

Security Review of RSA Blind

Signatures with Public Metadata

Google
Version 1.1 – December 8, 2023

©2023 – NCC Group

Prepared by NCC Group Security Services, Inc. for Google LLC. Portions of this document and the

templates used in its production are the property of NCC Group and cannot be copied (in full or in part)

without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the

information contained herein. Use of NCC Group’s services does not guarantee the security of a system,

or that computer intrusions will not occur.

Prepared By

Parnian Alimi

Giacomo Pope

Thomas Pornin

Prepared For

Google LLC

1 Executive Summary

Synopsis

During the Autumn of 2023, Google engaged NCC Group to conduct a security assessment

of the white paper entitled “RSA Blind Signatures with Public Metadata”, along with the

corresponding IETF draft for “Partially Blind RSA Signatures”. The work is inspired by the

growing importance of anonymous tokens for the privacy of real-world applications. In

particular, the paper aims to modify the standard RSA Blind signature protocol such that

signatures can only be generated for a specific choice of public metadata.

The security assessment of the protocol was performed through an analysis of both the

whitepaper and online draft, with direct communication with the Google team. Additionally, a

SageMath implementation of the protocol was written following the specification outlined in

the IETF draft. The review was performed by three consultants over two weeks for a total of

fifteen person-days.

In early November 2023, a retest was performed by two consultants, for four person-days of

additional efforts.

Scope

NCC Group’s evaluation included:

“RSA Blind Signatures with Public Metadata”, a whitepaper available as an ePrint.1

“Partially Blind RSA Signatures”, an IETF draft specification available online.2

For the November 2023 retest, working versions of the two documents above were provided

to NCC Group, with the changes highlighted. These working versions are expected to be

published on their respective channels in the near future.

Limitations

NCC Group encountered no significant limitations throughout the project.

Key Findings

During the assessment, a total of two (2) security findings were disclosed, both of low

severity:

finding "Gap in Security Proof of Theorem 2",

finding "PSS Encoding Uses an Invalid Length Parameter".

Additionally, one (1) informational finding was filed.

Retest: all these findings were found to have been fixed.

NCC Group also captured several observations that did not warrant findings, but will be of

interest to the Google team, which are contained in the section Audit Notes.

Strategic Recommendations

Ensure that the reference implementation of the protocol closely follows the

specification. For example, the off-by-one error in the PSS padding was obscured by

BoringSSL handling the whole operation correctly in test code provided.

Consider including more detailed comments about potential side-channels and how to

mitigate attacks in the specification to aid future implementers.

•

•

•

•

•

•

1. https://eprint.iacr.org/archive/2023/1199/20230808:012307

2. https://datatracker.ietf.org/doc/html/draft-amjad-cfrg-partially-blind-rsa-01

2 / 19 – Executive Summary

https://eprint.iacr.org/archive/2023/1199/20230808:012307
https://datatracker.ietf.org/doc/html/draft-amjad-cfrg-partially-blind-rsa-01

2 Dashboard

Target Data Engagement Data

Name RSA Blind Signatures with

Public Metadata

Type Protocol Review

Dates 2023-09-18 to 2023-11-06

Consultants 3

Level of Effort 19

Targets

RSA Blind Signatures with Public Metadata Eprint Paper 2023/1199

draft-amjad-cfrg-partially-blind-rsa-01 IETF Draft for Partially Blind RSA Signatures

Finding Breakdown

Critical issues 0

High issues 0

Medium issues 0

Low issues 2

Informational issues 1

Total issues 3

Category Breakdown

Cryptography 3

Component Breakdown

draft specification 2

ePrint paper 1

 Critical High Medium Low Informational

3 / 19 – Dashboard

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Gap in Security Proof of Theorem 2 Fixed NB7 Low

PSS Encoding Uses an Invalid Length Parameter Fixed L69 Low

The Key Pair Derivation May Produce Public

Exponents Out of the Expected Range

Fixed 7QU Info

4 / 19 – Table of Findings

4 Finding Details

Gap in Security Proof of Theorem 2

Overall Risk Low

Impact Low

Exploitability Undetermined

Finding ID NCC-E008730-NB7

Component ePrint paper

Category Cryptography

Status Fixed

Impact

The gap in the proof of Theorem 2 may imply a misestimation of the tightness bounds and

thus of the actual cryptanalytic resistance of the RSA signature with public metadata

protocol. It has no impact on the security proof of the RSA blind signatures with public

metadata protocol.

