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Abstract
Side channels have long been recognized as a threat to the security of cryptographic

applications. Implementations can unintentionally leak secret information through

many channels, such as microarchitectural state changes in processors, changes in

power consumption, or electromagnetic radiation. As a result of these threats, many

implementations have been hardened to defend against these attacks. Despite these

mitigations, this work presents a novel side-channel attack against ECDSA and DSA.

The attack targets a common implementation pattern that is found in many crypto-

graphic libraries. In fact, about half of the libraries that were tested exhibited the vul-

nerable pattern. We implement a full proof of concept against OpenSSL and demon-

strate that it is possible to extract a 256-bit ECDSA private key using a simple cache

attack after observing only a few thousand signatures. As far as we are aware, the

target of this attack is a previously unexplored part of (EC)DSA signature generation,

which explains whymitigations are lacking and the issue is so widespread. Finally, we

give estimates for the minimum number of signatures needed to perform the attack

and suggest countermeasures to protect against this attack.
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Introduction

Cryptographic systems are incredibly important for the security ofmodern technology. They are used to pro-

tect traffic on the internet[DR08][YL06] aswell as banking information andgovernment documents[NSS+17].

As cryptographic keys are used to protect higher value targets, it becomes even more critical that the keys

are protected from compromise. Whenever a private key or a secret key is used, the owner risks having

information about that key leak to their adversary, so cryptographic systems must defend against this threat.

There are countless ways that information can leak from a privileged context to an unprivileged one, and

these are known as side channels. Side channels can arise from the timing differences caused by memory

caches[OST06][Per05] or differences in branch prediction after running sensitive code[AKS07][EPAG16].

The recent Spectre[KGG+18] and Meltdown[LSG+18] vulnerabilities could be used to leak sensitive infor-

mation past privilege boundaries and do so by abusing speculative execution and out-of-order execution

respectively. Side-channel attacks are not just limited to microarchitectural state either: electronic devices

can leak information via electrical signals[GPP+16a] or even the acoustic emanations of vibrating electrical

components[GST14].

Cryptographic algorithms are often implemented with these attacks in mind, but the threat of a side channel

inadvertently exposing cryptographic information is constant.

Contributions

In this work, we identify a new side-channel attack against ECDSA, DSA, and other ElGamal style signatures.

This attack uses a previously known analysis method to recover the private key, but it targets a previously

unexplored source of leakage: a single modular reduction in the signature calculation. We also explore two

modes of the attack. The first is a chosen-plaintext attack, where the attacker is allowed to select themessage

being signed, and the second is a known-plaintext attack where the attacker has knowledge of the message

being signed. We give success probabilities for different parameters of both modes of attack. We also show

that this issue is widespread and that the attack may be used to extract keys from several common libraries.

We demonstrate the feasibility of this attack by using a cache attack to recover a private key from a recent

version of OpenSSL, and finally we give recommendations for how this attack can be prevented.

Attack Scenario

This work makes a few assumptions about the environment being attacked. In a vulnerable environment,

the victim uses a private key to create several signatures. The attacker observes the resulting signatures

and knows the messages being signed. Additionally, the attacker needs to be able to use a side channel to

determine the outcome of a particular modular reduction in the signature process. This sort of setup reflects

realistic attack scenarios.

Consider the case of a cloud hosted server using TLS and an ECDSA private key[DR08]. A passive attacker

can observe a client's TLS handshake with the server, receiving an ECDSA signature in the ServerKeyEx-

change message. This signature includes randomness from the client and the server, as well as the server

Diffie-Hellman parameters. All of these are transmitted in the clear, so the passive attacker has access to all

the necessary values except the side-channel information, which may be obtained in multiple ways. If the

attacker can also get assigned to a co-located virtual machine in the cloud environment[RTSS09][İGI+16],

they can recover side-channel information about the victim by performing a Prime+Probe[OST06] attack.

The attacker hopes to recover the server private key and then impersonate the server.

Similarly, consider the case of an attacker with a low-privileged account on an SSH server. Like TLS, the SSH

Transport Layer Protocol[YL06] may use ECDSA to authenticate traffic, but unlike TLS, the signature is over

a value based on a Diffie-Hellman shared secret, so a passive adversary would be unable to compute the

message being signed and mount the attack. The low-privileged attacker, however, can actively initiate
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a number of SSH connections, derive the shared secret, and compute the message that was signed by

the server. The attacker can simultaneously use the low-privileged account to mount a side-channel attack

against the SSH daemon process and leak the necessary information. The attacker then recovers the ECDSA

key and is free to impersonate the host and capture the credentials of a more privileged user.

Note that in both of these scenarios, the message being signed was not in the attacker's control. During

signing, this message is transformed into an integer using a cryptographic hash, so this integer is uniformly

distributed over the possible range. This corresponds to the known-plaintext attack. However, in some

cases the attacker has more influence over the signed message. Consider a smart card or trusted execution

environment that signs a message of the user's choosing; here, the attacker can select a message that, when

hashed, results in an integer that will leak the desired information through the side channel. Since only a few

uppermost bits of the integer need to have a certain value for this attack, the attacker can easily brute force

an input message that will hash to an appropriate value.

The signaturesmust also be randomized in this attack scenario. This is the case for non-deterministic ECDSA

and DSA, but it turns out that the attack is also likely to succeed in the deterministic case[Por13]. Non-

deterministic ECDSA and DSA require a randomly generated value, but in deterministic ECDSA and DSA

this value is derived from the signed message. As long as the signed messages are distinct, the derived

value should be indistinguishable from random choice. This means that in the chosen-plaintext attack, the

attacker may simply brute force a new input message so the hashed message still has the desired form,

but the derived value is completely different. The attacker could also reuse the same message so the same

value is derived, and then collect multiple measurements to reduce the effect of side-channel noise. In the

known-plaintext attack, it is likely the message varies anyway since there is not much utility in a system that

computes the exact same signature every single time.

These requirements apply to many systems. The signatures can be gathered passively or actively, and the

attacker may take advantage of a wide variety of side channels to leak the desired information. Both the

chosen-plaintext and known-plaintext attacks share a similar analysis, and only a few thousand signatures

are needed to recover the private key. Though it is impossible to enumerate all vulnerable scenarios, it is

clear that the risk extends beyond TLS and SSH servers, and many systems using ECDSA or DSA keys are

potentially susceptible to this key-extraction attack.

Related Work

This work is similar in nature to many recent publications. There is a long history of side channels being

used to compromise the integrity of a cryptographic library. RSA key generation in OpenSSL was recently

targeted with a Flush+Reload attack in [AGM+18], and a Prime+Probe attack was used in [DDME+18] to

target the EPID protocol in Intel's SGX quoting enclave. Flush+Reload was also used in [GB16] to target

OpenSSL's modular inversion routine for ECDSA.

