home automation, smart energy, and healthcare [Zig08].

ZigBee is a standard that many manufacturers take part in, so by design it is interoperable between devices

from different manufacturers. It also adds its own security and application features which manufacturers can
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choose to use depending on the market they are designing their products for, including encryption and

authentication.

2.1.3 Z-Wave

Z-Wave is a proprietary, low power wireless communications protocol that targets the home automation mar-

ket. The specifications, as well as the SDK, are not publically available. In addition, relatively little research

exists about the protocol, despite the fact that it is widely used by the home automation market.

Like ZigBee, Z-Wave uses a mesh network topology to maximize reach and connectivity. By design, most

battery operated end devices are only required to be active for short bursts of time to maximize uptime, while

devices with permanent power sources act as relays. This model focuses on reliable, low bandwidth data de-

livery. Individual networks are distinguishable by 32-bit ``Home ID's,'' and devices are internally differentiable

via 8-bit ``Node ID's.''

2.2 Common Tools

ZigBee In order to sniff ZigBee traffic, we used an ApiMote v4 board, which can both capture and inject

packets. The board was built for use with KillerBee, an open source suite of tools built for ``exploring and

exploiting the security of ZigBee and IEEE 802.15.4 networks'', and includes utilities that can sniff, decrypt,

analyze, and replay traffic.

Z-Wave Overall, there is very little public research into Z-Wave. In an attempt to intercept Z-Wave traffic, we

made use of a TI CC1110DK-MINI development kit. The Z-Force framework is a set of tools designed to run on

this kit in order to investigate and attack Z-Wave networks. The development kit contains two chips capable of

receiving and transmitting on Z-Wave frequencies. These chips support a range of modulation options which

should enable a user to manipulate Z-Wave traffic given the correct settings.
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3 Scope

Many of the devices we investigated shared a common paradigm. These systems have a hub that serves as

the ``master'' device, extends control to the endpoint devices, and keeps track of the network's state. The hub

maintains communication to local devices, as well as a remote server owned by the manufacturer. This allows

users local and remote control over their home though a web interface or smartphone application. These easy

to use systems make provide a compelling way for consumers to upgrade to a fully connected home.

In the following sections, we describe which systems and devices we assessed during the course of our

research.

3.1 Lowes Iris

Researchers: Adam Cotenoff

Lowes Iris HomeManagement System is a collection of devices encompassing home automation, security, and

monitoring. It can be controlled via mobile and web applications, allowing users to arm and disarm the alarm,

change the temperature, or monitor their home energy usage. This kit can communicate over both ZigBee

and ZWave, but during our research we focused on the ZigBee protocol.

The specific Iris kit we tested was the Iris Smart Kit which included:

• Iris Hub - the central hub for all Lowes Iris products

• Motion Detector - sets off alarm if someone walks by

• Contact Sensors - sets off the alarm if separated; used on doors and windows

• Range Extender - extends the range of the Lowes Iris network

• Keypad - arms and disarms the alarm

• Smart Plug - controls and monitors energy usage of anything plugged in

• Smart Thermostat - controls and monitors the temperature

During testing, we explored the Iris system at the hardware, software, and network level for vulnerabilities. We

did not actively test the Lowes cloud infrastructure.

3.2 SmartThings

Researchers: Patrick Biernat, Kevin Hock, Tanner Prynn

SmartThings infrastructure connects consumer-owned wireless devices to the SmartThings cloud to allow

easy management from the web or from mobile applications. We tested the security of the SmartThings

devices including the SmartThings Hub. The hub acts similarly to a WiFi router for ZigBee and Z-Wave home

automation devices by relaying messages back-and-forth to the Internet. During our testing we analyzed the

hub at both the hardware and networking levels in order to find vulnerabilities, along with mobile applications

on Android and iOS. We did not directly test the SmartThings cloud infrastructure.

In the course of our testing, we tested the following SmartThings-compatible devices:

• SmartThings Hub

• SmartThings Multi (Contact, Temperature, Humidity, Acceleration sensor)

• SmartThings Arduino Shield
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• Kwikset 910 Z-Wave Door Lock

3.3 TCP Connected

Researchers: Brian Belleville, Terry Sun

The Connected by TCP lighting system is a system for wirelessly controlling home lighting. It is sold under the

TCP brand, but appears to be designed and manufactured by Greenwave Systems.

The lighting system consists of a gateway, a physical wireless remote control, and up to 250 light bulbs. All

components communicate through an IEEE 802.15.4 wireless network that is set up by the gateway. The

gateway also provides the primary interface for users to access the system. Users can communicate with the

gateway using either an Intranet web application or a mobile application. Additionally, the wireless remote

control can broadcast messages to light bulbs in its vicinity. The web application, mobile application, and

remote all allow the user to control the light bulbs in the network.

The mobile application has two modes of operation. If the user is connected to the same local network as the

gateway, the mobile application will send requests directly to the gateway. If the user is not on the same local

network, but has Internet access, the application will communicate with a web server owned by Greenwave

Systems, which then relays the commands to the gateway. In order to enable communication through the

public Internet, the user must first create an account and associate it with their specific gateway, which can

only be done while connected to the same local network as the gateway.

The scope of our investigation included all functionality of the gateway, remote, and light bulbs. We examined

the gateway's communication with GreenWave's remote server, but did not attempt to attack the server itself.

We considered the mobile applications to be a minor part of the project, doing only a brief investigation with

respect to its interaction with the rest of the system and basic security principles.

3.4 HAI MicroControl

Researcher: Sivaranjani Sankaralingam

Home Automation, Inc. (HAI) is a manufacturer of home automation devices which was acquired by Leviton

in 2012. Leviton still manufactures some devices under the HAI brand. We received and tested a HAI

MicroControl, which is a standalone ZigBee controller. To test the MicroControl's security, we connected a

Kwikset ZigBee Lock. Our research on the HAI MicroControl focused on its ZigBee implementation. We did

not test the HAI mobile applications that are designed by Leviton.
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4 Analysis

4.1 Lowes Iris

The Lowes Iris system can be used as a home automation, home security, and home monitoring system. This

research focuses on the home security system, which includes a motion sensor, keypad, and contact sensors.

ZigBee Communication We started our investigation of the Iris system with the ZigBee protocol it uses to

communicate between devices. We sniffed ZigBee traffic using the ZigTools framework [War], which provides

utilities for sniffing and analyzing 802.15.4 traffic. Using this tool, we were able to identify and dissect the

ZigBee network processes such as association, dissaociation, and key exchange. However, this framework

does not include any tool to replay or inject ZigBee packets. For this, we utilized an ApiMote (see Section 2.2).

The ApiMote runs the KillerBee software [LLC], which enabled us to craft our own ZigBee packets. ZigTools

indicated that the Lowes Iris traffic specifically communicated over channel 25.

One of our main goals was to disable the security system, so we attempted to jam ZigBee communication on

channel 25. When the motion sensor is activated and the alarm is set, the motion sensor operates much like

a heartbeat, regularly sending packets indicating a normal state. When someone does walk past the motion

sensor, it sends a data packet informing the hub, which triggers an alarm. We tried flooding the hub with

packets indicating that no one had walked past the motion sensor, but we were unable to stop the alarm from

triggering.

Iris Hub Hardware ZigBee encrypts packets and uses a message integrity code (MIC) to prevent tampering.

The main issue we faced in replaying packets was that there appears to be an application layer mechanism

which denies replayed packets. We wanted to get a better understanding of this, so we looked into dumping

the firmware from the Iris Hub. We looked at the hub's circuit board and investigated the hub's ZigBee chip

and flash memory chip. The Iris hub is based off of the Ember EM260 chipset. Unfortunately, this chip can

only be debugged with an Ember specific debugging device. We attempted to utilize a Bus Pirate to interact

with the memory chip's SPI pins, but we were unable to dump the memory.

Iris Web Application We also took a cursory look into the web application, and found it vulnerable to cross

site request forgery (see Section 5.1.3). CSRF is a vulnerability that makes it possible to trick users into

performing authenticated actions via a malicious request. By submitting our own request, we were able to

disarm the alarm. We did not perform any active testing on the web application since it is hosted on Lowe's

infrastructure.

Lowe's Mobile Applications Additionally, we looked into the mobile applications. Using idb, ``a tool to

simplify some common tasks for iOS pentesting and research'' [May], we extracted all the plist files and saw

that there was one that contained a list of internal server addresses (see Section 5.1.6). We also decompiled

the Android APK and found similar infromation in an XML file. This file contained a list of what seemed like

internal staging and development servers. We did not perform any testing on these servers, as it was out of

the scope of this research.