Description

In the “RSA Blind Signatures with Public Metadata” paper, in section 4.1 (page 11), the Multi-

Exponent RSA Assumption is defined, and Theorem 2 links its security to the more common

RSA Assumption (with strong modulus). In the standard RSA assumption, the attacker is

provided with an RSA modulus N, public exponent e, and target value X modulo N (X is also

invertible modulo N), and is challenged with finding Y such that Y
e
 = X mod N. In the multi-

exponent RSA assumption, the attacker is provided with several public exponents e
i
, and

must find a value Y that matches the target X for one of the provided exponents e
i
. An

attacker who can break the standard RSA assumption can obviously break the multi-

exponent assumption by simply discarding all the provided exponents except one. Theorem

2 purports to quantify the security in the other direction, i.e. to prove that an attacker who

can break the multi-exponent RSA assumption can also break the standard RSA assumption,

with a specific bound on the difference of the success probabilities (the tightness of the

proof). The offered proof of Theorem 2 does so by describing a reduction mechanism, in

which an attacker on the standard RSA assumption is built as a wrapper around an attacker

on the multi-exponent RSA assumption:

The attacker A on the standard RSA assumption is presented with a modulus N, public

exponent e and target X. The exponent e is an odd integer which is obtained from a

relatively small range [3..e
max

] (Note: in the paper, the range starts at 1, not 3; but public

exponent 1 is trivially broken and should be excluded).

The attacker can invoke another attacker A’ which is assumed to break the multi-

exponent RSA assumption, with up to ℓ exponents (e
i
) selected in the range [3..e’

max
], for

some upper bound e’
max

 which is substantially larger than e
max

. The proof tightness

depends on the ratio between e’
max

 and e
max

.

Attacker A then generates ℓ random integers z
i
 in the [3..e’

max
/e

max
] range, and

computes values e
i
 = z

i
e. These values are all in the [3..e’

max
] range, so they are valid

exponents for the multi-exponent RSA assumption, which A’ can break. Thus, they are

submitted to A’ (along with the modulus N and the target X). A’ responds with Y, and an

exponent f (which is one of the e
i
), such that Y

f
 = X mod N. In that case, f = ze for some

integer z, and attacker A can compute Y
z
 mod N, which is then a valid response to the

initial challenge submitted to A.

This reduction is a valid proof only if it can be shown that the sub-challenge sent to A’ is

indistinguishable from a “real” challenge, i.e. such that the synthetic exponents e
i
 computed

above are indistinguishable from exponents chosen randomly from [3..e’
max

]. This indistingui

shability is necessary, because the success of A’ is quantified relatively to the probability

Low

•

•

•

5 / 19 – Finding Details

https://eprint.iacr.org/archive/2023/1199/20230808:012307

distribution of the e
i
 values (in the actual RSA blinding scheme, the exponents are chosen

from a hash output with uniform distribution among odd integers in the [3..e’
max

] range). The

paper examines the fact that in the reduction above, all e
i
 are at least as large as the initial

e, and there will be none in the [1..e-1] range; Since e is itself chosen in the [3..e
max

] range,

the improbability of such a choice of e
i
 can be bounded, depending on the ratio e’

max
/e

max
,

which is where that value intervenes in the final tightness.

The proof gap is that the actual selection range of the e
i
 is not the only way through which

the synthetic values may be distinguished from the distribution over [3..e’
max

] that the

attacker A’ expects. The paper simply asserts that the e
i
 are “random”, but this is not entirely

true. Indeed, all the provided e
i
 are multiples of the same integer e (which is at least 3); this

is a very improbable case for randomly chosen integers, especially when ℓ is large (e.g. if

e = 3, then the probability that ℓ randomly chosen odd integers in a given range are all

multiple of 3 is about 3
-ℓ

, i.e. negligible if ℓ > 80). Attacker A’ can certainly notice the fact

that all e
i
 have a common non-trivial factor, by computing their GCD. In more practical terms,

if A’ happens to be able to solve the multi-exponent RSA assumption but only if the set of

exponents includes several integers that are co-prime to each other, then such an A’ would

still break the multi-exponent RSA assumption with non-negligible probability, but would not

be usable in the reduction (presented in the proof) that tries to break the standard RSA

assumption.

It is unclear how the proof can be repaired to close that gap, and what would be the

consequences on the proof tightness. The two following points shall be noted:

Within the paper, Theorem 2 is used in the proof of Theorem 4 (section 5.3) to reduce the

unforgeability of RSA signatures with public metadata to the standard RSA assumption. A

contrario, the unforgeability of RSA blinded signatures with public metadata is reduced

(in section 6.2) to the chosen-target restricted-exponent RSA inversion assumption,

which is a different hypothesis, and that reduction does not use Theorem 2. Therefore,

the proof gap shown above has no impact on the blinded signatures.

None of this constitutes an actual vulnerability: this is not a method to actually break the

multi-exponent RSA assumption; this only highlights that it is not yet proven that the

multi-exponent RSA assumption is (mostly) as strong as the standard RSA assumption,

though this seems intuitively reasonable.

Location

ePrint paper, section 4.1 (page 11)

Retest Results

2023-11-02 – Fixed

The updated paper modifies the proof by embedding the target exponent e into a set of ℓ

exponents, the other ℓ-1 being chosen randomly and uniformly as odd integers in the same

range as e. The attacker A’ cannot distinguish which of the target exponents is e, and thus

breaks it with probability 1/ℓ. The extra ℓ factor is then applied to the tightness of the proof

of theorem 4.