These recent attacks target varied sources of leakage, but historically, attacks frequently targeted modular

exponentiationor scalarmultiplication routines. Such issues affectedbothRSA[BBG+17] andEd25519[GVY17]

in Libgcrypt, and the latter attack also demonstrated that non-constant modular reduction can be used as

a source of leakage. OpenSSL has been impacted by timing and cache side-channel attacks several times,

with vulnerabilities found in both modular exponentiation[YGH17] and scalar multiplication routines (See

[FWC16], [vdPSY15], [BvdPSY14], [YB14], [BT11], and [BH09]).

Other side channels have been explored as well. Power analysis was used in [GPP+16b] to target ECDSA

scalar multiplication on mobile devices, and against smart cards in [DMHMP13]. Branch prediction side

channels have been used to target OpenSSL's implementation of modular exponentiation[AKS06][AKS07]
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and modular inversion[AGS07].

As a whole, these previously published attacks demonstrate that side-channel attacks pose a real threat to

cryptographic implementations; these attacks were frequently capable of recovering private keys through a

variety of methods. This new work follows in the well established footsteps of this previous research.
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Mathematical Background

Throughout this work we will use the following notation. Addition, multiplication, and division have their

usual meaning when done over the reals. 𝑎−1 is used to represent modular inversion in 𝔽u� where the mod-

ulus 𝑞 is large, prime, and clear from context. Logarithms are performed with base 2, and [𝑎, 𝑏] represents
the range of integers no less than 𝑎 and no greater than 𝑏.

The reduction of a valuemodulo 𝑞 into the range [0, 𝑞−1] is represented by ⌊⋅⌋u�. The absolute valuemodulo

𝑞, denoted |⋅|u�, is found by reducing the argument into the range [− u�
2 , u�

2 ], then taking the absolute value.

Finally, we useMSBu�,u�(𝑥) to denote knowledge about the 𝑙 most significant bits of 𝑥. That is, useMSBu�,u�(𝑥)
to denote an integer 𝑢 satisfying

|𝑥 − 𝑢|u� < 𝑞/2u�+1.

This notation is both convenient and intuitive, since when 𝑙 = 0, all values 𝑢 ∈ [0, 𝑞 −1] satisfy this inequality,
when 𝑙 = 1, only about the 𝑞/2 values closest to 𝑥 satisfy the inequality, and so on.

ECDSA and DSA

ECDSA and DSA are two similar NIST standardized signature schemes[KSD13]. Both are based on the

ElGamal signature scheme[Tah85] and consist of a large prime 𝑞 with bitlength 𝑁 = ⌈log 𝑞⌉. The signature

process also requires a function 𝐹 ∶ [0, 𝑞 − 1] → [0, 𝑞 − 1] that is difficult to invert. In (EC)DSA, this function

uses exponentiation over a finite abelian group and relies on the difficulty of the (Elliptic Curve) Discrete

Logarithm problem to make the signature secure. Unlike previous work, the details of 𝐹 are not necessary

to understand our attack.

The (EC)DSA signature scheme also uses a hash function 𝐻𝑎𝑠ℎ ∶ {0, 1}∗ → {0, 1}u�u�u�u�u�u� to convert an input

message to an output of fixed bitlength, which can be encoded as an integer. The choice of hash function

depends on bitlength 𝑁 , but is selected so that the hash output has enough bits of security to match the

desired level of security of the signature[Bar16].

When signing amessage, the signer, in possession of private key 𝑥 ∈ [1, 𝑞−1], performs the following steps:

1. Calculate 𝑚 = leftmostmin(𝑁, 𝑜𝑢𝑡𝑙𝑒𝑛) bits of 𝐻𝑎𝑠ℎ(𝑚𝑠𝑔)

2. Generate nonce 𝑘 uniformly from [1, 𝑞 − 1].

3. Calculate 𝑟 = 𝐹(𝑘). If 𝑟 = 0, return to step 2.

4. Calculate 𝑠 = ⌊𝑘−1(𝑚 + 𝑟 ∗ 𝑥)⌋
u�
. If 𝑠 = 0, return to step 2.

5. Return signature (𝑟, 𝑠).

For the purposes of this paper, the details of the corresponding verification algorithm are also unimportant.

When 𝑜𝑢𝑡𝑙𝑒𝑛 ≥ 𝑁 and 𝑞 ≈ 2u� , then 𝑚 is roughly uniformly distributed in [0, 𝑞 −1]. This is the case for many

common choices of 𝑞 and 𝐻𝑎𝑠ℎ, including the use of SHA-256 with NIST Curve P-256 and SHA-384 with

Curve P-384 found in NSA Suite B Cryptography[SH12] and the recommended curve and hash associations

found in RFC 5480[THP+09]. However, there are still some valid combinations where 𝑜𝑢𝑡𝑙𝑒𝑛 < 𝑁 . In these

cases, 𝑚 is not uniformly distributed in [0, 𝑞 − 1]. Take for example the standardized curves over binary

fields, whose orders have bitlengths that do not match the output size of common hash functions. Consider

Curve B-283, which has an order of length 282 bits and therefore a security strength of 128 bits. SHA-256 is

a suitable hash function at this security level, and so messages signed with this valid combination will have

𝑚 < 2256 < 2282 ≈ 𝑞
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and so the uppermost 26 bits of 𝑚 will always be zero.

These combinations of curves and hash functions are not frequently used, and so the remainder of this work

makes the simplifying assumption that 𝑚 is uniformly distributed in [0, 𝑞 −1]. This makes the attack easier to

analyze while still being applicable to many important cryptographic libraries. Although not as common as

the use of Curve P-256 or Curve P-384, the use of Curve P-521 with SHA-512 is notable since it also breaks

the uniformity assumption, but it turns out there is an easy modification that can make the attack succeed in

this case. This is explored in Section 4.

The Hidden Number Problem

Thoughnot originally developed for thepurposeof cryptanalysis[BV96], an important tool for understanding

cryptanalytic attacks on ECDSA and DSA is known as the Hidden Number Problem (HNP). There are many

similar constructions of the HNP, but here we present the more general formulation and solution algorithm

as found in [BvdPSY14].

The HNP poses the problem of recovering an unknown scalar in a prime field when only partial information

is known about multiples of the scalar. Formally in the HNP, one has knowledge of a number of multipliers

𝑡1, ..., 𝑡u� ∈ 𝔽∗
u� for known prime 𝑞. For each sample 𝑖, one also knows MSBu�u�,u�(⌊𝑡u�𝛼⌋u�) for some fixed but

unknown 𝛼 ∈ [1, 𝑞 − 1]. The goal is to recover hidden number 𝛼. The HNP can identically be expressed as

a system of inequalities:

∣⌊𝑡u�𝛼⌋u� − 𝑢u�∣u� < 𝑞/2u�u�+1 for all 𝑖 ∈ {1, ..., 𝑑}.

