NCCQroup”

NCC Group Whitepaper

Automated Reverse Engineering of
Relationships Between Data Structures
in C++ Binaries

December 7, 2017 - Version 1.0

Prepared by

Nick Collisson

Abstract

Real-time, memory-level interoperability with a closed-source binary may be desired
for a number of reasons. In order to read from and write to specific data structures
within a target process’ memory, external software must have knowledge of how to
access these structures at any given time. Since many objects are allocated randomly
on the heap, efficiently locating a given piece of data requires the traversal of data
structures via a sequence of pointers and offsets that lead from a predictable address
to the data of interest (i.e. in the same manner the target application accesses its own
data structures). This paper discusses a general approach for finding these kinds of
pointer sequences and introduces a new tool implementing this approach.

Table of Contents

Y, -

nccoroup®

T Introduction ..ot e e e
2 PriOr At o o e e e e e
2.1 Techniques
2.2 ASSESSMENT L.ttt
3 Pointer Sequence Reverser..........cocoiiiiiiiiiiiiiiiiiii e
3.1 DesignandImplementation
3.2 The Debugger ...
3.3 The TraCer oo
3.4 Trace Minimization
3.5 Value Column. ..
3.6 Vtable Identification
3.7 Supportfor x86, x64, and Position-independentCode
4 Case StUAY ...oinutiiiii i e e
4.1 Locating TargetDatat
4.2 Obtaining a Suitable Address. ...
4.3 Analyzing PSR Output and Identifying Structures.
5 TheEnd ..ot e i et
5.1 ConclUuSioN ...t
5.2 Acknowledgements

2 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries

NCC Group

%
1 Introduction NCCQroup

This paper introduces Pointer Sequence Reverser (PSR), a new tool that shows how an application accesses
specific data in its memory. The data can be an object, a variable, or some other data structure. Knowing
how an application accesses its data can be useful as this allows one to interoperate with a target binary at
runtime, or write tools to do so.

This can be useful when reverse engineering a binary to identify relevant code accessing specific data, to
track the locations of other instances of interesting data, or to build tooling that modifies data or functionality
within a process (e.g. with function hooking).

Assuming one has sufficient process access privileges, an initial hurdle to the tasks mentioned above is
identifying the memory location of a piece of observed data. One method of obtaining the address of a
given piece of known data is through memory scanning. Memory scanning tools obtain access to a target
application’s memory space and allow a user to search for specific values (e.g. strings, numbers, etc.). The
set of addresses containing the specified values is returned and further searches may be performed on that
set. The user of the memory scanning tool might use the target application in such a way that changes the
value contained by the data structure or variable of interest. Subsequent searches for this modified value
would then help isolate the desired address from the rest of the addresses returned by the initial search.
Repeating these steps several times will often yield a small number of addresses that contain the targeted
information.

While memory scanning provides a way to find the address of specific data at one point in time, it does
not usually enable the address of that data to be found again in the future without repeating the process
of memory scanning. Frequently, the data of interest is allocated dynamically on the heap, and as a result
its address will usually change between instances of the program'’s execution, or even as the state of the
application changes while running. In some cases, a variable may be stored in static memory, which is at a
fixed offset from the base of the executable when itis loaded into memory (as is the case for objects of static
storage duration in C and C++). As a result, finding the location of such a variable through memory scanning
once can be sufficient to enable the location of that variable in the future. As detailed later, variables in static
memory can also assist in locating variables stored in non-static memory, as they may contain pointers that
directly or indirectly, via sequences of pointers and offsets, lead to the variables in non-static memory. Using
sequences of pointers and offsets to traverse data structures from a predictable location to an unpredictable
location containing desired data is a core concept explored by this paper.

To aid in understanding the problem solved by PSR, consider the following example for context before
moving on:

3 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

nccoroup”

Game Memory

Static address

1
L > Game object

~ 7 Linked list
1

Lo Player object

l
[}
L+ Player position

Figure 1: Objects in memory connected by a sequence of pointers.

4 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

nccoroup”

The diagram represents an imaginary game application’s process memory. The orange rectangles represent
objects and data structures within the game, and the dotted arrows represent instances where one object
contains a pointer to another object. Note that it is possible to start at a static address and follow a sequence
of pointers to the data structure containing player position. Knowing the existence and details of this pointer
sequence would be highly useful for the purpose of accessing player position at any given time.

