
NU3 Specification and Blossom
Implementation Audit

Zcash
February 6, 2020 – Version 1.1

Prepared for
Taylor Hornby
Benjamin Winston

Prepared by
Gérald Doussot
Thomas Pornin

©2020 – NCC Group

Prepared by NCC Group Security Services, Inc. for Zcash. Portions of this document and the templates
used in its production are the property of NCC Group and cannot be copied (in full or in part) without
NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group’s services does not guarantee the security of a
system, or that computer intrusions will not occur.

Executive Summary
Synopsis
In October 2019, the Electric Coin Company engaged
NCC Group to conduct a review of two Zcash im-
provement proposals (ZIP 213 and ZIP 221) and of
the implementation of ZIP 208 within the Zcash node
implementation. ZIP 213 proposes a change to
consensus rules to allow coinbase transactions to target
shielded addresses. ZIP 221 describes a novel type
of hash trees meant to support efficient validation of
transactions by lightweight clients. The implementation
of ZIP 208 applies a change of target pacing for block
issuance, so that overall network latency is halved. Two
consultants performed the engagement for a total of 15
person-days.

Scope
NCC Group’s evaluation included:

• The ZIP 213 draft, as of commit 90ad18f.1
• The ZIP 221 draft, as of commit b6be377.2
• The implementation of ZIP 208, as made in pull

request 4025.3 PR 4025 was merged into the main
Zcash tree on August 9, 2019; the scope covered that
set of commits, last of which was b99003c on August
7.

Limitations
ZIP 213 and 221, being draft specifications, do not have
corresponding implementations. Therefore, analysis
of potential security issues was based on how such
implementations could plausibly be built. In particular,
the assessment of the severity of the two issues found
in the pseudocode of ZIP 221 was based on the
estimated likelihood that they would result in flaws in the
implementation that may fail to be detected by basic unit
testing. Any specific future implementation may have
different characteristics.

Key Findings
In ZIP 213, no issues were found. The description
of the change appears to be fully correct and in
line with its purported goals and rationale. Notably,
the analysis found in the draft regarding coinbase
transaction maturity clearly explains how anchors in
shielded transactions act as an enforced dependency
system on whole sequences of transactions, contrary
to transparent transactions that are more free-standing
and can be inserted in blocks in any order as long as

no balance goes negative. This dependency mechanism
justifies the removal of the coinbase maturity rule for
shielded outputs.

In ZIP 221, two issues were found in the pseudocode
for the operations on the hash tree; they are described
in finding NCC-1908_Zcash-001 on page 5 and find-
ing NCC-1908_Zcash-002 on page 6. These issues lead
to wrong computations that might go unnoticed during
development, since all implementations following that
pseudocode would behave identically to each other,
but would still exclude some block headers from the
hash tree. A number of smaller issues and remarks
were assembled in Appendix B on page 12; most of
these are concerning consistency of the description or
typography, and NCC Group deemed them unlikely to
lead to any vulnerability in future implementations.

In PR 4025, no serious issues were uncovered. A very
minor imperfection in the validation of a command-
line parameter was detected, and is described in find-
ing NCC-1908_Zcash-003 on page 8; it has no real
consequence on security.

Strategic Recommendations
Since ZIP 221 pseudocode follows a Python syntax,
NCC Group recommends converting that pseudocode
into runnable Python code, so that extensive unit tests
can be made, in particular with respect to edge cases
(adding one or several nodes to an empty tree, removing
all nodes from a tree, removing an exact full subtree, and
so on).

1https://github.com/str4d/zips/blob/90ad18ff228e86830da965a5180cfc6e2acac520/zip-0213.rst
2https://github.com/therealyingtong/zips/blob/b6be3770c9cbd340b57d6dd6786d43ddf0610189/zip-0221.rst
3https://github.com/zcash/zcash/pull/4025

2 | Zcash NU3 Specification and Blossom Implementation Audit

https://github.com/str4d/zips/blob/90ad18ff228e86830da965a5180cfc6e2acac520/zip-0213.rst
https://github.com/therealyingtong/zips/blob/b6be3770c9cbd340b57d6dd6786d43ddf0610189/zip-0221.rst
https://github.com/zcash/zcash/pull/4025

Dashboard
Target Metadata Engagement Data
Name Zcash Protocol and Implementation Type Specification and Implementation

Review
Method Code-assisted
Dates 2019-10-21 to 2019-10-31
Consultants 2
Level of Effort 15 person-days

Finding Breakdown
Critical issues 0

High issues 2
Medium issues 0
Low issues 0

Informational issues 1
Total issues 3

Category Breakdown
Cryptography 2

Data Validation 1

Component Breakdown
ZIP 208 implementation 1

ZIP 221 2

Key
Critical High Medium Low Informational

3 | Zcash NU3 Specification and Blossom Implementation Audit

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 10.