4.2 SmartThings

SmartThings is a home automation company which was recently acquired by Samsung. Its system aims tomake

it easy for users to automatically control their homes, enable developers to build their own applications on

top of the SmartThings platform, and to bring compatibility between its own devices and other manufacturer's

devices. To that end, SmartThings has mobile applications, a web interface, and a hub which supports both

Z-Wave and ZigBee.
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4.2.1 Hardware

We began our investigation of SmartThings from the ground up, with the hardware. Understanding a device at

the hardware level reveals the functions the device performs and allows an attacker to identify where they can

intervene in order to impersonate or even take over the device. Before connecting our devices to the outside

world, we inspected them in an offline environment, because we wanted to gather as much information as

possible before connecting to the network. In the worst case, connecting to the network could trigger an

automatic firmware update, patching security holes and making our job significantly more difficult.

Information Gathering and Device Identification We started with a teardown of the SmartThings Hub. A

simple USB Microscope allowed us to inspect the chips up close, and identify their markings for later research.

A crucial step in reverse engineering hardware is information gathering, but chip identification can be made

very difficult on high-security devices. A motivated enough manufacturer dedicated to obscuring the chips

they use means resorting to x-ray or decapping to glean information. SmartThings does not have any hardware

obfuscation of this sort, and datasheets were readily available on their respective manufacturers' websites.

Figure 1: Clockwise from top right:

• SMSC Ethernet [SMS12]

• MXIC EEPROM [Int10]

• PIC32 Microcontroller [Tec13]

• Atmel EEPROM [Atm14]

• Z-Wave Transciever [Des12]

Hub image from SmartThings FCC documents [Gra].
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The SmartThings devices all share an Ember EM357 module [Cel13], which runs its own firmware to commu-

nicate over ZigBee networks. The Hub has a full 32-bit PIC processor which coordinates its Ethernet, memory,

ZigBee, and Z-Wave devices; the Multi has an accelerometer and humiture sensor but appears to offload its

processing to the Ember chip. Both the Hub and Multi have groups of test points which fit standard headers

- the FCC pictures even show these headers soldered in (see figure 2). In order to interact with these devices

we soldered headers in to these test points.

The datasheets for the PIC and the Ember chips show that they support JTAG, a serial protocol that embedded

devices often use for administration, testing, or recovery. Our first attempt at interacting with the Hub on a

hardware level was using a JTAGulator, a device that connects to test points on a target board and automat-

ically tries each possible JTAG pin configuration. If JTAGulation is successful, a valid JTAG configuration is

found which could give a backdoor into the device or even allow us to dump its firmware. However, we were

unable to find JTAG functionality on any of the test points we tried (labelled A, C, and D in figure 2).

Pin Tracing After the automatic identification of the JTAGulator proved unsuccessful, we proceeded by using

amultimeter tomanually trace the chips' pins to the test points on the board. The resulting traces are presented

in Appendix B.1. Among other things, we discovered that the JTAG pins were connected to a seperate pad

with a small custom header (labelled B in figure 2) rather than the standard test pins that we had soldered in.

Figure 2: The four test headers on the SmartThings Hub. Hub image from SmartThings FCC documents [Gra].

Logic Analysis Based on our research with the chips' datasheets, we discovered that there was a lot of

ambiguity in which pins could be connected where and for what purpose. Some pins have up to four different

functions depending on the state of the chip. Further, the chips are multipurpose and can be configured for

different connection options: 1 or 2-wire serial, UART, JTAG, SPI, or even custom protocols. Additionally, many

of these protocols have the option to use extra wires for more features, or faster communication; and have

tweakable settings such as baud rate, endianness, check bits, etc. To comb through this mess we turned to

logic analysis. A logic analyzer is like a cousin to an oscilloscope, and makes the process of debugging digital

logic much simpler.
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Using a logic analyzer (a Saleae Logic16) we realized that the two memory chips on the Hub both respond to

the Serial Peripheral Interface (SPI) serial protocol. SPI is a well-known protocol which uses four wires: a clock

wire, data in, data out, and chip select. The chip select wire is ued to make controlling multiple devices with

one microcontroller cheap and efficient. The same clock and data lines are connected to every slave device,

while a separate chip select line is run from the master to each slave. When talking to a specific device, that

device's chip select line is pulled low and only it will listen or respond on the data lines. In this way, it takes three

wires plus one additional wire for each slave device, so connecting and controlling a lot of chips is easy. Rather

than needing special hardware to talk SPI, we used the built-in SPI capabilities of Arduino, the swiss-army knife

of hardware hacking. These pins are labeled SS, MOSI, MISO, and SCK on our Arduino Mega ADK.

Figure 3: The Arduino wired to the SPI pins of the MXIC EEPROM.

Serial Protocols and Memory Retrieval From the traces and datasheets, we knew the correct wiring for the

two memory chips. The manufacturers' documentation explains how a simple read memory command can

be written over SPI, and the chips will respond with their memory contents. This process can be done in one

of two ways: either the chip can be desoldered and removed from the board, or the board can be powered

and commands issued to the chips while the board is running, with pins attached to the headers. The first

method is potentially destructive, so we chose to use the second. There is a problem with interacting with

the device while it is still attached to the board (known as in-circuit), however: the processor may attempt to

access those chips at the same time, causing serious issues. Fortunately, as long as the hub is not connected

to the network, it does not seem to use the chips, so we were able to read their memory. Unfortunately, it did

not seem to have any useful information, being mostly filled with blank or unintelligible data. There were no

locations in the memory dump that were readable by us as data or code.

The second header we looked at on the Hub is connected to the PIC32. Our suspicion was that this header

was a PIC programming header. There are six pins in this header, two of which are connected to the PIC
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through 40Ω resistors, which PIC specifies in its design documents. In an attempt to pull the firmware from

the Hub, we purchased a PIC programmer, a small, $60 USB device which plugged directly into the headers

we soldered onto the board. PIC's software recognized the processor immediately. However, attempting to

read the firmware failed as the device has its code-protection bit set. Code protection means that the code

running on the device is not readable externally - it is a feature designed to prevent copycats from making a

clone of the device. This setting can't be turned off without completely wiping the device.

Ultimately, we came to a standstill on the hardware side. Despite digging deep into the workings of the

SmartThings Hub, we came away without any large vulnerabilities. We discuss future areas of research in

Section 6.2.1.

4.2.2 Networking

In order to gather as much information as possible about how the Hub uses its Ethernet connection, we set

up a man-in-the-middle (MITM) between the Hub and the SmartThings servers. We created a disconnected

network between our MITMmachine and the Hub, and found that the Hub immediately attempts to connect to

a SmartThings server over SSL. We set up our machine with DHCP and DNS servers, initially routing all requests

to a local Apache server. The Hub will only communicate over SSL, so we created our own certificate authority

and used it to sign a certificate for the SmartThings site. Those fake certificates were loaded into Apache,

which was configured to accept any cipher suite, and the Hub accepted the SSL handshake. As it turns out, the

Hub will accept any certificate, so it was not necessary to duplicate the SmartThings certificates - a self-signed

certificate would have been accepted in the first place. Note that a secure way for accessing a known endpoint

on an embedded device is to pin known-good certificates in the hardware, making man-in-the-middle attacks

impossible.

We exploited the lack of certificate validation by writing a python script which acted as an intercepting proxy

between the Hub and the server. Using this MITM script, we started gathering packets. We quickly discovered

that SmartThings has its own protocol for communication between the Hub and the server. They communicate

by sending hex data in raw SSL packets.

Protocol Reversing Some time spent dissecting these packets eventually allowed us to split the packets apart

into recognizable pieces. Note that this packet format has changed in newer software revisions. We looked

for pieces of the packets which were constant, predictable, or seemingly random. These packets all have a

similar structure. They begin with a preamble which includes metadata such as packet length, command type,

MAC address, and sequence number. Following this is an optional payload which contains command-specific

data and a mandatory checksum, discussed in more depth in Appendix B.2. One thing to note is that there is

no authentication in the requests - only the MAC Address is used to identify the sent packets. As long as an

attacker knows the MAC Address of a Hub, they can impersonate it. This is not the case in the newer version

of the Hub firmware, which prepends a header that appears to authenticate the Hub which is sending the

packet. However, the server will still accept the older and less secure format. Details of both protocols are in

Appendix B.2.

Hub Impersonation Due to the lack of authentication in the older protocol, we were able to impersonate

both the Hub and the server. We also found that the both versions of the SmartThings protocol are vulnerable

to replay attacks. The ability to impersonate a hub gives an attacker the ability to send fake notifications; for

example, an attacker could cause a user to believe their door is locked when it is not. The impact of forged

notifications is dependent on the attacker's knowledge of their target. Hubs are identified by the MAC address

of their Ethernet chip, and the range of MAC addresses for the SmartThings Hub is D0:52:A8:00:00:00 to

D0:52:A8:FF:FF:FF. This range is slightly large to brute-force in a targeted attack, but in many cases, it is not
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difficult to obtain the MAC address of the SmartThings Hub.