Moreover, in annex C, a modified protocol is presented, which generates public exponents

with a distribution that matches the old proof for theorem 2, which is included in section C.2

(under the name “theorem 8”). This modified protocol is a bit more complex (and,

presumably, doubles the cost of public key operations) and is included in the paper only for

the completeness of discourse. In any case, the security analysis of the blinded RSA

signatures with public metadata does not depend on theorems 2 and 4.

•

•

6 / 19 – Finding Details

https://eprint.iacr.org/archive/2023/1199/20230808:012307

PSS Encoding Uses an Invalid Length

Parameter

Overall Risk Low

Impact Low

Exploitability Undetermined

Finding ID NCC-E008730-L69

Component draft specification

Category Cryptography

Status Fixed

Impact

The Blind() algorithm, as specified, will result in protocol failures half of the time. Such

failures are normally detected during Finalize() .

Description

The Blind() algorithm (described in section 4.2 of the draft specification) applies the PSS

padding by invoking the EMSA-PSS-ENCODE() function from PKCS#1 (RFC 8017, section 9.1.1).

The bit length of the modulus is provided as second parameter to EMSA-PSS-ENCODE() :

The EMSA-PSS-ENCODE() returns a mostly pseudo-random sequence of bits whose length is

exactly the one provided as parameter. In particular, the most significant bit of that

sequence (when interpreted as an integer) may be equal to 1 with probability about 1/2.

The verification of a signature is delegated to standard RSA, by calling the RSASSA-PSS-

VERIFY() function; in the blind signatures with public metadata protocol, this is normally

done by the requesting client as part of the Finalize() operation:

The RSASSA-PSS-VERIFY() function is defined in PKCS#1 (RFC 8017, section 8.1.2), and, in

particular, it invokes EMSA-PSS-VERIFY() (the dual function of EMSA-PSS-ENCODE()) with a

length parameter equal to one bit less than the modulus size:

The end result is that if the most significant bit of the output of EMSA-PSS-ENCODE() happens

to be equal to 1, then the verification in EMSA-PSS-VERIFY() will fail (specifically, in step 6 of

that algorithm). Indeed, among the four test vectors provided in the draft specification

(appendix B), this happens with test vectors 2 and 3; however, test vectors 1 and 4 do not

trigger the issue because EMSA-PSS-ENCODE() happens to return values whose most

significant bit is zero in these two test vectors.

Low

1. msg_prime = concat("msg", int_to_bytes(len(info), 4), info, msg)

2. encoded_msg = EMSA-PSS-ENCODE(msg_prime, bit_len(n))

with Hash, MGF, and salt_len as defined in the parameters

3. If EMSA-PSS-ENCODE raises an error, raise the error and stop

6. pk_derived = DerivePublicKey(pk, info)

7. result = RSASSA-PSS-VERIFY(pk_derived, msg_prime, sig) with

Hash, MGF, and salt_len as defined in the parameters

8. If result = "valid signature", output sig, else

raise "invalid signature" and stop

3. EMSA-PSS verification: Apply the EMSA-PSS verification

operation (Section 9.1.2) to the message M and the encoded

message EM to determine whether they are consistent:

Result = EMSA-PSS-VERIFY (M, EM, modBits - 1).

7 / 19 – Finding Details

https://datatracker.ietf.org/doc/html/draft-amjad-cfrg-partially-blind-rsa-01#section-4.2
https://www.rfc-editor.org/rfc/rfc8017#section-9.1.1
https://www.rfc-editor.org/rfc/rfc8017#section-8.1.2
https://www.rfc-editor.org/rfc/rfc8017#section-9.1.2
https://www.rfc-editor.org/rfc/rfc8017#section-9.1.2

Note: This issue appears to have been imported from the draft specification on blind RSA

signatures (without public metadata), which has the same issue in its own Blind()

algorithm. The test code linked from the ePrint paper avoids the issue because it does not

call EMSA-PSS-ENCODE() directly; it calls the BoringSSL function RSA_padding_add_PKCS1_PSS_mg

f1() , providing the public key itself and letting the function extract and use the correct

length from it.

Recommendation

Replace the value bit_len(n) with bit_len(n) - 1 . The same issue should be reported to

the authors of the draft specification on RSA blind signatures.

Location

draft specification, section 4.2

Retest Results

2023-11-02 – Fixed

This issue was fixed as suggested in commit 7ed9aba.

8 / 19 – Finding Details

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-rsa-blind-signatures-14
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-rsa-blind-signatures-14
https://github.com/google/anonymous-tokens/blob/79562f0175dba82f671046b5bdea0853323445b7/anonymous_tokens/cpp/crypto/rsa_blinder.cc#L147
https://datatracker.ietf.org/doc/html/draft-amjad-cfrg-partially-blind-rsa-01#section-4.2
https://github.com/chris-wood/draft-amjad-cfrg-partially-blind-rsa/commit/7ed9aba15ee064bb5074577b9d307148be6a5f76

The Key Pair Derivation May Produce Public

Exponents Out of the Expected Range

Overall Risk Informational

Impact Low

Exploitability None

Finding ID NCC-E008730-7QU

Component draft specification

Category Cryptography

Status Fixed

Impact

The public exponents derived from the public metadata may exceed the range analyzed in

the ePrint paper.