Below, a more detailed diagram of a similar group of objects includes information about each of the objects’
contents, including the locations of data members and pointers within each object.

Game object

) Predictable
ngg: : \ address:
X game_object*

+0x8: linked_list*

+0x10: ?
Head Node Node
+0x0: next +0x0: next +0x0: next
+0x4: nullptr +0x4: player* +0x4: player*
Player object 1 Player object 2
+0x40: position +0x40: position

Figure 2: Objects in more detail, with internal offsets shown for various data members and pointers.

The pointer sequence leading from the predictable, static address shown above to the first player’s position
can be represented as follows:

[predictable address], [+0x8], [+0xQ], [+0x4], +0x40

Where the [] operator means to dereference (i.e., take the value at the address inside the brackets), and the
+ sign means to add an offset of the value that follows. The commas separate each step of the sequence, and
the result of each step is passed onto the next. In other words, the sequence can be read out as, "Dereference
the predictable address, add 0x8 to the resulting value and dereference, add 0x0 to the resulting value and
dereference, add 0x4 to the resulting value and dereference, then add 0x40 to the resulting value to get to
the location of the player position data”. This sequence traverses the objects in the diagram above to get to
the first player’s position information.

5 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

%
2 Prior Art NCCQroup

When memory scanning returns an unpredictable address for a particular variable or data structure, ob-
taining fast, reliable access to that data requires knowledge of a sequence of offsets and dereferences that
lead from a predictable location in memory to the data of interest. Two previously existing methods for
discovering such sequences are Cheat Engine’s pointer scanner and manual dynamic reverse engineering.

2.1 Techniques

2.1.1 Automated Pointer Scanner

Cheat Engine’s pointer scanner' attempts to identify sequences of offsets and dereferences through a brute
force approach. Pointer scanner starts with predictable addresses (e.g. those located in static memory or
early stack frames), and searches for sequences by dereferencing every value stored at those addresses as if
they were pointers. The values pointed to by the first set of values are dereferenced in turn, and this process
repeats, identifying sequences leading to a desired address. Along the way, values at offsets within a certain
range from each value are also dereferenced, expanding the search tree and enabling the identification
of sequences that involve offsets. The main problem with pointer scanner is its performance. It can take
hours to identify sequences that are several pointer levels long. Pointer scanner also tends to produce
large numbers of unstable sequences that do not persist between different runs of the application, requiring
multiple iterations of scanning to isolate stable sequences.

2.1.2 Manual Reverse Engineering

Manual dynamic reverse engineering involves using a debugger to observe the execution of the target
binary. The process typically starts with setting a memory breakpoint on the address containing the data
of interest and then using the debugger to observe the instructions executed prior to hitting the memory
breakpoint. In order to obtain the full picture of a sequence, many breakpoints are often required to be
placed at locations prior to the data-accessing instruction. This is challenging because it can be difficult
to place breakpoints in the correct locations. For example, some breakpoints are hit too frequently, where
many of the hits are not relevant. Also, it can be hard to follow sequences when values are pushed onto
and popped from the stack. Like Cheat Engine’s pointer scanner, the main problem with the manual reverse
engineering approach is the amount of time required to identify sequences.

2.2 Assessment

The manual debugging-based approach to deriving pointer sequences, while work-intensive, typically yields
reproducible higher-value results than the brute force methods employed by pointer scanning tools such
as Cheat Engine. However, the bulk of the tedious work involved can be broken down at a high level into a
few core steps performed in repetition:

1. Get the register read during the execution of an instruction where the data of interest was accessed.
Find which previously executed instruction most recently set the value of that register.

Get the register read during that previously executed instruction.

oW DN

Repeat, starting at step 2, until a previously executed instruction is encountered where no register was
read from.

The manual approach to pointer sequence determination is therefore well-suited for automation.

http://cheatengine.org/help/pointer-scan.htm

6 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

http://cheatengine.org/help/pointer-scan.htm

%
3 Pointer Sequence Reverser NCCQOroup

Pointer Sequence Reverser (PSR) is a tool that implements and automates the manual approach. It takes
the process ID of the target application and the address of the data as input, observes the execution of
the process’ code until the data is accessed, and then returns the set of instructions used by the process to
access the data as output. PSR is written in C++ using the Win32 debugging API? and is implemented as
two main components: a debugger and a tracer.