Boneh and Venkatesan recognized in [BV96] that the HNP has much in common with the study of lattices. If

we let 𝑏1 = (𝑡1, ..., 𝑡u�, 1) be a basis vector of a lattice, then vector 𝛼𝑏1 = (𝛼𝑡1, ..., 𝛼𝑡u�, 𝛼) will be relatively

close to vector (𝑢1, ..., 𝑢u�, 0) after somemultiple of 𝑞 is subtracted fromeach component of𝛼𝑏1. The concept

of subtracting a multiple of 𝑞 is encoded for each dimension by another basis vector 𝑏𝑖+1 = (..., 0, 𝑞, 0, ...).
Thus given an instance of the HNP, we can construct a lattice basis so that one of the vectors is close to

(𝑢1, ..., 𝑢u�, 0) and at a distance in each dimension of no more than 𝑞/2u�u�+1. Recovering hidden number 𝛼 is

thereforepossible once this vector is found. In fact, this so-calledClosest Vector Problem (CVP) canbe solved

efficiently using the LLL lattice basis reduction algorithm[LLL82] and Babai's nearest plane algorithm[Bab86].

[BV96] additionally showed that when the 𝑡u� are uniformly and independently drawn, the 𝑙u� are sufficiently

large, and enough HNP inequalities including 𝛼 are known, a probabilistic algorithm exists to solve the HNP

in polynomial time.

This choice of lattice basis vectors is not the only option, however, and there have been several different

representations based on the same idea as [BV96] (See, for example [NS02][NS03]). One drawback of

the original construction is that all 𝑙u� are identical, since the CVP solver weighs all dimensions equally, and

cannot incorporate information that the bound on some HNP inequalities might be tighter than others. The

representation in [BvdPSY14] has the added advantage of not requiring that all 𝑙u� are the same, and it does

so by scaling the dimensions of the lattice proportionally to the inverse of the bounds.

In their construction, which we use here, we construct lattice 𝐿(𝐵) from the basis vectors given by the rows

of matrix 𝐵:

𝐵 =
⎡
⎢
⎢
⎢
⎣

2u�1+1𝑞 0
⋱ ⋮

2u�u�+1𝑞 0
2u�1+1𝑡1 … 2u�u�+1𝑡u� 1

⎤
⎥
⎥
⎥
⎦

.

We also set vector 𝑢 = (2u�1+1𝑢1, ..., 2u�u�+1𝑢u�, 0). As before, note that there exists some vector 𝑥 ∈ ℤu�+1 such
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that 𝑥𝐵 = (2u�1+1 ⌊𝑡1𝛼⌋u� , ..., 2u�u�+1 ⌊𝑡u�𝛼⌋u� , 𝛼), and this lattice vector is close to vector 𝑢 as guaranteed by

the HNP inequalities. We hope that solving the CVP with lattice 𝐿(𝐵) and vector 𝑢 will yield lattice vector

𝑥𝐵, since the last coordinate is the hidden value 𝛼.

Babai's nearest plane algorithm is not the only way to solve the CVP. In fact, it is possible to use what is

called the embedding strategy[NS00][Won15] to reduce an instance of the CVP to one of the Shortest Vector

Problem (SVP). The general embedding strategy for lattice 𝐿(𝐵) and vector 𝑢 is to construct a new lattice

𝐿(𝐵′) from the rows of matrix

𝐵′ = [
𝐵 0
𝑢 𝑞

]

and running a lattice basis reduction algorithm on 𝐿(𝐵′). The second smallest vector in the reduced basis

is often of the form (𝑥𝐵 − 𝑢, −𝑞), and once again the last coordinate of 𝑥𝐵 − 𝑢 is 𝛼.

Other lattice basis reduction algorithms besides LLL may be used. Although it does not provide the same

polynomial time guarantees as LLL, BKZ[SE91] with a block size of 15 to 20 has performed well on instances

of the HNP[BvdPSY14]. An improved version of BKZ, called BKZ 2.0[CN11], implements even more features

such as advanced pruning.

The lattice-based method to solving the HNP is practical, efficient, and easy to implement. It requires

relatively fewHNP inequalities to correctly recover the hidden number, runs in polynomial time under certain

parameters, and is likely to give the correct answer. However, this method struggles when the number of

bits 𝑙u� per inequality is not large enough[NS02], and the method is not very resilient to errors. Fortunately,

the use of lattices is not the only practical way to solve the HNP. Bleichenbacher's solution to the HNP, as

documented in [DMHMP13], uses exponential sums todetect the influenceof small biases. Bleichenbacher's

approach is more tolerant of collection errors and can recover the hidden number when only a small amount

of information is leaked per inequality, but this comes at the cost of requiring many more samples than the

lattice method. As long as it is possible to pose a cryptanalytic problem as an instance of the HNP, the tools

exist to find the solution.

Prior Attacks on ECDSA and DSA

The use of the HNP as a tool in a cryptanalytic attack against ECDSA and DSA implementations dates back

to the work of Howgrave-Graham and Smart[HGS01]. Their attack assumes that, in addition to knowing the

signature values, an attacker knows a proportion of the bits in nonce 𝑘u� for each of several signatures. This

knowledge is encoded into an instance of the HNP, and solving yields the secret private key 𝑥.

To see how this works, assume the attacker collects 𝑑 signatures (𝑟u�, 𝑠u�) and knows MSBu�u�,u�(𝑘u�) for 𝑖 ∈
{1, ..., 𝑑}. There aremany ways the attacker can gain this information about 𝑘u�. For example, the information

may leak through a side channel[FWC16][vdPSY15][BvdPSY14][YB14][BT11][BH09] or be induced via an

injected fault[NNTW05] that clears known bits. Using the equations for ECDSA and DSA signatures, the

attacker's knowledge can be reformulated to the following (dropping index 𝑖 for simplicity).
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𝑢 = MSBu�,u�(𝑘)
𝑞/2u�+1 > |𝑘 − 𝑢|

= ∣⌊𝑠−1(𝑚 + 𝑟𝑥)⌋
u�

− 𝑢∣
u�

= ∣⌊⌊𝑠−1𝑟⌋
u�

∗ 𝑥⌋
u�

− ⌊𝑢 − 𝑠−1𝑚⌋
u�
∣
u�

This gives a single HNP inequality, and collection of many signature samples yields more inequalities, giving

an instance of the HNP. Solving the HNP yields hidden number x, from which new signatures may be forged.

Other formulations exist where the attacker has knowledge of a block of contiguous bits in themiddle of 𝑘 or

a combination of most significant and least significant bits[HGS01]. This method can even be applied when

non-contiguous groups of bits are known[HR07], but these require more HNP inequalities to be collected

for the problem to be solved.
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Software Implementations

Though there are many ways to implement the algorithm in Section 2.1 and compute ECDSA and DSA

signatures, a commonone is presented in Algorithm1. Many helper functions are needed to fully implement

these operations, but for brevity, only the Mod and Sign functions are shown here. This is sufficient to

demonstrate the relevant parts of the implementation and to identify two implementation patterns that, if

present, indicate the implementation is susceptible to the key extraction attack.