Description

In the ePrint paper, public exponents are derived from the public metadata, through a

pseudorandom function that outputs odd integers of length at most λ-3 bits, with λ being

the size (in bits) of the modulus prime factors. It is shown that since the modulus prime

factors are strong primes, then such a public exponent is necessarily valid, i.e. invertible

modulo φ(n). The paper, in fact, underestimates the bound by 1 bit, and public exponents

may range up to λ-2 bits in size while still guaranteeing invertibility.

In section 4.6 of the draft specification, this derivation process is described with the

DerivePublicKey() function:

modulus_len is the length of the modulus, expressed in bytes. The DerivePublicKey()

function generates lambda_len bytes, then clears the two most significant bits (and sets the

least significant), to get an odd integer in, presumably, the expected range. However, since

the lengths are here expressed in bytes and not in bits, rounding may lead to generating

public exponents larger than expected. For instance, if using an RSA public key of size 2500

bits, with two prime factors of length 1250 bits each, then modulus_len is equal to 313,

lambda_len is 157, and the generated e' will have a length up to 1254 bits, i.e. larger than

the expected 1248 bits.

This issue is unlikely to lead to adverse consequences, since most RSA public keys have a

size which is a multiple of a large power of 2 (e.g. sizes of 2048 or 3072 bits are common),

in which case the sizes in bytes are as precise as the sizes in bits, and the range specified in

the paper is respected. Moreover, even if the public exponent is larger than λ-2 bits, the

probability that the generated value turns out not to be invertible modulo φ(n) is negligible.

Recommendation

To better align the specified protocol with the mathematical analysis, compute the actual

value of λ from the length of the modulus, expressed in bits, to avoid rounding effects.

Info

3. lambda_len = modulus_len / 2

4. hkdf_len = lambda_len + 16

5. expanded_bytes = HKDF(IKM=hkdf_input, salt=hkdf_salt, info="PBRSA", L=hkdf_len)

6. expanded_bytes[0] &= 0x3F // Clear two-most top bits

7. expanded_bytes[lambda_len-1] |= 0x01 // Set bottom-most bit

8. e' = bytes_to_int(slice(expanded_bytes, lambda_len))

9 / 19 – Finding Details

https://eprint.iacr.org/archive/2023/1199/20230808:012307
https://datatracker.ietf.org/doc/html/draft-amjad-cfrg-partially-blind-rsa-01#name-public-key-derivation

Retest Results

2023-11-02 – Fixed

Commit 9741fdc adds the requirement to the DerivePublicKey() function that the modulus

length, in bytes, “MUST be a power of 2”. With this restriction, there are no rounding effects

and the computed public exponents match the range specified in the ePrint paper. This fixes

this issue.

10 / 19 – Finding Details

https://github.com/chris-wood/draft-amjad-cfrg-partially-blind-rsa/commit/9741fdcf06dd866b0856bf695d8fc8e968161e7d

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these recommendations

are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a

small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability, as

well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

11 / 19 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

12 / 19 – Finding Field Definitions

6 Audit Notes

This section contains some notes about the paper and the protocol. None of these remarks

constitutes a security issue.

Retest (November 2023): the paper and protocol specification authors have taken all the

following remarks into account in their working documents, following NCC Group’s

recommendations or with other changes yielding equivalent results.

ePrint Paper

This subsection relates to the “RSA Blind Signatures with Public Metadata” paper on ePrint,

in its version from August 10th, 2023.

Private Exponent Computation

In various places, starting on page 3, it is asserted that the RSA private exponent d is an

integer such that ed = 1 mod φ(N). This is not strictly necessary: the RSA primitive works as

long as d is inverse of e modulo p-1 and q-1, i.e. modulo the least common multiple of p-1

and q-1; the latter can be computed using Carmichael’s function and results in a smaller

integer which divides φ(N). Indeed, with p = 2p’+1 and q = 2q’+1, φ(N) = 4p’q’ but it suffices

that d is an inverse of e modulo 2p’q’. This changes nothing to the analysis in the paper.

More importantly, practical RSA implementations would not bother to compute d at all

(except possibly for compliance with the standard RSA private key storage format specified

in PKCS#1). Indeed, efficient RSA implementations do not perform the exponentiation

modulo N, but modulo p and modulo q, separately, reassembling the two results with the

Chinese remainder theorem. Since exponentiation complexity (for typical RSA-sized values)

is cubic in the size of the modulus, using the CRT yields a performance speed-up by factor

of close to 4. In that context, an implementation does not compute d itself, but d modulo p-1

and modulo q-1, separately.