3.1 Design and Implementation

C++ on top of the Win32 debugging APl was chosen after surveying other potential other approaches
including Python and plugins for various debuggers. Python was ruled out due to its nature as a high-level
language with less immediate access to the Win32 APl and for performance concerns. Implementing it as
a plugin for a debugger was also ruled out as existing ones either did not support xé64 or have a suitable
plugin API.

Finally, a core design goal was to focus on simplicity and workflow agility while avoiding over-engineering
and complexity where feasible. PSR is intended to augment the work of a reverse engineer and, accord-
ingly, it typically produces a number of incomplete sequences alongside more useful complete sequences,
allowing the reverse engineer to choose which to analyze further.

3.2 The Debugger

The debugger attaches to a target application and sets a one-time memory breakpoint on the user supplied
address. The debugger also repeatedly sets the trap flag on the CPU in each of the application’s thread
contexts. This causes execution control to return to the debugger after each instruction is executed, at
which point the tracer is called to store the instruction. As the debugger has no understanding of the
instructions’ binary format, it sends bytes totaling the maximum potential byte sequence length for each
recorded instruction. When the debugger detects that the memory breakpoint has been hit, itagain calls the
tracer to perform analysis of the recorded instructions. After analysis has completed, the debugger allows
the target application to continue running and resets the memory breakpoint. The debugger waits a short
amount of time between resuming process execution and resetting the memory breakpoint. This allows
execution to advance past the memory breakpoint-triggering instruction before the memory breakpoint is
set again. Otherwise, the target application would become stuck, infinitely executing the same instruction
that triggered the access violation.

3.2.1 Win32 Debugging APIs

PSR uses the following Win32 functions to facilitate debugging:

® DebugActiveProcess: Used to attach to the target application and perform debugging operations on it.
® DebugSetProcesskKillOnExit: Called with FALSE to disable termination of attached processes on exit.
e VirtualQueryEx: Used to obtain a page's protections before setting a memory breakpoint within it.

e VirtualProtectEx: Used to modify page protections in order to set memory breakpoints.

* GetThreadContext: Used to access information about a thread’s context at a given point in time. For
example, the value in the instruction pointer register when a memory breakpoint is hit.

e SetThreadContext: Used to set the trap flag on CPU to enable single stepping.
* WaitForDebugEvent: Used by PSR’s main debugging loop to wait for a debug event to have occurred.

* ContinueDebugEvent: Allows the target application to resume execution after a debug event.

Zhttps://msdn.microsoft.com/en-us/library/windows/desktop/ms679303(v=vs.85.aspx)

7 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

https://msdn.microsoft.com/en- us/library/windows/desktop/ms679303(v=vs.85.aspx)

nccoroup”

e CreateToolhelp32Snapshot: Used to enumerate the threads running in the target process.

3.2.2 Memory Breakpoints

PSR implements at-address memory breakpoints®# by using VirtualProtectEx to set the PAGE_GUARD
memory protection option on the target address. PSR's debugger component additionally stores the target
address to identify specific memory accesses. When the target application attempts to access a page where
PAGE_GUARD is applied, it raises a STATUS_GUARD_PAGE_VIOLATION that is passed to the debugger as a
debug event. The debugger must then check whether the address the target application attempted to
access matches any stored memory breakpoint addresses. If so, the debugger treats the event as a memory
breakpoint having been hit and acts accordingly.

3.2.3 CPU trap flag

x86 and amdé4 processors contain a FLAGS register (called EFLAGS and RFLAGS on x86 and amdé4,
respectively) that contains the current state of the processor. The bit at position 8 in the FLAGS register
is the trap flag; when set it causes the CPU to execute one instruction and then stop. A single-step exception
is sent to the debugger after the execution of each instruction, allowing the debugger the opportunity to
record every instruction executed by the application. The trap flag must be reset by the debugger after each
single-step exception is caught.