An additional caveat for this attack is that a valid packet payload needs to include the network ID of the

specific device that would cause the notifications. Bruteforcing these is less feasible, as the numbers involved

are quite large (32 bits). However, in our experience, these ID's tended to be relatively small, static, and not

randomly generated. Combined with the lack of hub authentication, this should allow attackers to add fake

devices to users' accounts, which may open the door to further attacks. Since testing this further would include

interacting with the SmartThings infrastructure, such testing was not performed.

Server Impersonation In order to impersonate the server, an attacker will need to control the routing of the

Hub's requests, or the DNS that the Hub asks to resolve. This attack vector is limited, because generally the

SmartThings Hub will be attached to a trusted network (i.e. the user's router). However, given local network

access, it is likely that an attacker will be able to control DNS, either via ARP spoofing or a vulnerability in the

victim's router. In this scenario, an attacker could gain control over the router and change its DNS or routing

settings to point at their own server. Oftentimes, home routers are poorly configured, running old, vulnerable

firmware, or even accessible from a public IP address, so we consider this a practical attack. Once an attacker

is able to exert control over the network, they will then be able to impersonate the server, due to the Hub's

lack of certificate verification. At this point, the attacker has total control over the networked devices, such as

the victim's door locks.

Firmware Dumping Once confident that we could intercept and parse packets, we looked at the firmware

update process to see if we could pull the firmware while it was begin downloaded by the hub. Our hope

was that we would be able to reconstruct the firmware from the packet log, as an alternative to reading it

out from the hardware. We initiated a firmware update from the Android application, and allowed the server

to send a firmware update command (command 16, Appendix B.2) to the hub. The hub responded with an

acknowledgement packet (command 17) before the server sent the first firmware packet down. We stopped

the firmware update process after allowing a few packets through to the hub. The firmware packets are split

up into 128-byte chunks (command 18), and after the hub receives a chunk it will acknowledge it (command

02). So, by allowing the hub to connect and taking over after a firmware update command was sent, we could

iterate through the firmware chunks until the entire firmware was downloaded. We then patched all the chunks

back together to get a firmware blob.

The final stepping stone in the process was to inspect and reverse engineer this firmware. The first tools we

turned to were Unix's file and strings, neither of which turned out to be helpful. The big gun of firmware

analysis is binwalk, which again was unable to make inroads in our firmware file. It suggested that our file was

encrypted, which was backed up by an entropy analysis of the file (figure 4).

A file with high entropy is likely to be either encrypted or compressed [/de13]. In an encrypted file, each bit is

approximately random, which means the file will have uniformly high entropy. Compressed files, while having

higher entropy then an uncompressed file, are often not uniform or have lower entropy then an encrypted

file. Our firmware blob did not match a compressed file format and had very high uniform entropy, so we

concluded that the Hub's firmware update was encrypted. In order to reverse the encryption, we would need

to know the encryption algorithm as well as the encryption key. However, it is likely that both of these are

stored on the PIC, inaccessible to us. The alternative is to allow the firmware to be decrypted by the Hub

and then read it back, but it is not possible to externally access the PIC's memory. We concluded that we are

currently unable to decrypt the Hub's firmware.
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Figure 4: Output from binwalk's entropy analysis shows the firmware to have very high entropy.

Z-Wave In addition to ZigBee, the SmartThings Hub can also communicate using Z-Wave. When trying to

look for hardware to listen to Z-Wave, the Z-Force framework (see Section 2.2) looked promising. We began

by flashing the Z-Force firmware onto a TI-Dev board, but unfortunately, we could not intercept any traffic.

After getting in contact with the authors, we learned that the firmware was hardcoded for the EU (868 MHz)

frequency. We managed to find settings which allowed us to view radio waves being sent from the Hub and

Lock, but had trouble converting them into data we could manipulate.

Figure 5: The ``unlock'' sequence sent from the Hub to the Kwikset Lock, using Z-Wave.

Telnet Server The last piece of wired network functionality exposed by the Hub is a Telnet server. Insecure

telnet servers on embedded devices are very common. We started out by trying some default passwords, but

didn't find one that worked. Next, we fired up THC-Hydra with a short password list, but the Hub only allows

a single connection at a time and Hydra had some problems dealing with being disconnected. Finally, we

wrote a small ruby script to run through a list of 1000 common passwords with no success. The main problem

is that the Hub can take three to five seconds until it will accept a new password guess after a failed attempt,

so brute forcing is unlikely to be feasible. However, a dictionary attack with a more targeted word list might
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be successful.

4.2.3 Mobile Apps

We decided to take a closer look at SmartThings' Mobile apps, since they essentially contain virtual ``keys'' to

a user's home. We were more interested in data storage than other classes of mobile vulnerabilities.

In iOS, requests are cached by default in an application's Cache.db file. The interesting thing we were looking

for was the OAuth bearer token since it's the only thing needed to gain control over all associated devices. It

also takes close to 50 years for the token to expire. If an attacker had physical access and jailbroke the phone,

or a malicious app was installed and the phone was already jailbroken, then all of the users devices could be

controlled.

On Android, our findings were slightly more fruitful. Aside from the bearer token, we found user credentials

being stored in base64 encoded plaintext. For this to be dangerous, an attacker must circumvent Android's

``app sandboxing''. The difficulty of this varies per device, and depends on the amount of effort an attacker

needs to go through in order to obtain root access. However, if a user has rooted their phone, an attacker

may be able to remotely steal credentials via a malicious application.

Both apps expose users to an unnecessary amount of risk, which is especially high if the devices are root-

ed/jailbroken. It is safe to assume that given access to a user's phone, an attacker could gain access to their

SmartThings Account.

4.2.4 Arduino Shield

The SmartThings Arduino Shield has the same Ember ZigBee chip [Cel13] as the Hub and the Multi, but

attaches to an Arduino so that a user can program it, allowing a great amount of flexibility. Because of the ability

for the user to program the shield, we believed it would allow us a greater insight into the way SmartThings

uses the ZigBee protocol, which is a major attack surface.

When we initially started looking at the Shield, SmartThings had migrated their forums and all of the docu-

mentation had been lost. Fortunately, we were able to retrieve the documentation from archive.org, which

had scraped the old forums, complete with a Dropbox link to the SmartThings library. But their library proved

flaky, due to the unreliable SoftwareSerial code they used to communicate with the Ember chip. We again

pulled out the logic analyzer to verify that this was the case - the Ember chip would write on the SoftwareSerial

line and the Arduino simply would not recognize it.

SoftwareSerial is used on the smaller Arduino boards because they only have a single serial port, which is

used to communicate over USB to the host computer. Without the SoftwareSerial library, this port would

have to communicate with either the shield or the computer, but not both. The Arduino Mega, on the other

hand, has four serial ports, so it can use one to communicate with the computer and another to talk to the

shield. We wrote a small Arduino program (Github) which simply passes through the computer and shield

serial communication back and forth, giving us a terminal prompt on the Ember chip. This chip appears to

be running firmware built by the Ember Application Framework [Cor08], a software builder provided by the

manufacturer. Whenever the Shield recieves a message it prints out the details over its serial port, so with a

bit of string parsing code we reproduced the functionality of the SmartThings library.

We took this opportunity to inspect the ZigBee communication between the Hub and Shield. This protocol

proved significantly more difficult to parse than than the wired protocol discussed earlier. Wireshark stopped

parsing it after the IEEE 802.15.4 header, and the packets do not match up with the ZigBee specification

provided online. At least some part of the protocol appears to be encrypted, but we were thus far unable

to identify the method. We did discover a small bug with messages sent to the Shield from the SmartThings
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cloud: messages longer than 34 characters will cause the Hub to stop responding to further commands until

it is restarted.

4.3 TCP Connected

The gateway has a few interesting hardware components. Themain SoC is an AdvanceMicro APM80186-SKC600T,

which is a PowerPC CPU with Ethernet and NAND controllers on board [lim]. The wireless stack is handled by

an NXP JN5148, which includes an 802.15.4 transceiver and a 32-bit RISC processor [Sem]. The other main

components are Hynix flash and DRAM chips. Pictures of the gateway's PCB are included below.

We examined the gateway, the mobile applications, and the wireless communications of the Connected by

TCP lighting system. Each of these components will be discussed in the following sections.

4.3.1 Gateway Ethernet

Initially, we performed a port scan of the gateway using nmap and found ports 22, 80, 8888, and 9998 open.

We set up a man in the middle between the gateway and Greenwave's remote server by connecting the gate-

way to our computer with an Ethernet cable, then enabling tunneling from the computer's wireless connection.