Title ID Risk
Missing Last Processed Peak in append() 001 High
Wrong List of Peaks Returned by get_peaks() 002 High
Unchecked Possible Truncation 003 Informational

4 | Zcash NU3 Specification and Blossom Implementation Audit

Finding Details
Finding Missing Last Processed Peak in append()

Risk High Impact: High, Exploitability: Undetermined

Identifier NCC-1908_Zcash-001

Category Cryptography

Component ZIP 221

Location Function append() in the ZIP 221 pseudocode.

Impact The specification may lead to an incorrect implementation of ZIP 221 where the computed
MMR tree is incomplete, i.e. missing block header information. Simplified Payment Veri-
fication (SPV) clients use this information to validate the blockchain and the inclusion of a
transaction in a block. If this information is incomplete, clients cannot determine accurately
what amount of currency they own and can spend.

Description The ZIP 221 specification documents modifications to the Zcash block header format to in-
clude Merkle Mountain Range (MMR) commitments. The specification includes pseudocode
for the algorithm of several routines to manipulate the MMR tree data structure. Specifically,
the append() function permits to merge a leaf node to an existing MMR tree.

The append() function uses the current variable to operate iteratively in a loop on the peak
being processed. Its content will be used in the next iteration of the loop. When the loop
exits, the content of current is not added to the list of peaks to be bagged in bag_peaks(),
therefore the resulting MMR tree will miss this final peak.

The issue is illustrated in the code snippet below:

def append(root: ZcashMMRNode, leaf: ZcashMMRNode) -> ZcashMMRNode:

'''Append a leaf to an existing tree, return the new tree root'''

recursively find a list of peaks in the current tree

peaks: List[ZcashMMRNode] = get_peaks(root)

merged: List[ZcashMMRNode] = []

Merge peaks from right to left.

This will produce a list of peaks in reverse order

current = leaf
for peak in peaks[::-1]:

current_leaves = current.latest_height - current.earliest_height + 1

peak_leaves = peak.latest_height - peak.earliest_height + 1

if current_leaves == peak_leaves:

current = make_parent(peak, current)

else:
merged.append(current)

current = peak

finally, bag the merged peaks

return bag_peaks(merged[::-1])

Recommendation Ensure that all peaks are bagged. This can be achieved by adding the following statement
before the last statement of the append() function:

merged.append(current)

5 | Zcash NU3 Specification and Blossom Implementation Audit

Finding Wrong List of Peaks Returned by get_peaks()

Risk High Impact: High, Exploitability: Undetermined

Identifier NCC-1908_Zcash-002

Category Cryptography

Component ZIP 221

Location Function get_peaks() in ZIP 221 pseudocode.

Impact The get_peaks() function may return the wrong list of peaks, leading to a wrong MMR
computation that could omit some block headers. If this information is incomplete, clients
cannot determine accurately what amount of currency they own and can spend.

Description The get_peaks() function takes as input the root for the MMR, and extracts the peaks. It is
the reverse operation of the bag_peaks() function. It is expressed recursively:

def get_peaks(node: ZcashMMRNode) -> List[ZcashMMRNode]:

peaks: List[ZcashMMRNode] = []

left_child = node.left_child
right_child = node.right_child

find the number of leaves in the subtree
left_leaves = left_child.latest_height - left_child.earliest_height + 1

right_leaves = right_child.latest_height - right_child.earliest_height + 1

if (left_leaves & (left_leaves - 1)) == 0:

peaks.append(left_child)

else:
peaks.extend(get_peaks(left_child))

if (right_leaves & (right_leaves - 1)) == 0:

peaks.append(right_child)

else:
peaks.extend(get_peaks(right_child))

return peaks

The principle is the following: a subtree with a number of leaves equal to 2t for some integer
t is complete, and thus should be a peak. The get_peaks() function starts from the root and
explores down the tree to locate such subtrees.

However, there is one case that the function above does not cover properly: when the full
tree is itself a single peak. If get_peaks() is invoked on the root of a tree with 2t leaves, it
will return two peaks, for the left and right children, respectively. However, it should return a
single peak in that case. If get_peaks() returns two peaks instead of one, then append()
will lead to a corrupted structure and compute the wrong root hash value, and possibly drop
nodes from the tree.