3.3 The Tracer

Each executed instruction is stored by the tracer in order. Instructions executed by each thread are stored
separately. Alongside each instruction, the tracer also records which registers have been modified since the
last instruction as well as their new values. Itis possible to determine which registers have been modified by
comparing the thread context from one instruction to the next. Only modjifications to the general-purpose
registers are recorded. The stack pointer and stack base pointer registers are also excluded from the record
of modifications since they are not typically meaningfully involved in the traversal of data structures. This
would complicate the process of analysis if included. When the memory breakpoint is finally hit, the tracer
analyzes the recorded instructions and data.

During the analysis phase, the tracer uses Capstone® to disassemble and understand each recorded instruc-
tion. The first step in analysis is to determine the register used during the access of the specified data. For
example, given the following instruction:

mov eax, [ecx + 8]

If this instruction triggered the memory breakpoint with a read, then the value in ecx was used to access the
data, and it can be said that ecx has been read from.

Capstone enables the automatic identification of registers read from by instructions. Currently, PSR does
not support automatic identification of registers written to during instructions, but could have an option
enabling users to manually identify the appropriate register. For example, given the following instruction:

mov [ecx + 8], edi

If triggering the memory breakpoint with a write, the user would then be able to specify that ecx contained
a value used to access the data.

Once the register used for the initial access to the data is determined, PSR then works its way back through
the recorded instructions in an attempt to understand the origin of the value in the relevant register during
the access. As mentioned previously, this is achieved through a series of steps. The steps below describe in

®http://waleedassar.blogspot.com/2012/11/defeating-memory-breakpoints.html
*http://www.codereversing.com/blog/archives/79
>http://www.capstone-engine.org/

8 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

http://waleedassar.blogspot.com/2012/11/defeating-memory-breakpoints.html
http://www.codereversing.com/blog/archives/79
http://www.capstone-engine.org/

nccoroup”

detail how PSR performs the analysis of the recorded instructions.
1. Obtain the value of the target register for the identified instruction.

The value of a register when a given instruction is executed can be determined by examining the record of
register modifications. As mentioned previously, the tracer stores the list of modified registers and their new
values for each recorded instruction. Starting from the identified instruction, PSR scans this list for the last
time the target register was modified. The value resulting from that modification is the value of the register
when the identified instruction triggered the memory breakpoint.

2. Find the last time that value showed up in a trace of the recorded instructions.

Sometimes, a value can appear more recently in the trace than the time at which it was loaded into the
previously identified register. For example, this would be the case if it was contained in another register.
The last time the value appeared in the trace can be determined using a method similar to the one used
in Step 1. Rather than focusing on the registers themselves, the search focuses on values set by register
modifications. In particular, this step identifies relevant instructions by searching for values contained in
registers instead of searching for the last time the read register was modified. The latter might seem to be a
sensible approach, but it runs into obstacles when a register obtained its value by a pop from the stack, or
some other operation where a stable sequence cannot be obtained.

Similarly, it might seem more efficient to search for the first time a value appears in the recorded instruction
trace instead of the most recent. For example, this could yield a means to shortcut irrelevant instructions that
simply shuffle a relevant value around. However, this approach could miss completed sequences residing
between the first and most recent occurrence of a value. This could happen if instruction recording began
while the target application was performing a sequence traversal. In such a situation, it would not be possible
to identify all of the instructions completing a sequence until the partially completed sequence is purged
fromthe trace; the instruction trace has afinite size, and once reached, the oldestinstructions are overwritten.
Furthermore, complete sequences identified could be incorrect if the data structures traversed by the target
application occupy memory that was freed and reallocated between the first and last occurrence of the target
value. In this case, the initial instance of the value — or values leading to it — may have been freed, and the
most recent occurrence of the value is a separate instance within a newer allocation located at the same
place in memory. This is an instance of the ABA problem.®

PSR uses Capstone to determine if trace instructions used stack registers (e.g. esp orebp) to read the value.
If so, the search continues backward through the trace until a non-stack register is read from. Reads from
stack registers are ignored because sequences that traverse the stack are usually unstable due to the stack’s
inherent volatility.

3. Obtain the register read from for the instruction at that location in the trace. Capstone analyzes the instruction
as before.

4. If the instruction performed a read from the instruction pointer or used an immediate value, the analysis is
complete.
Else, return to Step 1 with the newly identified register/instruction pair.