This forced all traffic from the gateway to go through our computer. Then, we used Wireshark to intercept its

traffic.

We examined the web interface using Burp Suite, specifically using its proxy to intercept and replay requests

(see Appendix C.1) for details.

Firmware Update With our man in the middle, we captured the gateway's firmware update request sent to

the remote server. When we replayed this packet we received a link to a rootfs.bin file that we were able to

download using HTTP. See Appendix C.2 for details. Using binwalk we extracted the firmware, a squashfs file

system image we could explore on a local computer.

After we had the firmware, we extracted the /etc/passwd and /etc/shadow files. We used John the Ripper

to launch a dictionary attack and recovered the root password "thinkgreen", within an hour. Section 4.3.2

contains more information on what we found in the gateway file system.
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Remote Server Communication When a mobile application is connected to the system remotely, the app

speaks to one of Greenwave Systems' servers, and the server relays messages to the gateway. This is possible

because the gateway initiates a connection to the server on startup and keeps the connection open continu-

ously. This allows the gateway to receive commands even though it is not visible to the public Internet. We

forced the gateway to connect to our computer rather than Greenwave Systems' remote server using dnsmasq

to spoof DNS entries to the gateway. By substituting our own IP address for GreenWave's web service at

tcp.greenwavereality.com we could monitor the communications using Wireshark, as well as use Scapy to

actively inject packets.

We found the communication between the server and the gateway is a binary protocol sent over TCP. A more

detailed dissection of the protocol can be found in Appendix C.3. In addition to commands, the server and

gateway maintained an active connection by periodically sending ping messages. The pings came in pairs,

one sent from the gateway and one echoed from the server, and they all contained the same data.

We tried fuzzing the values in the commands and ping messages in different ways, such as by sending random

data of varying lengths or extracting a valid command and randomizing any non-zero bytes. We also sent

intentionally incorrect values as the ping reply. None of these produced a noticeable response, malformed

messages were ignored, but the gateway maintained the connection.

4.3.2 Gateway Filesystem

The firmware contained the contents of the read-only filesystem loaded onto the gateway, but we were also

able to examine the filesystem on the running gateway. The gateway had SSH running, and once we cracked

the password from the shadow file we were able to connect as root. This allowed us to examine the files and

the running processes. The gateway is running the Linux kernel with BusyBox utilities. The root filesystem

containing the kernel and all applications is read-only, but there is also a writable filesystem for configuration

files and persistent application storage.

We found a few interesting programs on the gateway filesystem: 6LoWPANd is the program responsible for

establishing the wireless network (more information about this program is in Appendix C.4), holger is the

main application for coordinating the lighting system, and the executables in /var/www/cgi-bin/ are the CGI

applications responsible for the Intranet interface. We also loaded and executed our own programs by placing

them in the writable storage. We used this capability to copy PowerPC versions of debugging utilities (such as

gdb and strace) to the gateway and attach them to running processes to reverse engineer running applications

directly on the gateway.

4.3.3 Wireless Communication

The gateway establishes a local wireless network using the 802.15.4 protocol. We used zbdump from https://-

code.google.com/p/killerbee/KillerBee to capture this traffic, and Wireshark to analyze the resulting packet

captures. We captured traffic while performing common tasks with the system such as turning lights on and

off using both the gateway and the remote.

The program 6LoWPANd is responsible for establishing the wireless network, including setting the encryption

key. We found that the encryption key being used was set with a command line parameter to this daemon,

and was a six-byte value, the MAC address of the gateway. This is then padded with zeros to a create 128-bit

AES key (see Appendix C.4).

Once we had the encryption key, we were able to spoof commands to the lights. We captured and decrypted

packets to turn the light bulbs on or off. We then reused the payloads to construct and encrypt our own

packets. We incremented the frame counter field of the IEEE 802.15.4 packets to circumvent replay protection,
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and encrypted and authenticated the packets with the encryption key we discovered (see Section 2.1 for more

information on the security features provided by IEEE 802.15.4). The light bulbs responded to our packets

and would turn on or off in response to the commands we sent.

4.3.4 Local Intranet Application

The gateway runs a web server which it uses to host an Intranet application that can be used to control the

lighting system. Commands input to the web application result in POST requests to /gwr/gop.php. Each

request includes XML-encoded data that comprises the command to the gateway. When a user first accesses

the web application, a request is made sending a default username and password to the gateway.

This is done transparently to the user, and is not validated. We intercepted requests and changed the username

and password to invalid values, and were still able to control the lighting system.

4.3.5 Mobile Applications

On the Android device, we used a wrapper around tcpdump to capture packets as we used the app. This was

effective in sniffing unencrypted traffic between the phone and the gateway. When the phone is connected

to the same network as the gateway, it issues HTTP POST requests directly to the gateway for /gwr/gop.php.

The requests are identical to those generated by the Intranet application.

When the phone is not connected to the same local network as the gateway, commands go throughGreenwave

Systems' server. The application authenticates to the server by sending the username and hashed password

of the user. Validation is performed on the credentials, and if incorrect credentials are sent, the user will not

be able to control a lighting system.

To examine the app, we used a file browser to look at its stored configuration files. In addition, we pulled the

apk from the phone and used Java Decompiler to decompile the class files that it contained. We analyzed

how the app handles authentication but found no vulnerabilities.

There also is an iOS application, however due to time constraints we were unable to assess the iOS application.

4.3.6 Hardware

We disassembled various components of the hardware. For the gateway, we used a logic analyzer to listen on

the various exposed headers to see if there was a serial port we could eavesdrop on. However, even though

there were several headers and JTAG ports visible on the board, we were unable to get any recognizable data

from the board. Section 3.3 has pictures of the gateway's PCB.

4.4 HAI MicroControl

The HAI MicroControl is a home automation device manufactured by Home Automation, Inc. The main

component we tested on the HAI MicroControl was its ZigBee communication. We used an ApiMote V4

(see Section 2.2) for the sniffing, injection, and analysis of ZigBee packets. We also made use of a Freakduino

Chibi, which runs the ZigTools framework to sniff ZigBee traffic.

4.4.1 ZigBee Association

To understand the process of association, we flooded the controller with a broadcast Beacon Request until we

got a response with the Source address and the EPID of the controller. After inspecting the Beacon Response

packet carefully, we found that the Association Permit field is set to false. This field is automatically set to false

by the Coordinator (here it is the HAI Microcontrol) if the device is already associated. Initially, if no device was

associated, this field is set to true. There is no means to change this manually unless the device is completely
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disassociated and then re-added.

Transport Key Retrieval Next we tried to forge the association process. First, we sent a Beacon Request and

waited for a response. We then sent a Leave Request originating from the Kwikset Lock, with the Remove

Children and Rejoin fields under the Leave Request set to false. Once this packet is sent, the device is

dissociated and does not communicate with the Controller anymore. Finally, we sent a Rejoin request back to

the controller, impersonating the Kwikset Deadbolt, which successfully re-associates the device. We confirmed

the addition of the device to the ZigBee network by observing a Device Announcement packet being broadcast

across the network. Once the device joins, the transport key (used to encrypt ZigBee traffic over the air) is

shared with all the devices in plaintext and can be sniffed out of the air.

Theoretically, just sending an association request followed by a data request until an association response is

received should yield the transport key, but we were unable to forge the requests correctly as we never got a

response back. After this failed, we tried to send a Permit Join request immediately after receiving a Beacon

Response with the EPID of the controller. Since no device has been associated with the controller yet, we set

the Association Permit field to True. Then, sending an Association Request yielded a response and a transport

key.

Forced Device Association We successfully retrieved the transport key, but the device does not show up as

associated in the HAI MicroControl. The MicroControl scans for exactly sixty seconds to facilitate the addition

of new ZigBee devices into the network. We repeated the process of sending a Beacon Request to get the

details of the controller, then sent a leave request and rejoin request in a denial-of-service (DoS) attack. We sent

the DoS packets for sixty seconds until the requests are picked up. This allowed us to successfully impersonate

the device to the MicroControl.

Device Takeover In reality, we would always have a device associated with the controller. In order for us

to take control of that device, we would have to unpair the device with the coordinator by sending a leave

request. This request does not need the short address of the device but just the MAC address, which makes

the attack much easier, and allowed us to successfully add the device using a spoofed rejoin request.

This may not always work, because the Association Permit field is set to false and it is not possible to change it.

Another thing to note is that when sending a rejoin request, the device is expected to provide a short address,

which is actually assigned by the controller. An attacker would not know the hex address, but any address

except FFFF and 0000 can be used. A Route Request is then broadcast across the network, and the next time

a Rejoin or an Association request is sent, it is automatically routed to the address we requested. Thus, when

there are multiple ZigBee devices across the network, we can request all those addresses and assign them to

our device, thereby disconnecting them.