The inversion of e modulo p-1 can furthermore be done efficiently (and securely, in

particular without leaking information through side-channels) with an optimized binary GCD

modulo p’ = (p-1)/2 (working modulo p’ is here necessary since the binary GCD requires an

odd modulus). Once the inverse modulo p’ is performed, it can be adjusted to become an

inverse modulo p by conditionally adding p’ to the inverse of e modulo p’ (specifically, the

final inverse modulo p-1 must be an odd integer, so the adjustment consists in adding p’ if

and only if the inverse of e modulo p’ happens to be an even integer). Since the binary GCD

cost is mostly quadratic in the size of the modulus, its cost should be mostly negligible with

regard to the exponentiation cost of the signing operation itself. The paper attributes (end of

section 7, page 25) the signature overhead in the signature with public metadata (compared

with the “plain RSA” signatures) to the cost of this inversion, but with such an optimized

inversion routine, that overhead should be minimal.

Public Exponent Range

In several places, starting in section 3.1 (page 8), the paper asserts that since p has length λ

bits, p’ has length at least λ-2 bits; from this assertion is obtained the rule that the exponent

should be chosen to have length at most λ-3 bits (and γ in Lemma 1 page 17 is chosen of

length at most λ-4 bits). This is a slight underestimate: if p has length λ bits, i.e. p > 2
λ-1

,

then p’ ≥ 2
λ-2

, i.e. p’ has length at least λ-1 bits, and the exponents can be safely chosen to

have length up to λ-2 bits.

At the other end of the range, in several places in section 4, RSA exponents are assumed to

be chosen uniformly among odd integers in the [1..e
max

] range for some bound e
max

. The

value 1 itself should be excluded, since inverting RSA with exponent 1 is trivial! The minimal

valid exponent for RSA is 3.

13 / 19 – Audit Notes

https://eprint.iacr.org/archive/2023/1199/20230808:012307
https://www.rfc-editor.org/rfc/rfc8017
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://eprint.iacr.org/2020/972

Key Pair Generation Cost

The generation of strong primes is much more expensive than the generation of a random

prime (typically by a factor 50 or so), which makes key pair generation for the proposed

scheme quite costlier than for plain RSA. This is somewhat elided in the paper, which

asserts that “the Setup algorithm is essentially identical to the standard RSA signatures

without public metadata protocols”, and presents no measurement on key pair generation in

the benchmarks (section 7 and figure 10). Of course, key pair generation is an infrequent

operation (server-side only, and typically done on a yearly basis), so the extra cost is

unlikely to be an issue in practical deployment.

Footnote about Euler’s Totient function

Footnote two correctly states that Euler’s totient function counts the number of integers

smaller and also coprime to an input N. However, in the context given, it may be of more use

to the reader to learn that Euler’s totient function effectively computes the `order of the

multiplicative group of units (Z/NZ)
*
. This is particularly of note, as in the next sentence the

group of units is introduced using mathematical notational without a concrete explanation

for those unfamiliar.

Typographic Errors

page 1 (abstract, first line): “to provider users” -> “to provide users”

page 1 (first paragraph): “in the context electronic cash” -> “in the context of electronic

cash”

page 2 (line 2): “an signer” -> “a signer” (twice)

page 2 (line 3): “pairs of message and valid signatures” -> “… signature”

page 3 (second paragraph): “check that the public metadata D” -> “check the public

metadata D”

page 4 (second paragraph): “before proving security” -> “before proving the security”

page 7 (end of section 2.1): “may be performed to anyone” -> “may be performed by

anyone”

page 7 (second paragraph of 2.2): “finally the challenge” -> “finally the challenger”

page 8: “the possible choices of public metadata is not too larger” -> “the set of possible

choices […] is not too large”

page 16: “that essentially uses” -> “that essentially use”

page 16 (end of 5.1): “these hash function” -> “… functions”

page 17: “we must come up a way” -> “… come up with a way”

page 24: “after augmented” -> “after augmenting”

page 24: “the scenarios studied in [25] is more favorable” -> “… are more favorable”

page 25: “unlinkabiity” -> “unlinkability”

IETF Draft

This subsection relates to the IETF Draft “Partially Blind RSA Signatures”, in its version draft

-amjad-cfrg-partially-blind-rsa-01 . An automatically generated up-to-date version of the

draft specification is also available; at the time of writing this report, that version differed

from the 01 draft only in inconsequential ways (q is renamed to p' in the SafePrime()

function, and the reference to the draft specification for blind RSA signatures (without

metadata) is updated from version 13 to 14). The notes below are ordered by the draft

specification sections.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

14 / 19 – Audit Notes

https://datatracker.ietf.org/doc/html/draft-amjad-cfrg-partially-blind-rsa-01
https://chris-wood.github.io/draft-amjad-cfrg-partially-blind-rsa/draft-amjad-cfrg-partially-blind-rsa.html

Section 1

At the end of section 1, it is asserted that the resulting signatures “can be verified with a

standard RSA-PSS library”. This assertion might require some restrictive qualifiers, because

not all standard RSA-PSS library can actually verify them. For instance, FIPS 186-4

mandates that the public key size shall be only 1024, 2084 or 3072 bits; a FIPS 186-4-

compliant library could legitimately reject signatures of any other size. Moreover, FIPS 186-4

is about to be officially withdrawn, and is superseded by FIPS 186-5; in FIPS 186-5, modulus

sizes of 2048 bits or more are supported (provided that they are even), but public exponents

are restricted to the 2
16

 to 2
256

 range. The public exponents obtained from

DerivePublicKeys() are larger than 256 bits, and thus not formally supported by FIPS 186-5.