Each of the trace instructions identified in Step 2 are considered relevant as they are part of the pointer
sequence set used by the binary to access data at the originally specified target address. These instructions
make up the bulk of PSR's output. PSR also performs additional processing to remove redundantinstructions.

®https://en.wikipedia.org/wiki/ABA_problem

9 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

https://en.wikipedia.org/wiki/ABA_problem

nccoroup”

Memory hreakpoint hit

Memory access violation was a read. starting trace analysis

— Trace analwysis completed ——
EIP Instruction
xAA752fdb mov ecx, dword ptr
BxH64e858 mov eax, dword pte
BxAA752fea mov ehx,. eax
AxAA752Ff5 mov ecx,. ehx
AxAA4f dbfl mov esi,. ecx
Bx004f dbf? mov eax, dword pte
AxAA4f dbfd mov eax, dword ptr
BxAA752ffa mov ehx,. eax
AxAA753000 mov ecx,. ehx

mov esi, ecx

mn; eax, dword ptr

o

— Trace analywysis completed ——

EIP

H08°752f db
HxA864e8508
0841 dbf 3

Instruction

mov ecx,. dword
mov eax, dword
mov eax, dword
mov eax, dword
mov eax, dword

ptr
ptr
ptr
ptr

[BxaB8f60 1

[ecx + BxbA]

[ezi + BxB8A]

[eax + 41

[BxaB8f60 1

[ecx + Bx6A]
[esi + BxBAI]

[eax + 41
[esil

Jalue

BxAl4ebhecd
BxA14ebecd
Bx2Pe2@5hce
Bx2Pe2@5hce
Bx2Pe2@5hce
Bx2Be2B5cce
BxBA3d27hdc
Bx2aYefdce
Bx2aYefdce
Bx2aYefdce
Bx2aYefdoe

Jalue

BxAl4ebhecd
BxAl4ebecd
Bx2Pe2@5hce
BxBA3d27hdc
BxZ2aYeBdoe

UTahle

BxAABaabal
BxHA8aaball
BxAABacH38
BxAABacH38
BxAABacH38
BxB08ach 3B

Bx0@8e30f8
Bx0@8e30f8
Bx0@8e30f8
AxA08eBAL R

UTahle

BxAABaabal
BxAABaa5bal
AxAABac536

AxA08eBAL R

Figure 3: Example trace, before and after minimization to remove unimportant instructions.

3.4 Trace Minimization

Similarly to test case reductions performed by fuzzers to remove irrelevantinputs, PSR can remove redundant
instructions to make pointer sequences concise and easier to understand. Redundant pointer sequence
instructions are those that handle a relevant value, but do not dereference or add a useful offset to it. In
many cases, it may be observed that a pair of redundant instructions simply move a relevant value from one
register to another and then back again. Such instructions do not reveal any additional information about
the pointer sequence and can make understanding the output harder.

In order to remove redundant instructions, PSR iterates through every relevant instruction in the list, starting
with the earliest. It obtains the relevant value for each instruction and then looks for the most recent occur-
rence of that value in the list. If another occurrence is found, it removes everyinstruction between the first
and last instructions containing the value, including the last one.

From the output, users can easily see a sequence of offsets and dereferences used by the binary to traverse
a collection of its data structures. The most helpful sequences begin at a static address relative to the base of
the executable. Such sequences are generally stable across application restarts. As a result, these sequences
lend themselves to the applications mentioned previously, such as developing code that interoperates with
the target application.

3.5 Value Column

PSR’s output also includes a column for values. The Value column holds the values contained in the relevant
register of each instruction. It acts as a visual aide, as it can be useful to know the exact addresses an appli-
cation encountered while traversing its own memory. Often these addresses belonged to interesting data
structures when PSR was run, and can afford users the opportunity to explore these structures in memory.
For example, given the following recorded instruction:

mov eax, [ecx + 8]

If ecx had a value of Ox4A0C7F80 when the instruction was recorded, the Value column for this instruction
will contain 0x4AQCTF80.