4.4.2 Kwikset Lock

We tried a number of attacks on the Kwikset Lock's ZigBee communication. We successfully decrypted the

packets using the sniffed ZigBee Transport Key and found the Lock's lock and unlock commands (0x01-Lock and

0x00-Unlock). In order to attack the lock, we needed to decrypt the packet, increment the sequence number,

change the command, and then re-encrypt it using the Message Integrity Code (MIC) and the transport key.

Unfortunately, we could not successfully re-encrypt the packet.

The second attack we tried was to wait until the sequence number wrapped and then replay the packet. This

replay attack was unsuccessful for two reasons. First, we were unable to compute the MIC which the lock uses

to ensure the message is valid. Second, we were uncertain about the limit of the sequence number. If we
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were to blindly replay the packet, the MIC would be correct, but the sequence number would be rejected.

Ultimately, we did not unearth vulnerabilities in the Kwikset Lock's ZigBee comunication.

4.5 Kwikset Lock

The Kwikset Z-Wave Lock is compatible with both the SmartThings platform and the HAI MicroControl. The

analysis of those systems is in their respective sections, this section discusses the lock hardware independent

of any hub.

The lock has two main components, the base, which interfaces directly with the dead bolt and keypad, and

the Z-Wave module, which deals with wireless communication. We successfully dumped and analyzed the

firmware running on the base, but were unable to communicate directly with the Z-Wave module. In order

to program or otherwise interact with this chip, it is necessary to obtain a development kit. However, Sigma

Designs requires anyone who wants a development kit to sign a non-disclosure agreement, which would have

made it impossible for us to reveal any information we found.

4.5.1 Hardware

We initially targeted vulnerabilities in the lock itself in an attempt to completely bypass any home security

system it happened to be attached to. It is important to note that if the lock was installed in a door, it would

not be able to be disassembled, so vulnerabilities found in the hardware might lead to a dead end. We started

by taking the lock apart to gain access to the board, which was a relatively simple process. By examining the

board and its components we discovered that the microcontroller unit (MCU) was an MSP-430 variant. We

also found some serial connections, which we soldered headers onto.

We were able to communicate with the MCU by connecting the board to a TI-Launchpad via Spy-Bi-Wire,

then connecting the Launchpad to our laptop via USB, and finally interfacing with the chip via mspdebug.

From here, we were able to dump the firmware and debug the code running on the MCU. We began reverse

engineering the firmware by downloading the chip's data sheet and mapping out the functions referenced in

the Interrupt Vector Table. Eventually we managed to map out where user PINs were stored, and how input

was handled, but it became apparent that all processing of wireless commands happened in the RF module.

For details about interfacing with the lock, as well as notes about the firmware, see Appendix E.1.

4.5.2 Z-Wave

Finally, we tested the Kwikset Lock's Z-Wave communication. While attempting to find an RF configuration

that would allow us to intercept Z-Wave packets (see Section 6.2.4 for more details), we found a method of

interfering with the lock's normal operation. Specifically, we are able to abuse clear channel assessment and

use it as a vector for denial of service [CM]. This is somewhat similar to several ``jamming'' attacks against key

fobs which were used in a series of luxury car thefts. However, rather than relying on a stronger signal to drown

out other transmissions, this attack only requires that an attacker transmit continuously. For more information,

see Appendix E.2.
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5 Vulnerabilities

5.1 Lowes Iris

5.1.1 Disclosure Timeline

• 2014-11-25: iSEC called Lowes indicating that there are security issues that need to be addressed.

• 2014-11-25: A customer support representative from Lowes asked iSEC to send the findings to them via

email.

• 2014-11-25: iSEC sent an email to the representative containing the advisories.

• 2014-11-25: The representative responded stating that they forwarded the email to the appropriate depart-

ment.

• 2014-12-18: iSEC followed up with the representative about the status of the advisories.

• 2014-12-19: Technical Director of Lowes Iris indicated that the concerns have been evaluated internally and

no action needs to be taken.

5.1.2 Transport Key Sent in Plaintext

When a device associates with the Lowes Iris hub, the transport key is sent in plaintext from the hub to the

device. This transport key is used by devices to encrypt and decrypt data to and from the hub. The key is also

used to create message integrity codes (MICs) for frames sent and received. An attacker can sit outside of a

house that uses the Lowes Iris System and sniff for ZigBee traffic. If an attacker can sniff ZigBee traffic, then the

transport key can be sniffed out of the air. Key exchange should use a known, secure key exchange protocol.

5.1.3 No Cross Site Request Forgery Protection

There is no Cross Site Request Forgery (CSRF) protection on the web application. This can be used by an

attacker to trick an authenticated user into disabling his/her alarm if it is set. The attacker can also put the

Lowes Iris System in pairingmode and force the transport key to be sent at any time. The following vulnerability

illustrates the impact of this.

5.1.4 Force Association to Hub to Receive Transport Key

Using the fact that the transport key is sent in plaintext (See Section 5.1.2) and that there is no CSRF protection

on the web application (See Section 5.1.3), an attacker can force association between a compatible device and

the Iris hub. The association process can be found in Appendix A.1.

An attacker can utilize a CSRF attack and trick a user into starting the association process. This will alert the

Hub into sending out a permit join request. This permit join request allows any compatible device in range

to be paired with the Hub for a certain duration of time. The Association Request and Data Request are not

encrypted, nor do they use any message integrity code. This allows anyone to spoof and inject these packets

from any compatible device. When these two frames are sent, the hub responds with an association response

stating whether or not the association was successful or unsuccessful. If successful, the hub then sends the

transport key to the device wanting to pair. Since the transport key is sent in plaintext, this key can be grabbed

out of the air.

5.1.5 Alarm Stays Set After Dissociation

The disassociation of any device paired with the hub while the alarm is still set will not trigger the alarm. An

attacker tricks an authenticated user into starting the dissociation process by exploiting the CSRF vulnerability.

By sniffing the ZigBee traffic to see what devices are running based on their MAC addresses, an attacker can
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then unpair all of the devices attached to the target Lowes Iris hub. By doing this, an attacker can disable any

motion sensors or contact sensors. These would usually trigger the alarm and alert the owner of the house.

However, since the attacker has unpaired these devices but the alarm is still set, the attacker can break into

this house without triggering the alarm.

5.1.6 Internal Infrastructure Exposed in Mobile Applications

Internal infrastructure for the Lowes Iris HomeManagement System is exposed in both the iOS and the Android

application. In the iOS application, there is a plist file called servers.plist which contains IP addresses and

hostnames of what seems to be different VM and Xen servers for staging and development of this product.

The same information can be found within the Android application in an XML file called arrays.xml This

information contained in these files should not be public knowledge. An attacker can extract these files from

either application and gain valuable knowledge about the Lowes Iris internal infrastructure.

5.2 SmartThings

5.2.1 Disclosure Timeline

• 2014-10-27: Reached out to vendor looking for security contact.

• 2014-10-27: Received contact email address and PGP public key.

• 2014-10-28: Disclosed vulnerabilities to vendor.

• 2014-10-29: Vendor acknowledges receipt and schedules phone discussion of vulnerabilities.

• 2014-01-02 Vendor indicates patches for some flaws have been rolled out.

• 2014-03-09 Vendor indicates final patches have been rolled out.

5.2.2 Server Impersonation

The SmartThings Hub does not perform certificate validation when using SSL to connect to SmartThings

servers. This lack of validation means that the Hub does not know whether it is communicating with the

SmartThings cloud, or an attacker. If an attacker is able to perform a DNS spoofing attack, they will be able to

decrypt all packets sent by the Hub, or to send arbitrary commands. We successfully exploited this vulnerability

by setting up a man-in-the-middle attack, and used it to open and close our door lock.

5.2.3 Protocol Downgrade

The SmartThings Cloud allows the connecting device to choose which protocol to use. An attacker can connect

to the cloud using an outdated version of the protocol, sidestepping additional security features implemented

in the newer version. Analysis of this protocol is present in Section 4.2.2, and the protocol's commands are

described in Appendix B.2.

5.2.4 Hub Impersonation

The SmartThings cloud does not authenticate connections from the SmartThings Hub, and allows multiple

connections from the same Hub simultaneously. Combined with the Protocol Downgrade vulnerability, this lets

an attacker impersonate any SmartThings Hub, as long as they know its MAC Address. For more information,

see Section 4.2.2.
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5.2.5 Clear-Channel Assessment Attack

The Kwikset lock is susceptible to a Clear Channel Assessment attack [CM]. By broadcasting random data over

Z-Wave, an attacker can prevent commands, including the ``lock'' command, from being sent. Furthermore,

the attacker could impersonate the Hub, as in vulnerability Section 5.2.4, to make it appear as though the lock

operation completed successfully. See Appendix E.2 for configuration details.