Algorithm 1 Create (EC)DSA Signature

1: functionMod(a, q) ▷ Return the value of 𝑎 reduced modulo 𝑞
2: if 𝑎 < 𝑞 then

3: return 𝑎
4: else

5: 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡, 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ← DivRem(𝑎, 𝑞) ▷ Get remainder after dividing by 𝑞
6: return 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

7: function Sign(msg, x, q) ▷ Compute a signature over 𝑚𝑠𝑔 using private key 𝑥
8: 𝑚 ← Hash(𝑚𝑠𝑔)
9: 𝑚 ← Mod(𝑚, 𝑞)

10: 𝑘 ← RandomInteger(1, 𝑞 − 1)
11: 𝑘𝑖 ← Inv(𝑘, 𝑞)
12: 𝑟 ← F(𝑘)
13: if 𝑟 = 0 then

14: return error ▷ Unlikely to ever be reached.

15: 𝑟𝑥 ← Mul(𝑟, 𝑥)
16: 𝑟𝑥 ← Mod(𝑟𝑥, 𝑞)
17: 𝑠𝑢𝑚 ← Add(𝑚, 𝑟𝑥)
18: 𝑠𝑢𝑚 ← Mod(𝑠𝑢𝑚, 𝑞)
19: 𝑠 ← Mul(𝑘𝑖, 𝑠𝑢𝑚)
20: 𝑠 ← Mod(𝑠, 𝑞)
21: if 𝑠 = 0 then

22: return error ▷ Unlikely to ever be reached.

23: return (𝑟, 𝑠)

Two things are important to note here. First, Mod does not run in constant time. If the argument being

reduced is already in the range [0, 𝑞 − 1], this function returns early without calling DivRem. If a side channel

reveals whether DivRem was called by this function, then the attacker learns information about argument

𝑎. Even though many of the analyzed (EC)DSA implementations do not follow this pattern exactly, most

include some logic so the Mod function returns early if the argument is already reduced. A minority of

implementations are written so theMod function executes in constant time, regardless of input.

Secondly, observe the modular reduction on line 16. This ensures that the product 𝑟𝑥 has been reduced

into the range [0, 𝑞 − 1] prior to addition with 𝑚. In some implementations, this reduction before addition,

or less frequently the reduction following addition, is omitted.

Several common open source implementations of the ECDSA, DSA, and ElGamal signing algorithms were

analyzed to observe which implementation pattern was followed. If the Mod function leaks range informa-

tion about the argument and the product 𝑟𝑥 is reduced, the implementation is probably vulnerable to the

attack. Due to the sheer number of potentially affected libraries, implementations were analyzed via static

review of source code. However, to demonstrate that the attack is possible under such conditions, a full
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proof of concept was developed for one of the implementations, described in Section 5.1. The results of

the analysis are shown in Table 1.
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Library ECDSA DSA

CryptLib[Pet] Yes Yes

LibreSSL[liba] Yes Yes

Mozilla NSS[Moz] Yes Yes

Botan[Llo] Yes NR

OpenSSL[opea] Yes NR

WolfCrypt[Wol] Yes NR

Libgcrypt[Gnu] Yes NR

LibTomCrypt[libc] Yes NR

OpenJDK Libsunec[Opeb] Yes N/A

MatrixSSL[mat] Yes N/A

BoringSSL[Goo] No Yes

BouncyCastle[bou] NR NR

Crypto++[cry] NR NR

Golang crypto/tls[gol] NR NR

C#/Mono[csm] NR N/A

mbed TLS[mbe] NR N/A

Trezor Crypto[Tre] NR N/A

Nettle[M]̈ No NR

BearSSL[Por] No N/A

Libsecp256k1[libb] No N/A

NaCl[BLS] N/A N/A

Table 1: Cryptographic implementations of (EC)DSA signatures. The table examines several popular

cryptographic libraries to see if they follow the vulnerable pattern. If modular reduction both precedes

and follows the addition of 𝑚 and the modular reduction routine is not constant time, the entry is marked

as a ``Yes.'' If the product 𝑟𝑥 or the sum 𝑚 + 𝑟𝑥 is not reduced, then the entry is marked as ``NR'' because

it is not vulnerable to this attack, but information may still be leaking during arithmetic operations involving

𝑥. Finally, ``No'' means the arithmetic operations are constant time, and ``N/A'' means that algorithm is not

implemented.
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Cryptanalysis

As is hinted at in the previous section, the new key extraction attack targets information leaked by non-

constant time modular reduction in the computation of signature component 𝑠. Specifically, the attack

targets the modular reduction on line 18 in Algorithm 1. This reduction follows the addition of 𝑚 to ⌊𝑟𝑥⌋u�.

Of course, both terms of the sum are reduced into the range [0, 𝑞−1], so therefore𝑚+⌊𝑟𝑥⌋u� ∈ [0, 2(𝑞−1)].
Within this range, the side-channel leakage inMod thus reveals if 𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1].

The possible values can be constrained further, since Sign does not return a signature unless 𝑟 and 𝑠 are

nonzero. Since 𝑟 ≠ 0, ⌊𝑟𝑥⌋u� ∈ [1, 𝑞 − 1], and since 𝑠 ≠ 0, 𝑚 + ⌊𝑟𝑥⌋u� ∉ {0, 𝑞}.

Assume the side channel perfectly reveals the truth value of 𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1]. If this is true, then the

attacker concludes

𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1]

⇒ ⌊𝑟𝑥⌋u� ∈ [−𝑚, 𝑞 − 𝑚 − 1] ∩ [1, 𝑞 − 1] = [1, 𝑞 − 𝑚 − 1]

⇒ ⌊𝑟𝑥⌋u� − 𝑞 − 𝑚
2

∈ [1 − 𝑞 − 𝑚
2

, 𝑞 − 𝑚
2

− 1]

⇒ ∣⌊𝑟𝑥⌋u� − 𝑞 − 𝑚
2

∣
u�

< 𝑞 − 𝑚
2

and gains an HNP inequality for hidden number 𝑥. Similarly, if the side channel reveals that 𝑚 + ⌊𝑟𝑥⌋u� ∉
[0, 𝑞 − 1], then the attacker concludes

𝑚 + ⌊𝑟𝑥⌋u� ∉ [0, 𝑞 − 1]

⇒ 𝑚 + ⌊𝑟𝑥⌋u� ∈ [𝑞 + 1, 2(𝑞 − 1)]

⇒ ⌊𝑟𝑥⌋u� ∈ [𝑞 − 𝑚 + 1, 2𝑞 − 2 − 𝑚] ∩ [0, 𝑞 − 1] = [𝑞 − 𝑚 + 1, 𝑞 − 1]

⇒ ⌊𝑟𝑥⌋u� ∈ [𝑞 − 𝑚 + 1, 𝑞 − 1]

⇒ ⌊(𝑞 − 𝑟)𝑥⌋u� ∈ [1, 𝑚 − 1]

⇒ ⌊(𝑞 − 𝑟)𝑥⌋u� − 𝑚
2

∈ [1 − 𝑚
2

, 𝑚
2

− 1]

⇒ ∣⌊(𝑞 − 𝑟)𝑥⌋u� − 𝑚
2

∣
u�

< 𝑚
2

.