From a more practical point of view, one major cryptographic library is SymCrypt; it is the

library that implements the cryptographic operations in the Windows operating system. This

library supports public RSA exponents only up to 64 bits.

Section 3

The text should probably state somewhere whether the random_prime() and is_prime()

functions may use probabilistic primality tests, or instead non-probabilistic proofs of

primality are required. FIPS 186-5 (appendix A.1.1), for instance, makes the distinction

between “provable primes” and “probable primes”, and mandates different ranges for these

cases.

Section 4.1

The section does not mandate any specific allowed range for the generated RSA keys. For

security, keys of at least 2048 bits are recommended; an explicit upper bound may also be

specified, since very large keys are expensive to support and can make signature

verification engines susceptible to denial-of-service attacks.

The RSA private key is specified as (n, p, q, phi, d) . This departs from PKCS#1 (RFC 8017,

section 3.2), which defines an RSA private key as being either (n, d) , or (p, q, dP, dQ,

qInv) . RFC 8017 also defines (appendix A.1.2) an ASN.1-based encoding format for private

keys that includes (n, e, d, p, q, dP, dQ, qInv) . The values d (full-size private exponent)

and phi (Euler’s totient for the modulus) are not actually needed for private key usage,

when p and q are provided, which is the recommended case since it allows for much faster

operations (by a factor of about 4). For the blind RSA signatures with public metadata, d

and phi are not needed either, since dP and dQ can be computed as the inverses of the

public exponent e (or e' in case of public key derivation) modulo p-1 and q-1 , respectively

(computing such inverses is also more efficient than doing it modulo phi , which is a twice

larger integer). Expressing private keys with (p, q, dP, dQ, qInv) would be better aligned

with PKCS#1 and would promote computing efficiency.

The KeyGen() function is specified as taking as parameter a target modulus size in bits (an

even integer), then generates the two prime factors with half that size:

This process can result (with probability about 1/2) in a modulus which is one bit shorter

than the requested size; for instance, a 2048-bit modulus key is expected, but a 2047-bit

key is obtained. This can induce interoperability issues, since some standards (in particular

FIPS 186-5) mandate use of even-sized moduli only. To avoid this issue, candidate primes

for bit length k should be generated in a range whose minimum bound is larger than 2
k-0.5

.

A simple way, used in some libraries (e.g. OpenSSL) is to forcibly set to one the two most

significant bits of the prime candidate.

1. p = SafePrime(bits / 2)

2. q = SafePrime(bits / 2)

15 / 19 – Audit Notes

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://github.com/microsoft/SymCrypt
https://github.com/microsoft/SymCrypt/blob/b4f07a34bdb970e8690dc13a98fb9fb77edc0f50/inc/symcrypt.h#L6705
https://www.rfc-editor.org/rfc/rfc8017#section-3.2
https://www.rfc-editor.org/rfc/rfc8017#section-3.2
https://www.rfc-editor.org/rfc/rfc8017#appendix-A.1.2

The SafePrime() process, as presented, is very expensive. A typical primality test is the

combination of two methods, first a fast one (such as trial divisions) to eliminate most bad

candidates, then an expensive one (Miller-Rabin) to ensure primality with a high enough

probability. To put rough numbers on it, over 1000 candidates, one will be prime; the fast

method will eliminate all but about 50 of the non-primes. Thus, generating a safe prime with

the specified method will require about 50×1000 = 50000 calls to the expensive primality

test (50 times for each “inner prime” p' , to be done 1000 times until the outer value 2*p'+1

is prime too. A much faster method would run the fast primality test on both the inner (p')

and outer (p) candidates before trying the expensive test on either value. This would

reduce the number of invocations of the expensive primality test to 50×50 = 2500, i.e. a

reduction of the cost by a factor of 20. These numbers are only approximations, and the

actual gain may vary, but the speed-up is certainly not negligible. In its current presentation,

the draft specification discourage use of an alternative key generation algorithm, since in

the introduction of section 4, the use of the specifically described algorithm is “REQUIRED”.

Section 4.2

The text says that if a “blinding error” occurs, then “implementations SHOULD retry the

function again”. For a properly formed public key, the probability of randomly hitting a value

which is not co-prime with the modulus is truly negligible – it is many orders of magnitude

lower than that of an hardware error. Some system malfunctions are transient and retrying

might cure them, but usually such decisions are better handled at a higher application level.

Apart from hardware-related failures, a blinding error would indicate an invalid public

modulus, possibly maliciously crafted or altered in transit, and in such cases, retrying the

function is arguably not the right behaviour, since it can only help with attacks (e.g.

automatically repeated computations are helpful for leveraging side-channel attacks).