5.2.6 AWS Arbitrary File Manipulation

The SmartThings mobile applications use hardcoded Amazon Web Services (AWS) keys to upload and down-

load images of users' homes. With these credentials, an attacker can list, upload, and download arbitrary files

from the `smartthings-custom-location-backgrounds' AWS bucket. This includes disclosure of images that

customers have uploaded to SmartThings.

5.2.7 App Storage

The iOS application has cached HTTP requests that include an OAuth bearer token, while the Android appli-

cation stores base64 encoded user credentials in local storage. If an attacker had physical access to a users

phone, they could steal this information and use it to take control of a user's account. A malicious app on a

jailbroken or rooted device would also be able to steal the user's information.

5.3 TCP Connected

5.3.1 Disclosure Timeline

• 2014-12-15: Reached out to vendor looking for security contact

• 2014-12-16: Received contact information

• 2014-12-31: Sent encrypted vulnerability details to contact.

• 2015-01-29: Contact confirmed receipt.

• 2015-02-13: Notified by contact that decryption was unsuccessful.

• 2015-02-13 - 2015-03-09 : Multiple attempts to exchange encryption keys unsuccessful.

• 2015-03-09 - Vulnerabilities disclosed successfully.

5.3.2 Intranet Application

No authentication is required to access the intranet application, so anyone who is connected to the same

network as the gateway has the authority to change the state of the lighting system. The gateway does not

validate that requests originate from the web application, so it is vulnerable to cross site request forgery (CSRF)

attacks. However, a command must specify a bulb ID in order to affect its state, so an attacker needs a way

to discover the bulb IDs of the user's system. These are 64-bit values so they are infeasible to guess through

a brute force attack. We were not able to determine how the bulb IDs are assigned, but they do not appear

to be random. The bulb IDs of two of the light bulbs we had differed in value by only 758, which is much

less than would be expected for two random 64-bit integers. Since there appears to be some pattern to how

the bulb IDs are assigned, an attacker may be able to determine a valid ID with high probability if they have

access to other information about the system, allowing for a successful CSRF attack.
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5.3.3 Mobile Application

Any mobile device connected to the same network as the gateway has full control over the lights. Additionally,

while connected to the same network, a user is able to create a username and password that will allow them to

control the gateway over the Internet. If an attacker is able to connect to the local network, they can register a

username and password and then remotely control the lighting system when not connected to that network.

When connecting remotely through the mobile application, the password is hashed (SHA256(username +

MD5(password))) before it is sent to the Greenwave Systems server. However the password is saved on the

phone in plain text, accessible by anyone who has root privilege.

5.3.4 Firmware Update

No authentication is used in the process of a firmware update request from either end. The remote server

does not authenticate the gateway, so an attacker can replay a request and receive a copy of the firmware,

with the hard-coded root password. The gateway downloads firmware over HTTPS, but the certificate is not

validated (see Section 5.3.5), and the firmware image is not signed.

While the update firmware request from the gateway contained a token, a MAC address, and the gateway's

current version, none of these values are authenticated and we are able to receive the download link despite

changing these values.

5.3.5 SSL Certificate Validation

During firmware download, the gateway does not validate the certificate of the remote server and will accept a

self-signed certificate. This combined with unsigned firmware leaves the gateway vulnerable to downloading

untrusted firmware. For example, an attacker could use DNS spoofing to pose as the remote server and

provide a malicious firmware update.

5.3.6 Remote Server Impersonation

The binary protocol used to send remote commands from Greenwave Systems' server to the gateway is not

encrypted, and there is no authentication built into the protocol. If an attacker manages to pose as the remote

server to the gateway, they can send commands to control the lighting system. Additionally, the gateway

simply ignores incorrect commands, it does not reset or close the connection, so an attacker has a very forgiving

platform to reverse engineer and fuzz the protocol.

5.3.7 Open SSH Port, Weak Root Password

SSH is running on the gateway with a weak root password hard coded as part of the firmware. This allows

anyone on the same network to obtain a root shell on the gateway. This gives an attacker complete control

of the gateway. They can examine the file system and running processes, find the wireless encryption key, or

load their own scripts and executables to writable storage and run code on the gateway.

The initialization scripts are all in the read-only filesystem, but some of them execute scripts in writable storage,

so attacker could modify these scripts to execute their ownmalicious applications at startup. Firmware updates

only change the read-only filesystem, but leave the writable storage unchanged, so a compromise will be

persistent even across firmware updates. An attacker could also tamper with any part of the firmware by using

dd to directly write to the underlying block device of the read-only file system.
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5.3.8 Weak Encryption Key

The device is using the security features of 802.15.4 to encrypt and authenticate messages, but the key is so

weak it is easy to bypass. The encryption key is set to the MAC address of the gateway, so there are only

three bytes of potential randomness in the key. A MAC address is a 6-byte value, but the first three bytes are

the organizationally unique identifier (OUI) of the manufacturer[IEE]. In this case it is the sequence D4-A9-28,

which is the OUI of Greenwave Reality (now Greenwave Systems) [oui]. Since the search space is so small it is

feasible to mount a brute force search to find the encryption key.

Once an attacker has discovered the encryption key they can observe all traffic on the wireless network and

create their own packets to control the lighting system. It is also possible to mount a denial of service attack

by broadcasting messages with large frame counters to a particular receiver. This will increment the internal

replay counter of the receiver so that legitimate messages will subsequently be ignored [PKH+].

The previous attacks on the encryption required the attacker to first determine the encryption key, but because

of how the frame counter is stored on the light bulbs it is possible to mount a replay attack without the key.

Light bulbs keep the state of received frame counters in volatile memory. If the light bulb loses power, the

knowledge of received frame counter values will be forgotten, and then a replay attack will succeed.

5.4 HAI MicroControl

5.4.1 Disclosure Timeline

• 2015-03-17: Request for security contact sent to Leviton.

• 2015-03-23: Follow-up request for security contact sent to Leviton.

• 2015-03-27: Call placed to Leviton requesting security contact.

• 2015-03-30: Response received from Leviton, details sent via fax.

• 2015-04-01: Acknowledgement received from Leviton.

• 2015-04-06: Follow-up phone call with Leviton. Leviton indicates disclosed vulnerabilities are inherent to

Zigbee home automation and no action is required.

5.4.2 Static ZigBee Link Key

The MicroControl sets up its ZigBee network with a static Link Key across all ZigBee devices. The key is

“ZigBeeAlliance09" encoded in hex, and is also used with its bytes in reverse order.

5.4.3 ZigBee Transport Key Disclosure

Forcing requests to the controller results in the current Transport Key being transmitted. The Transport Key is

used to communicate between the MicroControl and its associated ZigBee devices. An attacker can perform

this attack by sending a Beacon Request followed by a forged leave request, which results in the target device

being disassociated from the controller. Next, a rejoin request is sent back to the controller, impersonating

the target device. The device is successfully associates again, and the transport key is shared in plaintext over

the network. See Section 4.4.1 for more details.

5.4.4 Device Impersonation

An attacker can impersonate any device and the MicroControl is not able to differentiate between the actual

device and the attacker. When adding new devices to the network, the HAI MicroControl scans for sixty
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seconds. By repeatedly sending leave and rejoin requests for sixty seconds, an attacker can force an association

response and join the network with a new device. See Section 4.4.1 for more details.

5.4.5 Forced Short Address Assignment

An attacker can set the short address of an end device to any address he wants, without needing to know the

current short address of the device. The major consequence is that an attacker can force the dissociation of

devices from the network. When there are multiple ZigBee devices associated with the controller, the attacker

can reassign a device to an in-use address, causing a collision. The device originally at the colliding address

is then dissociated from the network.
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6 Further Research

6.1 Lowes Iris

We were unable to figure out the application level security that the Lowes Iris devices were using since we

could not properly dump the firmware. This is the most important item that should be researched moving

forward. Additionally, It would be useful to figure how to interact with the ZigBee chip. Future research should

include both dumping the contents from the flash memory chip and directly interfacing with the ZigBee chip.

6.2 SmartThings

6.2.1 Hardware

In the future, it will likely be useful to dump the memory chips at different points in time, in order to gather

information about the Hub's state. Potentially, this could allow us to gather information about the wireless

devices connected to it and the security of the wireless network. We also did not investigate the custom

header (labelled B in figure 2) - a soldering iron and steady hands will enable a connection there. We were not

able to communicate over header A either. Finally, retrieving the Hub's firmware in a readable state will allow

a much deeper level of investigation into how it works. There is definitely still work to be done in order to gain

a complete understanding of the SmartThings hardware, and many more SmartThings-compatible devices to

test as well.