Since 𝑚, 𝑟, and 𝑞 are all known by the attacker, solving the HNP with these inequalities reveals 𝑥, the private

key. The attacker can easily verify if this is the correct private key by comparing it to the known public key.

Intuitively, when 𝑚 is large and 𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1], ⌊𝑟𝑥⌋u� must be one of a relatively small number of

values, so therefore 𝑥 must be one of only a few possibilities. Information from additional signatures further

constrains the possible values of 𝑥 until only one possibility remains. We represent these constraints as an

instance of theHNP in order to solve for𝑥. Someof these constraints will have a loose bound and not provide

much information about 𝑥, so some signatures will be discarded, and only the more informative constraints

are kept.

The derived inequalities imply scale factors of 2u�+1 = 2𝑞/(𝑞 − 𝑚) and 2u�+1 = 2𝑞/𝑚. Though prior ap-

proaches have used 𝑙 to represent the number of leaked bits, our approach does not assume 𝑙 to be integral.

The motivation given in Section 2.2 does not require the scaling factors to be powers of two, so we do not

constrain ourselves to these values. However, computation involving matrix 𝐵 is more feasible when the

entries are integer values, so the scale factor is rounded down to the closest integer, as are the entries of 𝑢.
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In practice, the side channel may not be perfectly accurate. The attacker processes the side-channel data

and guesses the truth value of 𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1], but this processing may suffer from false positives or

false negatives. The lattice approach used to solve the HNP is not resilient to errors, so an incorrect guess at

this stage prevents the analysis from being successful.

To surmount this difficulty, the attacker must design the side-channel processing to have either a low false

positive rate or a low false negative rate. Often the attacker can choose between one or the other but cannot

have both. Thus if the false positive rate is low, then the attacker can confidently include the derived HNP

inequality when the processing indicates 𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1] (and similarly for the false negative rate). If

the false positive rate is low and the processing indicates 𝑚 + ⌊𝑟𝑥⌋u� ∉ [0, 𝑞 − 1], the attacker does not know

for sure if the statement is true since the false negative rate may be high. When the processing indicates

this, the attacker discards the sample.

The error rate only needs to be low enough that the set of derived inequalities is unlikely to contain any

errors. More advanced error handling methods can be found in [BT11], but this sort of analysis exceeds the

scope of this work. We shall instead make the simplifying assumption that either the false positive or false

negative rate is zero.

For the remainder of this section, we shall assume the false negative rate is zero; that is, all inequalities are

of the form ∣⌊(𝑞 − 𝑟)𝑥⌋u� − u�
2 ∣

u�
< u�

2 . We also let 𝜇 represent the probability that 𝑚 + ⌊𝑟𝑥⌋u� ∉ [0, 𝑞 − 1] is

correctly detected as such. Thismakes it slightly easier to describe the chosen-plaintext and known-plaintext

attacks, and the derivation is not substantially different when the false positive rate is zero.

Chosen-Plaintext Attack

In the chosen-plaintext variation, the attacker is able to choose themost significant bits of𝑚. There is a trade-

off present for choosing a large or small 𝑚. The larger 𝑚 is, the more likely it is that 𝑚 + ⌊𝑟𝑥⌋u� ∉ [0, 𝑞 − 1]
and the more likely it is that the attacker can construct an inequality based on a given collected signature.

However, a smaller 𝑚 is a tighter bound on the inequality, and so each inequality reveals more information

about 𝑥. Additionally, the lattice-based method to solving the HNP is less effective on looser bounds. The

attacker must take all of these into consideration when selecting the desired 𝑚.

We may thus provide an estimate of how the number of signatures that need to be observed scales with

the attacker's choice of 𝑚. We make several simplifying assumptions and approximations, including the

assumption that the information from one HNP inequality is independent from that of the others. With this

in mind, each constraint for the attacker's 𝑚 provides about log u�
u� bits of information about 𝑥. Since 𝑥 has

about log 𝑞 bits in total, roughly
log u�

log u�−log u� successfully collected samples are needed. The odds of a given

signature yielding a usable constraint is
u�u�

u� , giving the expected number of signatures to collect as about

𝑞 log 𝑞
𝜇𝑚(log 𝑞 − log𝑚)

.

This simple analysis suggests that the fewest signatures are needed when 𝑚 = 𝑞/𝑒. However, note that

the lattice-based HNP solver may have trouble since each sample contains less than 1.5 bits of information

about 𝑥, so it is likely that a better value will be slightly higher and can be found through experimentation.

The chosen-plaintext attack also has an interesting application in the case of Curve P-521 used with the

SHA-512 hash function. Here, 𝑞 is 521 bits, but 𝑚 is at most 512 bits. Thus if the side channel reveals

𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1] with no false negatives, then the chosen-plaintext attack can be used with 𝑚 =
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2512 ≈ 𝑞/29. This gives an expected number of required signatures of

𝑞 log 𝑞
𝜇𝑚(log 𝑞 − log𝑚)

≈ 29 ∗ 521
𝜇(521 − 512)

≈ 30000/𝜇.

This is still on the order of tens of thousands of signatures, so in many cases this attack on P-521 is practical.

Known-Plaintext Attack

In the known-plaintext variation, the attacker is only able to observe 𝑚, not influence it. The attack proceeds

is much the same way as the chosen-plaintext attack, but the attacker must decide which values of 𝑚 to

collect samples for and which to ignore. Similar to [BT11] and [BvdPSY14], the attacker selects a threshold

value 𝑚u�. The attacker then collects signatures until the attacker collects a sample where 𝑚 < 𝑚u� and

𝑚 + ⌊𝑟𝑥⌋u� ∉ [0, 𝑞 − 1]. The attacker adds the derived inequality and repeats the process until 𝑑 inequalities

have been recovered. Finally, the attacker uses the lattice-based method to solve the HNP and recover

private key 𝑥.

There is once again a trade-off at play, since a smaller value of 𝑚u� yields more information about 𝑥 in each

sample, but a larger value of 𝑚u� increases the odds that a sample is collected.

We can once again estimate how many samples need to be collected as a function of 𝑚u�. The probability

that 𝑚 < 𝑚u�, 𝑚 + ⌊𝑟𝑥⌋u� ∉ [0, 𝑞 − 1], and the side channel reveals this information is approximately

𝑃(𝑚 < 𝑚u� and 𝑚 + ⌊𝑟𝑥⌋u� ∉ [0, 𝑞 − 1] and detected)

= 𝜇𝑃(𝑚 < 𝑚u� and 𝑚 + ⌊𝑟𝑥⌋u� ∉ [0, 𝑞 − 1])

= 𝜇
u�u�−1

∑
u�′=0

1
𝑞

𝑃(𝑚 + ⌊𝑟𝑥⌋u� ∉ [0, 𝑞 − 1]|𝑚 = 𝑚′)

= 𝜇
u�u�−1

∑
u�′=0

𝑚′

𝑞2

≈ 𝜇𝑚2
u�

2𝑞2 .