Furthermore, there are two checks of co-primality with the modulus in the Blind() function,

in step 6 (for the encoded message) and in step 9 (for the blinding value). In the common

case of the encoded message being randomized (either through the message preparation,

with PrepareRandomize() , or through the PSS encoding, which uses a random salt), both

checks would happen with the same probability under the same conditions (invalid modulus

or hardware error), and should be handled similarly, i.e. the function should be retried in

both cases, or, preferably, not retried in either case. The calling application is better placed

to make decisions about the relevance (or even logical possibility) of “updating the public

key” or of trying again in case faulty hardware is suspected.

Algorithm Blind() is defined as taking as parameters both the public key, and the length of

the modulus (modulus_len). This seems redundant, and no check is performed to ensure

that both values match. In a practical implementation, the modulus length should not be

provided separately, but instead obtained from the modulus itself, which is part of the public

key. The same remark applies to algorithms BlindSign() (section 4.3), Finalize() (section

4.4), DerivePublicKey() (section 4.6) and DeriveKeyPair() (section 4.7).

The text hints at the requirement of uniform selection for the blinding value r , but provides

no guidance except the expression “rejection sampling”. A possible reference here is

appendix A.3.2 of FIPS 186-5, which describes rejection sampling for uniform selection of an

integer modulo another integer (in the context of ECDSA signatures, but the methodology

applies generically).

Section 4.3

In algorithm BlindSign() , the core RSA exponentiation is performed in step 3 (RSASP1()

call), then the signer verifies that the output is correct in steps 4 and 5 (RSAVP1() call).

Mathematically, the verification is entirely redundant: it cannot fail, if the server’s key is not

malformed. This is true even if the input m happens not to be co-prime to the modulus (the

16 / 19 – Audit Notes

RSA operation is a permutation of the entire set of integers modulo n, not just the invertible

integers). A failure here may happen only if the server’s own private key is altered, or on

hardware failure, so this again raises the question of performing this test, especially since it

is expensive (the derived public exponent is about half the size of the modulus, and

RSAVP1() uses only the public modulus, so that step would be about twice more expensive

than the RSASP1() call itself, which can leverage knowledge of the prime factors p and q).

Section 4.4

In the Finalize() algorithm, the blinded signature obtained from the server is verified (at

step 1) to have the right length in bytes (i.e. the same length as the modulus, but there is no

check that the corresponding decoded integer z is actually lower than the modulus n . This

lack of test does not seem to induce any exploitable vulnerability, but it may make the

implementation of step 3 (modular multiplication of z with inv) more complicated, since

that code must then be able to cope with some slightly out of range input values.

Section 4.5

The text discusses the difference between the signed message itself (msg) and the

prepared message (input_msg), which is its randomized version (when PrepareRandomized()

is used). This is somewhat confusing, because the previously presented algorithms (Blind()

and Finalize()) take as input a message called “ msg ”, which is not the signed message

itself, but the prepared message (i.e. input_msg). It also keeps somewhat implicit the

important fact that when the message is randomized, the 32-byte random prefix must be

retained, since it is needed for verification of the signature. The presentation would be

clearer if that random 32-byte prefix was made part of the signature (that is, if the signature

was in fact the concatenation of the 32-byte random prefix and the encoded big integer

modulo n).

Section 4.6

The HKDF function is used, but it is not defined anywhere in the document. A reference to

RFC 5869 is needed here.

In DerivePublicKey() (step 4), the HKDF output length (hkdf_len) is set to lambda_len + 16 ,

even though only the first lambda_len bytes of the HKDF output are used. The production of

16 extra bytes does not seem to have any usefulness.

Section 5.2

The specification states that “The RECOMMENDED method for generating the server signing

key pair is as specified in FIPS 186-4”. This is incorrect: the process specified in FIPS 186-4

does not produce the strong primes that are needed for blinded RSA signatures with public

metadata. Moreover, this statement is in direct contradiction with the introduction of section

4, that asserts that the use of the key pair generation specified in section 4.1 is “REQUIRED”.

Section 7.1 reiterates that it is “essential” and “integral” that the standard RSA key pair

generation method is not used. The sentence that starts section 5.2 is apparently copied

from section 6.2 of the blinded RSA signatures draft specification (without public metadata),

and was probably meant to be deleted.

Section 6

The name “RSAPBSSA-SHA384-PSS-Deterministic” is derived from the corresponding non-

metadata name “RSABSSA-SHA384-PSS-Deterministic”; both are somewhat confusing

because they feature the term “deterministic” but still produce randomized signatures.

Section 7

The text refers to “section 8 of [RSABSSA]” for the security analysis; it’s actually section 7 of

that draft in its current version (14).

17 / 19 – Audit Notes

https://www.rfc-editor.org/rfc/rfc5869

The referenced specification asserts that the *-Deterministic variants must not be used if

the public key cannot be ascertained through other means to be non-malicious. This is not

fully true, in that a sufficiently large PSS salt (at least 16 bytes) provides enough

randomization of the encoded message that it maintains unlinkability even if the public

modulus is maliciously crafted. Only the variants with a PSS salt small enough to allow

adversarial enumeration of all possible salt values, and a non-randomized input, will be weak

against such malicious signers. This might be worth a mention, because RSAPBSSA-

SHA384-PSS-Deterministic is probably the most convenient variant for applications, since it

does not require storage and transmission of the random 32-byte message prefix along with

the resulting signature.