6.2.2 Wired Networking

The SmartThings infrastructure has two very large holes in its wired networking: its lack of SSL certificate

verification and the fact that its protocol does not provide any authentication. The logical next step in attacking

this protocol is to impersonate the SmartThings server and fuzz the messages sent to the Hub. Fuzzing is an

automated way to gather information about which messages the Hub will accept, reject, or cause an error. A

well-designed fuzzer can find a huge amount of bugs very quickly, and provide a wealth of new ways to attack

the device.

6.2.3 ZigBee

While we succesfully sniffed ZigBee traffic between the SmartThings Hub, Arduino Shield, and Multi, we were

not able to fully understand the packet format. The ZigBee packets appear correct through the IEEE 802.15.4

header, but the ZigBee header does not match the format we expected to see. Further, the data field in the

ZigBee packets sent by the Ember chips appears to be encrypted, but we could not figure out the method.

Once the packet format is successfully parsed, it will open up a new avenue for attacks on the SmartThings

system.

6.2.4 Z-Wave

Unfortunately we were not able to intercept Z-Wave traffic. We attempted to use Z-Force (see Section 2.2), a

Z-Wave packet interception and injection tool, but could not get it to work. We contacted one of the authors

of the Z-Force framework who informed us that the firmware itself was hard-coded for an EU RF configuration.

We attempted to figure out the correct RF configuration but were only partially succesful. Although we did

not have time to fully explore this option, it is possible to fairly trivially modify the Z-Force firmware to use

other RF settings. For more information about this, see Appendix F.1.

In order to communicate with the Z-Wave chip (a Sigma Designs ZW0301) inside of the Kwikset Lock we

required a development kit from Sigma Designs, who requires all buyers to sign an NDA. Due to only having

one of these chips, we did not attempt any attacks against the hardware itself since it was necessary to have a

functioning chip to test other components. In the future, we would like to have the resources to fully test the

Z-Wave functionality of the SmartThings system.
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6.3 TCP Connected

The gateway coordinates the wireless network used to control the lighting system. We were able to observe

the commands sent to change the state of the light bulbs. However further research is required to fully

reverse engineer the protocol the gateway uses, including the process to add new devices to the network

and exchange encryption keys.

6.4 Hai MicroControl

Themajority of our research with theHaiMicroControl was focused on its ZigBee network. In order to gainmore

insight into ZigBee, it would be beneficial to fully understand the encryption algorithm and ZigBee's Message

Integrity Code. It may then be possible for us to modify and re-encrypt the ZigBee packets correctly, allowing

us to unlock the Kwikset Lock device over-the-air. Finally, we did not investigate the Internet functionality of

the MicroControl, or the iPhone and Android applications, which is a huge surface for further research.
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7 Conclusion

Internet-connected home automation systems are bringing us closer than ever to achieving the science fiction

dream of a fully-automated home. That dream comes at a cost, however: as more technology is added into the

home, more and more systems have to work together perfectly to keep that technology secure. We anticipate

that the attacks laid out in this paper are only a milestone on a long road of vulnerabilities that will make up

the history of the Internet-of-Things.

The systems we investigated provided ample opportunity for us to learn about the technologies that bridge

embedded devices and the greater Internet. While it would be impossible to fully explore every aspect of

every wireless home automation device on the market, none of the systems we looked at came away clean.

For some manufacturers, security seems to be nothing more than an afterthought. Others have followed some

standard secure practices, but lost their security in the implementation details. We know that further research

will be done on these and other home automation devices, and we hope our research acts as a springboard

in this ever-growing field.

As a long-term goal, it would be desirable to compile a best practices document for the design of IoT systems

such that vendors have guidelines on how to prevent the introduction of flaws that actually impact users in

practice.
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A Lowes Iris

A.1 Assocation Process

• Iris Hub⇒ Permit Join Request⇒ Broadcast

• Device⇒ Association Request⇒ Iris Hub

• Device⇒ Data Request⇒ Iris Hub

• Iris Hub⇒ Association Response (Successful/Unsucessful)⇒ Broadcast

• (if successful) Iris Hub⇒ Transport Key⇒ Device
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B SmartThings

B.1 SmartThings Hub Pin Traces
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EM357SP2

1

11
12 21
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33

JTDO

JTDI
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JTCK

UART RX

UART TX

TRACE 3

TRACE 2

Vcc

UART CTS

UART RTS

RESET

A B

Figure 6: The Ember EM357 ZigBee Transciever. The rightmost set of rectangular pads is a custom header,

while the left set of circular pads is a standard header. The gaps in the UART RX and CTS lines are unsoldered

in production versions of the Hub.

B.2 SmartThings Hub Network Protocol

B.2.1 Version 1

Version 1 of the SmartThings Network Protocol is valid for Hub firmware version 000.010.00246.

The protocol is a hex-encoded payload, wrapped in angle brackets and sent over SSL. The raw data looks like

this (each line is a string of ASCII characters), and is terminated with a newline:

<1700D052A80043C4000180000002000A00F60000000000008A0A>

The packets are constructed as follows:

LEN CMD MAC Addr. Device Z-Wave Sequence Data CKSM

Size (bytes) 2 2 12 4 4 4 variable 4

Sample 0D 02 D052A80043C4 0001 8000 0002 11CE
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Figure 7: The Hub has two EEPROMs (memory chips) in addition to thememory built in to the PIC32 processor.

The Atmel AT25256B EEPROM connects to a 5x2 set of standard pins and can be accessed using SPI.

1. LEN: The length of the packet, in hex

2. CMD: The command for this packet

3. MAC Addr.: The MAC Address of the Hub

4. Device: The source or target device on the ZigBee network

5. Z-Wave: The source or target device on the Z-Wave network

6. Sequence: The sequence number of this packet

7. Data: Variable length data field corresponding to the relevant command

8. CKSM: 16-bit CRC-16-CCITT checksum with IV 0xFFFF

The following commands were observed during our testing:

Command Name Data Samples

00 JOIN 00 0A 00F6 000000000000

Notes: Firmware Version 000.010.00246
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01 ACCEPT 00000000

02 ACK

04 Keepalive

09 Device - ? A97E 02FC010139000000

A97E 010104013900010000010019

89EB 01010401380001000000

0A Multi - ? A97E 020102

0B Multi - Active A97E D052A800453E 0003 80

Notes: <2 byte network id>:<6 byte MAC>:<2 byte device

id>:<1 byte data>

0C Multi - Contact A97E 003100

E777 003000

Notes: <2 byte network id>:<3 byte status>

0E Status 90

Notes: Sent after join/accept when device has been restarted or

offline for a long time; Website says: ``stack status: 90''

14 ? 01040000010101400089EB000000000B010A00

15 Ember Command 6E6574776F726B20706A6F696E203930

7A646F2073696D706C65203078413937452030783031

7A646F2073696D706C65203078413937452030783032
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Notes: Ascii Decode

zdo simple 0xA97E 0xNN

network pjoin 90

raw 0x0 { 00 00 0a 0a 68 65 6c 6c 6f } (Shield: hello)

send 0x89EB 1 01

16 Firmware Update (PUSH) 0005A105

17 Firmware Update (ACCEPT) 00

18 Firmware Update (CHUNK)
Notes: <2 byte chunk number>:<128 bytes hex data

encoded as ascii>

29 Z-Wave Status FBCECE3101 00000..0000

Notes: Z-Wave ID FBCECE31 01, sent after 0E when device has

been restarted or offline for a long time

40 Multi - RSSI + LQI A97E 69FF

Notes: <1 byte RSSI>:<1 bytes LQI>

41 Multi - State E777 0000010A1C5EFF

E777 000001061C64FF

A97E 010000FE1C64FF

43 Multi - ThreeAxis A97E FFF8021F035B67FF

A97E FEC9035C01A068FF

A97E FCE1028A003366FF

Notes: <6 byte x,y,z>:<1 byte RSSI>:<1 byte LQI>

B.2.2 Version 2

"Version 1" Style packets are prepended by 16 byte headers of the following form:
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Figure 8: The MXIC MX25L3206E EEPROM does not connect to a test header, but the pins are spaced widely

enough that a set of pin grabbers will hook on them. It can also be accessed using SPI.

PID LEN DIR DEL OVF PKTN CNST ???? DEL TYP TYPN

5E:A1:00 43 00 00 00 df 01 0b:de:41:fc 00 02 8c

1. PID: Protocol Identifier. Always equal to 5e:a1:00

2. LEN: Packet Length: Length of entire packet in base16.

3. DIR: Direction Byte: 0x00 when packet originates from Hub. 0x10 from server.

4. DEL: Delimeter: Appears to be a Null byte delimeter.

5. OVF: Overflow #: Number of times PKT has overflowed.

6. PKTN: Packet #: Global Packet Count (Of all Packet Types)

7. CNST: Constant: Appears to be a constant value.

8. ????: Mystery Bytes. Seem to be used for authentication. Can be replayed/reused.