Since the conditional distribution of 𝑚 is uniform in [0, 𝑚u� − 1], the expected number of bits of information

about 𝑥 per sample is about

𝐸u�[− log
𝑚 + 1

𝑞
] =

u�u�−1

∑
u�=0

−1
𝑚u�

log
𝑚 + 1

𝑞

= − 𝑞
𝑚u�

u�u�

∑
u�=1

1
𝑞
log

𝑚
𝑞

≈ − 𝑞
𝑚u�

∫
u�u�/u�

0
log𝑥𝑑𝑥

= − 𝑞
𝑚u�

𝑚u�
𝑞

(log 𝑚u�
𝑞

− log 𝑒)

= log
𝑒𝑞
𝑚u�

.

Combining this with the odds of collecting a usable sample and the fact that about log 𝑞 bits of 𝑥 must be
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recovered, the expected number of signatures to collect is approximately

2𝑞2 log 𝑞
𝜇𝑚2

u� log(𝑒𝑞/𝑚u�)
.

This is minimized when 𝑚u� = 𝑞/
√

𝑒, or when about 0.7 bits are leaked by each HNP inequality. Once again,

the lattice-based HNP solver may have issues with such values, so the actual optimal value of 𝑚u� is likely

determined by what the solver is able to solve.

We may also perform the known-plaintext attack in the case of Curve P-521 and SHA-512. Similar to the

chosen-plaintext attack, we can set 𝑚u� = 2512 ≈ 𝑞/29. Since 𝑚 < 𝑚u� for all 𝑚, the expected number of

samples does not quite follow the above derivation, and is given by

2𝑞 log 𝑞
𝜇𝑚u� log(𝑒𝑞/𝑚u�)

≈ 210 ∗ 521
𝜇(log 𝑒 + 9)

≈ 50000/𝜇.

Once again, the attack is still practical for Curve P-521, despite the mismatch between the hash size and

curve order.
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Experimental Results

The attack consists of both a collection phase and an analysis phase, so two experiments were performed

to demonstrate the feasibility of the full attack. In the first experiment, the collection phase was studied

by examining OpenSSL 1.1.0g[opea] and using a Flush+Reload attack[YF14] to determine the outcome of

the modular reduction. This is used to give probabilities describing the oracle behavior of an example

implementation and to show that a co-resident attacker can reliably use this side channel to perform an

attack.

The second experiment explored the analysis phase by determining how the analysis performs under dif-

ferent parameters. Rough estimates are given for the minimum number of signatures needed for multiple

common key sizes.

Attacking OpenSSL

In order to demonstrate the feasibility of the attack, a Flush+Reload attack was performed on themost recent

version of OpenSSL. The attack targets version 1.1.0g, which is shipped with Ubuntu 18.04, and the attack

was performed on an Intel i7-6600u CPU.

Flush+Reload is a side-channel attackwhere the attacker and the victim share the samememory. The attacker

repeatedly flushes particular addresses from the cache and monitors the time to reload the address. If the

memory at the address remains evicted, the access time is high, but if the victim accesses the memory

between the flush and the reload, the memory access time is low. Due to the copy-on-write behavior of the

Linux kernel, an unprivileged attacker process maps the same shared library as a privileged victim process,

so the attacker is capable of detecting when the victim loads particular code at the 64 byte L1 instruction

cache line granularity. The Flush+Reload attack is implemented by theMastik library[Yar16], which was used

for this attack.

The experiment targeted the libcrypto.so.1.11 shared library, which contains the ECDSA signing code

of the OpenSSL library. Five offsets within the library were monitored:

1. 0x0f4e70 - Entry point of ECDSA_do_sign_ex

2. 0x0f4582 - Call to BN_mod_add_quick when computing 𝑚 + ⌊𝑟𝑥⌋u�

3. 0x0a4b9f - End of BN_usub, called from BN_mod_add_quick when the sum of arguments exceed the

modulus.

4. 0x0a4b42 - Middle of BN_usub

5. 0x0ed180 - End of ECDSA_SIG_free.

The first offset was monitored in order to detect when the signature process began so the attacker could

collect Flush+Reload samples until the last offset was reached. The second offset was used to detect when

BN_mod_add_quick was called, which happened close to the end of the trace, and to observe if the third

or fourth offsets were triggered at that point as well. Two offsets within BN_usub were monitored because

this had the effect of reducing noise and giving the cleanest signal. By running this collection process many

times, it was possible to analyze how the side channel behaves when 𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1]. The collection

was run for 100000 samples using a known private key and randomly generated𝑚, and the following results

were observed:

1SHA-256 a13c42ae2e12dc0cb9aba3133fff0db2e8dfa69d2ca5f4e399d4be00c1e14677
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3rd offset hit? 4th offset hit? Sum in [0, 𝑞 − 1] Sum not in [0, 𝑞 − 1]

y y 243 46861

y n 1261 16

n y 11811 428

n n 33927 4

The remaining 5449 samples did not follow the expected pattern of the first, second, or fifth offset, and are

excluded from the table. From these results it is clear that this side channel may be used as an low false

positive oracle: when neither the third nor fourth offsets were hit, 𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1] with observed

frequency 1 − 4/33927 ≈ 99.99%. We can also estimate 𝜇 = 𝑃𝑟𝑜𝑏( 3rd and 4th offsets not hit |𝑚 + ⌊𝑟𝑥⌋u� ∈
[0, 𝑞 − 1]) ≈ 0.68.

Using this side channel, the full attack can be tested. A privileged process was set up that listened to

a localhost port, signed incoming messages using libcrypto.so and a 256-bit ECDSA private key, and

returned the signatures. The attacker was implemented in an unprivileged process and was set up to per-

form the chosen-plaintext attack with 𝑚 = 𝑞/25. The attacker triggered signatures while performing the

Flush+Reload attack and repeated until 100 usable samples were collected. Then FPLLL[dt16], a library

which implements lattice operations, was used to perform the BKZ reduction with a block size of 20. Based

on 𝜇, it should take 4706 signatures to collect enough samples for the HNP. In fact, over a sample size of

30 runs, it took on average 4465 signatures. For this test, the parameters were chosen arbitrarily so that the

lattice reduction succeeds. The attack generalizes to other parameters as well, including larger key sizes or

different values of 𝑙. The next section explores which parameters to choose for best performance.