In sub-section 7.4, a denial-of-service situation is evoked, described as follows:

In particular, an attacker can pick public metadata such that the output of

DerivePublicKey is very large, leading to more computational cost when verifying

signatures.

The output of DerivePublicKey is mostly the public exponent, which has a bounded size.

Some public exponents are mathematically a bit shorter than others, though this will hardly

have any real impact on performance; on average, about half of the public exponents will

have the maximum size (which is about half the size of the modulus) and there is no

possibility for an attacker to force the verification to use an exponent larger than that. This

denial-of-service attack description seems to be a remnant of an older draft version, in

which public exponents might have been generated differently and allowed to grow much

further.

Section 7.1 of the blind RSA signatures specification contains a brief passage about side-

channel attacks. The server is more naturally threatened by such attacks since it is

amenable to repeated requests, allowing attackers to leverage small timing biases through

statistical analysis. In the signatures without metadata, the server-side situation is not much

different from normal RSA signatures; however, when public metadata are used, the server

performs additional operations that involve the private key, namely the derivation of the

metadata-specific key pair. The inversion of the derived public exponent modulo φ(N) (or

modulo p-1 and modulo q-1) is a potential target for side-channel attacks; the classic

extended Euclidean GCD algorithm is not constant-time. Inversion modulo p-1 can be

performed modulo p’ first, then lifted to p-1 = 2p’ with a single conditional addition; since p’

is odd, a binary GCD can be used, for which optimized and constant-time implementations

exist.

Section 9

Reference [DSS] points to FIPS 186-4, which, as pointed out previously, is officially

superseded by FIPS 186-5; FIPS 186-4 will then move to “withdrawn” status in the near

future (on February 3rd, 2024), making it unsuitable for reference purposes. The reference

should be updated to point to FIPS 186-5.

Reference [RSABSSA] is listed in the “informative references”, but it is used explicitly in some

important parts of the protocol, e.g. the message preparation (PrepareRandomized() and

PrepareIdentity()). It should be moved to the “normative references” section.

Appendix B

The appendix states that the test vectors use RSAPBSSA-SHA384-PSS-Randomized; this is

not true. The test vectors use RSAPBSSA-SHA384-PSS-Deterministic (no random 32-byte

prefix is provided, nor used).

18 / 19 – Audit Notes

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-rsa-blind-signatures-14#section-7.1
https://eprint.iacr.org/2020/972

The presentation of the text vectors is somewhat underspecified:

The numerical values are said to be “encoded as an hexadecimal string”, which is

ambiguous. The text should precise that unsigned big-endian convention is used.

The message blinding value is called blind in the test vectors; in the Blind() algorithm

specification (section 4.2), it was called r .

A salt value is provided, but there is no such parameter or variable in the algorithms

described in the specification. It is really the value generated randomly within the EMSA-

PSS-ENCODE() function in RFC 8017, section 9.1.1 (step 4).

The blinded_sig value in the test vectors was called blind_sig in the BlindSign() and

Finalize() algorithms (section 4.3 and 4.4).

All the test vectors could be verified with a custom implementation (in Sage), made by

following RFC 8017 (for PSS encoding/decoding) and the draft specification, with two

modifications: the value bit_len(n) - 1 was used as second parameter to EMSA-PSS-

ENCODE() (see finding "PSS Encoding Uses an Invalid Length Parameter"), and the provided

msg values were used directly as input to Blind() and Finalize() , assuming that the

variant was really RSAPBSSA-SHA384-PSS-Deterministic. If RSAPBSSA-SHA384-PSS-

Randomized test vectors are added, then they must include the random message prefix in

some way.

Typographic Errors

(Section 4.1) ‘hte’ -> ‘the’

(Section 4.2) ‘an “blinding error” error’ -> ‘a “blinding error” error’ (in the text and in

algorithm Blind , step 9)

(Section 5.1) ‘implementors’ -> ‘implementers’

(Section 6) ‘instantation’ -> ‘instantiation’

(Section 7.1) ‘the resulting outputs […] does cause errors’ -> ‘… do cause errors’

(Section 7.2) ‘the security analysis […] remain true’ -> ‘… remains true’

(Section 7.2) ‘The DerivePublicKey’ -> ‘The DerivePublicKey function’

(Section 7.4) ‘suspectible’ -> ‘susceptible’

(Appendix B) ‘messsage’ -> ‘message’

•

•

•

•

•

•

•

•

•

•

•

•

•

19 / 19 – Audit Notes

https://www.rfc-editor.org/rfc/rfc8017#section-9.1.1

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Gap in Security Proof of Theorem 2
	PSS Encoding Uses an Invalid Length Parameter
	The Key Pair Derivation May Produce Public Exponents Out of the Expected Range

	Finding Field Definitions
	Risk Scale
	Category

	Audit Notes
	ePrint Paper
	IETF Draft