An additional symptom of this issue is the fact that get_peaks() cannot work on a leaf node.
If the MMR contains a single leaf, which is then the root, then get_peaks() starts by following
null pointers to its inexistent left and right children, leading to adverse outcomes (segmen-
tation fault, null pointer exception,… depending on the implementation language). The core

6 | Zcash NU3 Specification and Blossom Implementation Audit

conceptual issue is that get_peaks() assumes that it is called on an internal non-peak node,
and expects its caller not to invoke it on a full tree or a single leaf node.

Recommendation The following get_peaks() pseudocode would avoid the issue and work on all possible MMR
roots, including single leaves:

def get_peaks(node: ZcashMMRNode) -> List[ZcashMMRNode]:

peaks: List[ZcashMMRNode] = []

Get number of leaves.
leaves = latest_height - earliest_height + 1

Check if the number of leaves is a power of two.

if (leaves & (leaves - 1)) == 0:

Tree is full, hence a single peak. This also covers the

case of a single isolated leaf.

peaks.append(node)

else:
If the number of leaves is not a power of two, then this

node must be internal, and cannot be a peak.

peaks.extend(get_peaks(left_child))

peaks.extend(get_peaks(right_child))

return peaks

7 | Zcash NU3 Specification and Blossom Implementation Audit

Finding Unchecked Possible Truncation

Risk Informational Impact: Low, Exploitability: None

Identifier NCC-1908_Zcash-003

Category Data Validation

Component ZIP 208 implementation

Location src/init.cpp, lines 1068-1075

Impact Despite explicit checks to the contrary, it is feasible to use the -txexpirydelta command-line
parameter to set the lifetime of newly created transactions to a value lower than the expected
minimum of four blocks.

Description The -txexpirydelta command-line parameter is parsed into an integer and stored in a
global variable through the following code:

if (mapArgs.count("-txexpirydelta")) {

int64_t expiryDelta = atoi64(mapArgs["-txexpirydelta"]);

uint32_t minExpiryDelta = TX_EXPIRING_SOON_THRESHOLD + 1;

if (expiryDelta < minExpiryDelta) {

return InitError(strprintf(_("Invalid value for -txexpirydelta='%u' (
must be least %u)"), expiryDelta, minExpiryDelta));

}

expiryDeltaArg = expiryDelta;

}

The atoi64() function parses the argument string as a signed 64-bit integer, and therefore
can yield any value in the−263 to 263−1 range. The test is against the value minExpiryDelta,
which is 4 (TX_EXPIRING_SOON_THRESHOLD is defined in main.hwith value 3), and aborts node
startup if the value is too small.

However, the parsed value is then written into expiryDeltaArg, a global variable that has
type unsigned int (wrapped into a Boost optional construction), as declared in main.h:

extern boost::optional<unsigned int> expiryDeltaArg;

On typical systems, unsigned int has size 32 bits. Therefore, the int64_t value is implicitly
truncated (reduced modulo 232, as per the C and C++ rules). In particular, if the input ar-
gument string is “4294967298”, then expiryDelta will successfully pass the test above (the
value is 232 + 2, which is way above 4), but the final value written in expiryDeltaArg will be
2, i.e. below the minimum.

Since this code is merely validation of a command-line launch parameter provided by the node
owner, this finding does not have any practical security impact.

Recommendation The test may be modified into the following:

if (mapArgs.count("-txexpirydelta")) {

int64_t expiryDelta = atoi64(mapArgs["-txexpirydelta"]);

uint32_t minExpiryDelta = TX_EXPIRING_SOON_THRESHOLD + 1;

uint32_t maxExpiryDelta = TX_EXPIRY_HEIGHT_THRESHOLD - 1;

8 | Zcash NU3 Specification and Blossom Implementation Audit

https://github.com/zcash/zcash/blob/b99003c1ecc1917989e8bcaf53ee19cfaf79e73e/src/init.cpp#L1068

if (expiryDelta < minExpiryDelta || expiryDelta > maxExpiryDelta) {

return InitError(strprintf(_("Invalid value for -txexpirydelta='%u' (
must be least %u, at most %u)"), expiryDelta, minExpiryDelta, maxExpiryDelta)
);

}

expiryDeltaArg = expiryDelta;

}

The TX_EXPIRY_HEIGHT_THRESHOLD is defined in the consensus parameters (src/consensus/
consensus.h) with the value 500,000,000; since transactions with an expiry height beyond
that value are unconditionally rejected by nodes, the expiryDelta parameter cannot logically
have any value larger than that.