Solving the Hidden Number Problem

In addition to demonstrating the practicality of the side channel, it is important to give parameters for which

the attack performs well. While it is easy to determine the expected number of signatures one needs

to gather before having enough HNP inequalities, it is less easy to determine how many inequalities are

needed. Estimates for this number are derived in Section 4, but this is done after making several simplifying

assumptions and does not capture the actual process of solving the HNP. This data is collected by simulating

the side-channel attack and running the lattice-based HNP solver several times.

Both the chosen-plaintext and known-plaintext attacks were tested for orders of size 256 and 384, the sizes

recommended by NSA Suite B Cryptography. 160 bit and 521 bit orders were also considered in order to

capture the behavior at both allowed extremes. For each test case, a random prime order of the selected

size was generated, and a parameter 𝑙 was chosen, roughly corresponding to the number of bits leaked per

signature. In the chosen-plaintext attack 𝑙 was used to set 𝑚 = 𝑞/2u� and in the known-plaintext attack it set

𝑚u� = 𝑞/2u�. To determine how many HNP inequalities to include, which sets the dimension of the lattice, an

overhead factor 𝑓 was used. Thus for the chosen-plaintext attack, ⌈u� log u�
u� ⌉ HNP inequalities are generated,

and for the known-plaintext attack, this value is ⌈ u� log u�
u�+log u�⌉. Based on the estimate, the attack is expected to

fail for 𝑓 < 1 and expected to succeed for 𝑓 > 1. This formed the instance of the HNP.

A reduction method was chosen at random to attempt to solve the instance of the HNP. Specifically, after

using the embedding strategy to encode the HNP as a basis for a lattice, the FPLLL library used its im-

plementation of either LLL or BKZ to reduce the lattice. Block sizes of 10, 15, 20, and 25 were used for

BKZ.2 After reduction completed or a timeout of five minutes was reached, the best guess was retrieved and

2In the case of the 521 bit modulus, FPLLL failed to ever terminate when using BKZ. This could be due to a bug in the reduction

library, so the BKZ results for that modulus size are omitted

18 | Return of the Hidden Number Problem NCC Group



Figure 1: Performance of LLL reduction algorithm when solving the HNP for a 521 bit modulus. Reduction

fails for 𝑓 < 1 and succeeds for 𝑓 > 1.3, which aligns with our expectations of the estimate of the number

of inequalities needed.

compared to the actual 𝑥 used to generate the data. The time taken and outcome were also both recorded.

Experiments were performed on an Amazon EC2 C5.18xlarge instance.

In [BvdPSY14], time is used when considering the performance of a set of parameters, but in this work,

minimizing the number of signatures is prioritized. In real life systems, the attacker may be limited by the

number of times they can observe the signature method but have substantial time to perform the actual

reduction. Since this experiment limited reduction time to five minutes, unless the attacker needs to solve

the HNP faster than this, the results will still apply.

The experiments reveal that the estimates derived in Section 4 are accurate in most cases. Figure 1 demon-

strates this, as it is clear reduction fails for 𝑓 < 1 and succeeds for 𝑓 > 1.3. There is a transition region

between 1 and 1.3 where the probability of success is in between 0 and 1. Assuming the understanding of

the information leaked per sample is correct, an ideal reduction algorithm would quickly transition between

low probability of success and high, since as soon as there is enough information, the ideal algorithm would

be able to solve the problem. However, LLL and BKZ are not ideal algorithms, and the observed transition

is more gradual.

This slope between success and failure becomes more flattened as 𝑙 decreases, as can be seen in Figure 2.

For 𝑙 = 3, the curve appears completely flat, indicating that there is a minimum number of bits that must

leak for reduction to be successful. Since the expected number of signatures is exponential in 𝑙, the optimal

value will be when 𝑙 is as low as possible, but not so low that reduction is unlikely for reasonable values of 𝑓 .

Next, consider how the attack performs for different reduction algorithms. In Figure 3 it can be seen that

as the BKZ block size increases, so does the success ratio. These results indicate that increasing block size

improves the reduction algorithm's ability to recover the hidden number from a limited number of samples;

however, increasing block size comes at the cost of time. This was especially the case for tests of the 384 bit

modulus, since the larger matrices timed out past the five minute cutoff when using a block size of 25.

Putting all this together provides the following approximate minimum bounds for a 90% success rate, given
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Figure 2: Performance of BKZ reduction algorithm when solving the HNP for a 256 bit modulus. This data is

for the chosen-plaintext attack, and the BKZ block size is 15. For each value of 𝑙, the reduction fails for 𝑓 < 1.
However, for 𝑓 > 1, the odds of success rise at different rates.

Figure 3: Performance of various reduction algorithm when solving the HNP for a 256 bit modulus. This data

is for the chosen-plaintext attack with 𝑙 = 4. As the block size increases, theminimumoverhead ratio needed

for good performance decreases.
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Key size (bits) Chosen-Plaintext Attack Known-Plaintext Attack

160 𝑙 = 3, BKZ-25 530 𝑙 = 2, BKZ-25 1800

256 𝑙 = 4, BKZ-25 1300 𝑙 = 2, BKZ-25 3600

384 𝑙 = 5, BKZ-25 3000 𝑙 = 3, BKZ-20 21000

521 𝑙 = 9, LLL 40000 𝑙 = 9, LLL 64000

Table 2: Approximate parameters for the minimum signatures required. These values performed the best

of the combinations that were tested, and they gave above a 90% success rate. Under these parameters, the

reduction step reliably finished in under fiveminutes. Here, BKZ-25 is shorthand for BKZ reduction algorithm

with a block size of 25.

in Table 2. In general, the chosen-plaintext attack requires fewer signatures total, but the known-plaintext

attack can use a smaller value of 𝑙. Overall, the number of signatures needed is fairly low, making this both

a practical and a powerful attack.
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Countermeasures

We propose two countermeasures to mitigate this particular attack. The first approach is to use constant

time arithmetic operations when computing 𝑠 from 𝑚, 𝑟, 𝑥, and 𝑘. This will eliminate timing-based side

channels from leaking sensitive state at this stage. Although only replacing the modular addition with a

constant time alternative suffices to prevent the particular attack identified in this work, a similar attack may

apply to non-constant time modular multiplication. If a function leaked the approximate size of the reduced

product or factors, an attacker could mount a similar HNP-style attack using knowledge of small ⌊𝑟𝑥⌋u� or

⌊𝑚 + 𝑟𝑥⌋u�. As the signature computation is dominated by the point multiplication to compute 𝑟, the final

stage of computing 𝑠 is a minority of the total time taken. The cost of replacing these operations with their

constant time alternatives is unlikely to incur a significant penalty on signature time. However, this approach

only attempts tomitigate timing and control-flow based side channels, whichmay not be sufficient to protect

against all attacks, such as power analysis. For many libraries which were built around general purpose

multiple precision integer libraries, migrating to a constant time implementation may also be difficult.