9. TYP: Type: API or Binary? (Unconfirmed.)

10. TYPN: Packet count of packets of This Type.

Additionally, this version of the protocol includes some raw binary packets which take the place of certain

Version 1 actions. They are prepended by a similar packet header, but do not always include the full 16 byte

version.

Shown below is a "Hello" Packet from the hub:

PID LEN DIR DEL OVF PKTN CNST ???? MAC DEL FRM

5E:A1:00 1f 00 00 00 01 00 8c:d9:ff:4d:00:00:00:00:01 d0:52:a8:00:40:e1 00:01 00:0b:02:5b:04

1. ???: Mystery Bytes. Appear to be used for authentication.

2. MAC: Mac Address of the Hub

3. FRM: The firmware version of the connecting Hub.
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We were not able to determine exactly how the four identification bytes are generated. They do, however,

change with the packet number. There are 12 unique values which seem to loop for the first "Hello" packet.

If it turns out that it is possible to automatically generate these values, then one could perform all "Version 1"

attacks with "Version 2".

Packet Number Bytes

01 8c:d9:ff:4d

02 72:d4:5c:ce

03 0f:29:93:f8

04 9b:50:cc:29

05 5c:63:8d:db

06 55:3c:92:0e

07 64:5c:90:3b

08 5b:d3:0c:ab

09 92:ba:c2:d3

0a d3:41:8d:cd

0b 67:2e:ad:21

00 25:32:42:55
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C TCP Connected

C.1 Local Intranet Application

Upon first connection, an email and password are sent to the gateway with the command GWRLogin; however,

this combination is by default admin/admin, and is not validated by the server. In response, a token (fixed at

0123456789) is sent back to the browser. This token is included in later requests, but again is not validated.

Thus, there is no authentication required when communicating directly with the gateway.

C.2 Gateway Firmware Update

The request goes to update.greenwavereality.com/roxy/update.php.

Sample request body: MAC=D4:A9:28:01:F9:D0& secret=177929cb196dd55e2818f8c9ea61fc & project=Apollo

& current_version=2.0.39

Download link: http://update.greenwavereality.com/roxy/download/1386066602/rootfs.bin

C.3 Remote Server

The format of commands from the server to the gateway is:

fe000000c81f000000090301f9d00051et45101. Respectively, the emphasized sections indicate:

• The type of message (8 indicates power toggling and 9 indicates dim)

• A 12-bit subsection of a bulb ID (0x451 above)

• The command parameter (0x01 or 0x00 for power; a hexadecimal value from 0x0 to 0x64 for dim)

In addition to commands, the server and gateway maintained an active connection by periodically sending

ping messages which all contained the same data: (fe000000641f00000000).

C.4 6LoWPANd

The function of 6LoWPANd is to direct network packets to the wireless chip. It does this by establishing a local

TUN network interface [KYT] to allow it to receive packets from other processes running on the SOC targeting

the wireless network. Communication to the wireless chip is performed over a serial port. After initializing the

TUN interface and the wireless chip, messages are relayed from one to another. All of this is then transparent

to applications that use the wireless communication, which do so by sending and receiving messages through

sockets opened on the TUN interface, using the standard operating system APIs.

Initially we disassembled the 6LoWPANd binary do determine how the key is set, but the source code for

6LoWPANd is actually available from NXP [NXP].

The command line option 'k' sets the encryption key. We found that the command line options are parsed with

getopt_long, and the case for k calls inet_pton on the input string to parse it as an IPv6 address. The 128

bit ``address'' is then used directly as the encryption key. So a value specified like this: ::D4:A9:28:01:F9:D0

will result in the key being set to the 128-bit value represented by the hex string:

0000000000D400A90028000100F900D0.

The configuration files for the gateway are located at /etc/init.d/. The daemon that handles the wireless

communication is started by the script /etc/init.d/6lowpand, which sets the encryption key to a value found

in the file /media/config/jennic.config. This config file sets the key used by the gateway to encrypt
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and authenticate 802.15.4 to the MAC address of the gateway. The configurations are set by executing

/media/config/jennic.config as a shell script, so an attacker couldmodify this file to start amalicious process

at startup.
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D HAI MicroControl

D.1 Appendix

This is an appendix of the different sequences of ZigBee Protocol packets that were being observed during

the different processes:

D.1.1 Device Pairing with the Controller

1. A device announcement is made, indicating that the Kwikset Device has joined the network.

2. The Transport Key is shared amongst devices in the network.

3. An Active endpoint request is sent and the response includes the active endpoint list details and a status

indicating success if a successful endpoint assignment happens.

4. A Simple descriptor request is made for each endpoint listed above which gives information about a

particular endpoint device (e.g., Kwikset). The response includes an identifier for the device within

1-240 and it also shows the status of association (e.g., Successful).

5. Next, a Bind Request is sent which binds the coordinator and the device. A response is received indicating

successful or unsuccessful binding.

6. A Configure reporting request is then sent and the response received back states the success, if the

reporting is configured.

7. When the lock is associated with the coordinator, it is automatically Locked and shows that status. As the

Next step, a set user descriptor request is sent wanting to set the Desc as `LOCK'. A response is received

stating confirmation of the user descriptor setting.

D.1.2 The Association Process

The sequence of what happens when a device gets associated with the coordinator.

1. A Beacon Request is broadcast which searches for available ZigBee coordinators.

2. A Beacon Response is received from the coordinators with their EPID.

3. An Association Request is sent, followed by a data request .

4. An Association response is received which includes the PAN ID and the short address of the device.

D.1.3 The UNLOCK/LOCK packet frame

Packet Structure of the UNLOCK/LOCK command frame. It contains four layers:

1. IEEE 802.15.4 layer with the Sequence Number, destination PAN and source and destination addresses.

2. The ZigBee Network Layer data contains data like source and destination addresses, the extended source

which is the HAI MicroControl here. The ZigBee Security header contains information like the Key

Sequence number and the nonce (MIC) if the extended nonce field is set to true.

3. The Application support Layer contains the Profile (0x0104) – Home Automation and the Cluster of the

device in use.

4. The ZigBee cluster Library frame contains the actual lock (0x01) or unlock (0x00) command.
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There are two commands exchanged in the process. The first is sent from the controller to the device and the

second in the opposite direction. The second command includes one additional field, “Data" which has the

actual lock or unlock command.

D.1.4 Route request

While testing for the Short Address Vulnerability as described in the previous section, the coordinator broad-

casts a route request which contains a route request command frame in the Network Layer which mentions

the Route ID and the destination short address along with the path cost. Using this command, the coordinator

automatically resets the address of the device.
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E Kwikset

E.1 Firmware

Hold the board such that the black button is on top, and connect the pins as follows:

1. Vcc to Top Right

2. RST to Bottom Right

3. TEST directly left of RST.

Once you have the device connected to your computer, run mspdebug rf2500 at a terminal to interface with

the MCU.

There are a number of interesting addresses we identified. These should give you a good starting point if you

want to investigate things further.

Interesting Functions:

• 0xC530: Activated on Key-Press

• 0xC51A: Optical Module

• 0xA002: Start Motor Function (Referenced by several functions that actually seem to check User-Input)

Interesting Memory Addresses:

• 0x1048: User PIN 1

• 0x1050: User PIN 2

• 0x054E: User Input Stored Here, reset to FF on timer.
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E.2 Clear Channel Assessment Attack

These settings allowed us to prevent the Z-Wave enabled lock from properly communicating with the Hub.

They can be easily set inside of SmartRF studio.

1. Base Frequency: 908.42 MHz

2. Xtal Frequency: 26.0 MHz

3. Modulation Format: GFSK

4. Channel Number: 0 (N/A)

5. Data rate: 9.6 kBaud

6. Deviation: 20 kHz

7. Channel Spacing: 200 Khz

8. RX filter BW: 58.035714 kHz

9. Manchester Enable: True

Place the device into Continuous TX mode and select "Modulated".
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F Z-Wave

F.1 Z-Force

Within the Z-Force firmware, one function initializes most of the RF parameters. This function begins at offset

0x1E8. Setting parameters is as simple as modifying the binary in the locations where it is about to move

values into external memory. Unfortunately, not all of the register settings are set, so one must patch in a

routine which sets the remaining register settings and restores the system state. We believe that patching in

the correct settings would allow one to use the Z-Force framework on US frequencies.

The raw binary must then be converted into Intel HEX format before it can be flashed onto the TI Dev-board.

We used this method several times and had varying results, unfortunately, none of them produced output that

looked correct. This process is automatable, but we did not have time to fully explore it.
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