9 | Zcash NU3 Specification and Blossom Implementation Audit

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

10 | Zcash NU3 Specification and Blossom Implementation Audit

Category
NCC Group categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

11 | Zcash NU3 Specification and Blossom Implementation Audit

Appendix B: ZIP 221 Audit Notes
This section includes NCC Group’s remarks about ZIP 221.4 These remarks include typographical errors, and other
comments on the text that did not meet NCC Group’s standard of a security finding but are still worth mentioning.
Each remark corresponds to a passage in the text; we list them below in appearance order.

In section “Terminology”:

• “A Merkle mountain range (MMR) is binary hash tree” This should be: “… is a binary hash tree”.

In section “Background”:

• The background description explains tree construction in terms of order of insertion of nodes, assuming that
inserted nodes can be leaves or internal nodes. However, this does not match usage of MMR for block headers, as
described later on in ZIP 221: the block headers can only yield leaf nodes, and internal nodes are built afterwards.
As such, the “insertion order” described in the background section tends to lead to confusion later on.

• The section that explains the computed position and height of a node based on its “insertion order” is valid only
for MMR nodes before “bagging.” The bagging process adds extra nodes to the tree that do not follow these
rules.

• It is written that one can jump from a node to its right sibling by adding 2h+1 − 1 to its position, and to its left
sibling by subtracting 2h. This seems dubious: the jump from left to right sibling, and the jump back from right
to left sibling, should, by definition, be of the exact same amount.

• The use of “height” for the position of tree nodes is unfortunate, as the remainder of the document uses “height”
in the sense of order of blocks in the blockchain. It would be clearer to speak of the “level” or “altitude” of nodes
and peaks.

• “The MMR tree allow for …”. This should be: “The MMR trees allow for …”

• “ZCash” should be spelled “Zcash”. The miscapitalization occurs six times throughout ZIP 221; there is also a
“zCash” in the list of references.

In section “Tree Node specification”:

• In the list items 3, 4, 5 and 9, line breaks are missing, leading to a subclause appearing on the continuation of
the previous line.

• List item 8 gives a formula that uses the toTarget() function, but that function is spelled ToTarget() in the
Zcash specification5 (section 7.6.4).

• In list item 8, no provision is made for integer overflows. It is extremely improbable that an overflow occurs:
the computed work factors are, on average, equal to the computational efforts involved in the creation of the
corresponding blocks, and an aggregate effort of 2256 or more is infeasible in practice. However, this deserves
an explanatory note, e.g. to assert that computations modulo 2256 are fine here.

In section “Tree nodes and hashing (pseudocode)”:

• The field names in the pseudocode do not match those given in the previous section. For instance, hashSubtre
eCommitment becomes subtree_commitment. Though the specifications and pseudocode names are not hard
to match to each other, it would be clearer and simpler if the exact same names were used.

• In the function make_parent():

– “end_target=left_child.end_target”; this should use right_child.end_target.
4https://github.com/therealyingtong/zips/blob/master/zip-0221.rst
5https://github.com/zcash/zips/raw/master/protocol/protocol.pdf

12 | Zcash NU3 Specification and Blossom Implementation Audit

https://github.com/therealyingtong/zips/blob/master/zip-0221.rst
https://github.com/zcash/zips/raw/master/protocol/protocol.pdf

– “count_shielded_txs=left_child.count_shield + right_child.count_shield)”; the left and right
children do not have fields called count_shield, but count_shielded_txs (although, as explained previ-
ously, these should be named nShieldedTxCount, as in the previous section).

In section “Incremental push and pop (pseudocode)”:

• The append() function calls bag_peaks(), but the latter is defined only in the next pseudocode blocks. The
bag_peaks() function should be moved to this block.

• The text about block reorganizations explains that such an occurrence leads to removing some of the rightmost
leaves from the MMR, an operation that can be done with cost O(log k), where k is the number of leaves in the
right subtree of the MMR root. However, the pseudocode only shows how to remove a single leaf, with a function
that fully un-bags and re-bags the tree, thus far from demonstrating this O(log k) performance.

• The delete() function uses an undefined variable called tmp_root; this appears to be a misnamed reference
to the local variable subtree_root.

In section “Header modifications specification”:

• In the second list item, hashSaplingFinalRoot should be hashFinalSaplingRoot.

In section “Rationale”:

• The third paragraph ends abruptly with “we change the semantics of hashSubtreeCommitment in leaf nodes to
commit.” The end of the sentence appears to be missing.

• In “Non-FlyClient Commitments,” item hashLatestSaplingRoot: “will descrie”. This should be: “will describe”.

In section “References”:

• The fourth reference, to “ZCash reference light client protocol”, is a broken link (or a link to a private document).

13 | Zcash NU3 Specification and Blossom Implementation Audit

	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions
	ZIP 221 Audit Notes