Another approach is to use blinding to reduce the usefulness of side-channel information. A similar method

of blinding can be used to harden RSA signature generation, elliptic curve point multiplication, andmodular

exponentiation. For this approach, the signer selects a random 𝑏 ∈ [1, 𝑞 − 1]. The signer then computes

⌊𝑏𝑟𝑥⌋u� and ⌊𝑏𝑚⌋u�. After adding these two values together, the signer multiplies by 𝑏−1, giving a value of

⌊𝑏−1(𝑏𝑚 + 𝑏𝑟𝑥)⌋
u�

= ⌊𝑚 + 𝑟𝑥⌋u�. The remainder of signature computation proceeds as normal. Assuming

𝑏 is kept secret and the attacker has access to the same side channel, the attacker will learn the truth value

of ⌊𝑏𝑚⌋u� + ⌊𝑏𝑟𝑥⌋u� ∈ [0, 𝑞 − 1]. However, this exposes no information about 𝑥.

To see this, first consider the case 𝑚 = 0. ⌊𝑏𝑚⌋u� + ⌊𝑏𝑟𝑥⌋u� = ⌊𝑏𝑟𝑥⌋u� ∈ [0, 𝑞 − 1], regardless of the secret

key, so no information is leaked. Next, we will show that when 𝑚 ≠ 0, changing the sign of 𝑏 changes the

truth value of ⌊𝑏𝑚⌋u� + ⌊𝑏𝑟𝑥⌋u� ∈ [0, 𝑞 − 1]. Thus since [1, 𝑞 − 1] is the union of disjoint (𝑏, ⌊−𝑏⌋u�) pairs,

exactly half of the values in [1, 𝑞 − 1] make the statement true, and the other half make it false, regardless of

𝑥, 𝑚, or 𝑟. Thus the side channel reveals no information about the private key. Take 𝑏 ∈ [1, 𝑞 − 1] such that

⌊𝑏𝑚⌋u� + ⌊𝑏𝑟𝑥⌋u� ∈ [0, 𝑞 − 1] is true. Therefore,

⌊𝑏𝑚⌋u� + ⌊𝑏𝑟𝑥⌋u� ∈ [0, 𝑞 − 1]

⇔ ⌊𝑏𝑚⌋u� + ⌊𝑏𝑟𝑥⌋u� < 𝑞

⇔ 𝑞 − ⌊−𝑏𝑚⌋u� + 𝑞 − ⌊−𝑏𝑟𝑥⌋u� < 𝑞

⇔ − ⌊−𝑏𝑚⌋u� − ⌊−𝑏𝑟𝑥⌋u� < −𝑞

⇔ ⌊−𝑏𝑚⌋u� + ⌊−𝑏𝑟𝑥⌋u� > 𝑞

⇔ ⌊−𝑏𝑚⌋u� + ⌊−𝑏𝑟𝑥⌋u� ∉ [0, 𝑞 − 1]

with the last step relying on the fact that since 𝑠 ≠ 0, ⌊−𝑏𝑚⌋u� + ⌊−𝑏𝑟𝑥⌋u� ≠ 𝑞.

Although it is tempting to conclude from this proof that blinding is a sufficient mitigation to protect against

this class of attack, there are some caveats. The proof assumes that the only information that leaks is whether

or not the sum exceeds 𝑞, but the non-constant time implementation of modular reduction may leak extra

information that invalidates the mitigation. It is also possible that information about 𝑏 may leak through

another side channel, such as during the modular inversion of 𝑏, again reducing the effectiveness of the

countermeasure. While blinding stops thebasic attack, it is noguarantee that non-constant time code cannot

be exploited in other ways. More sophisticated exploitation, however, is not the focus of this work.
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Conclusion

This work only explores a small aspect of this issue, and there are many interesting areas of exploration that

remain. One such question is whether this vulnerability can be exploited through timing data alone. The

non-constant implementation of modular reduction does introduce a slight difference 𝛿 in timing between

samples that have𝑚+⌊𝑟𝑥⌋u� ∈ [0, 𝑞−1] and those that do not, but recall that this attack requires either a low

false positive rate or a low false negative rate to succeed. If we let 𝜏 be the random variable representing

the time it takes to create a signature where 𝑚 + ⌊𝑟𝑥⌋u� ∈ [0, 𝑞 − 1], then we can model the total time taken

as 𝑇 = 𝜏 + 𝛿𝟙u�+⌊u�u�⌋u�∉[0,u�−1]. Here, 𝟙u� represents the indicator variable that equals 1 if 𝑋 is true, and 0
otherwise. If 𝜏 has high variability, then it will be difficult to correctly guess the outcome of the reduction

based on 𝑇 alone.

One potential solution to this problem is to find situations where 𝜏 has sufficiently low variance. One of

the major sources of variation in a modern computer is cache behavior, because even though the same

instructions are being executed, their duration depends on processor state, which varies from run to run.

However, it is possible that embedded systems without cachesmay have sufficiently low variation that a pure

timing attack is possible on these platforms. Somewhat ironically, for security reasons, common (EC)DSA

implementations attempt to make scalar multiplication constant time with respect to secret data, which

reduces variance even further.

Another potential solution is to use a more error-tolerant approach to solving the HNP, such as Bleichen-

bacher's solution[DMHMP13]. In this approach, the problem is posed as a set of pairs (𝑐u�, ℎu�) for which the

set {⌊ℎu� + 𝑐u�𝑥⌋u�}u�
u�=1 is biased towards the values 0 and 𝑞. The remainder of the attack recovers 𝑥 from this

bias. Consider (with a slight abuse of notation) the distribution of

{⌊−𝑞
4

− 𝑞
2

𝟙u�u�+⌊u�u�u�⌋u�∉[0,u�−1] + 𝑟u�𝑥⌋
u�
}

u�

u�=1

.

As it turns out, this distribution is also biased towards 0 and 𝑞. Intuitively, this is because a large ⌊𝑟u�𝑥⌋u� is

more likely to have 𝑚u� + ⌊𝑟u�𝑥⌋u� ∉ [0, 𝑞 − 1]. Thus we expect that the pairs (− u�
2u�𝑇u�, 𝑟u�) will similarly exhibit

a consistent bias, although this bias will be incredibly small due to the bias of 𝜏 . It is an open question

whether Bleichenbacher's solution can practically be applied here, but it suggests the possibility that a

passive adversary monitoring a large number of signatures could recover the private key from timing data

alone.

We have only considered a small number of contexts in which this issuemight be exploited. There are count-

less other side channels besides Flush+Reload that could leak the desired information, including branch

predictor side channels[ERAG+18][AKS07] or power analysis[KJJ99]. This work identifies a common but

flawed implementation pattern that, when paired with a sometimes simple side channel, can be exploited

to disclose the private key in an attack that is both simple and practical. There are likely several other

unidentified systems that are similarly affected by this issue and for which key compromise is possible.

Finally, this work reinforces the importance of constant time implementations and hardening against side

channels, as it emphasizes and demonstrates the dangers that even a small leak can pose to a cryptographic

system.
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