10 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

nccoroup”

3.6 Vitable Identification

PSR attempts to identify possible vtable pointers located at the addresses in the Value column and displays
them in the Vtable column. C++ supports virtual inheritance, enabling derived classes to override the
implementation of virtual methods of their base classes. This enables the most derived version of the
method to be invoked when called on a base class pointer or reference. In general, as the compiler may not
know the exact class of the polymorphic object a base class pointer or reference refers to, each polymorphic
object will contain a pointer to a metadata table describing its class. These tables, vtables, may contain
runtime type information, but primarily contain function pointers for each virtual method used in the derived
class. The pointers to this table that exist within object instances are called vtable pointers. Vtable pointers
are placed at the beginning of object structures in memory. In this way, vtables are used to facilitate the
run-time method binding required for objects with virtual methods. This solution is not tied to C++ itself,
butis commonly used by compilers to implement dynamic dispatch,’ including the Microsoft C++ compiler
used by Visual Studio, Clang, and GCC.

Further information on the layout of vtables and polymorphic objects in memory can be found at:

® http://www.openrce.org/articles/full_view/23
® https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
® http://syssec.rub.de/media/emma/veroeffentlichungen/2016/12/22/marx_ndss2017.pdf

® https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2017/may/assethook-a-redirector-for-android-asset-files

-using-old-dogs-and-modern-tricks/

Since vtables are associated with polymorphic objects, the presence of a vtable pointer at an address in
the Value column indicates the presence of an object, and also that the object is somehow included in the
sequence. Information about vtable pointers can help a reverse engineer with prior knowledge about a
target application place PSR's output in context. For an example, see Section 4 on page 13.

PSR attempts to identify vtable pointers using a heuristic technique involving page protections. First, it
dereferences each address in the Value column to determine the value contained at the address. The
resulting value could be a vtable pointer, and to find out, PSR observes the memory protections applied
atthe address it points to. Since vtables are frequently stored in read-only memory, the memory protections
at the address should be read-only. If this is the case, PSR checks the protections of the memory pointed
to by the first entry in the potential vtable. Since vtables contain function pointers, and function pointers
point to executable code, the memory pointed to should have executable page protection. If this is also the
case, then PSR assumes that it has identified a vtable and includes its address in the Vtable column of the
instruction.

3.7 Support for x86, x64, and Position-independent Code

PSR was originally developed to support non-position-independent executables on x86. Adding support for
position-independent executables and x64 executables required a small amount of additional work. In order
to support 64-bit applications, it was necessary to convert many strings referring to x86 register names in the
source code to their amdé4 counterparts. For example, all instances of “"Eax” were to be changed to “Rax.”
Note that this is not a perfect solution however, and does not account for instances where 32-bit registers are
used in 64-bit code. In order to support position independent code, it was necessary to modify PSR so that
instruction analysis stops when the instruction pointer is read from, as in position-independent executables,
certain offsets are added to the instruction pointer to access data in predictable instruction address-relative

"https://en.wikipedia.org/wiki/Dynamic_dispatch

11 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

http://www.openrce.org/articles/full_view/23
https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
http://syssec.rub.de/media/emma/veroeffentlichungen/2016/12/22/marx_ndss2017.pdf
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2017/may/assethook-a-redirector-for-android-asset-files-using-old-dogs-and-modern-tricks/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2017/may/assethook-a-redirector-for-android-asset-files-using-old-dogs-and-modern-tricks/
https://en.wikipedia.org/wiki/Dynamic_dispatch

nccoroup”

locations.

12 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

%
4 Case Study NCCQroup

This section presents a full use case example of PSR by applying it to a popular first-person shooter PC game
written in C++. We use PSR to identify a pointer sequence leading to player objects. Accessing player object
data at runtime can enable development of bots, or provide a player with additional or enhanced game
information. The game studied here is a 32-bit, non-position-independent binary.

4.1 Locating Target Data

Before PSR can be used, the address of the data of interest must be determined. In this case, the data of
interest is the player object. The game studied in this section features a single-player mode using computer-
controlled player bots that will be used for testing. Assuming that player objects are managed in a similar way
for both human and computer players, identifying a pointer sequence leading to a user-controlled player’s
object should work for the players controlled by the computer as well.

To obtain the address of the user-controlled player's object at a particular point in time we will perform
memory scanning. Using Cheat Engine’s memory scanning functionality, we can locate the user-controlled
player’s object indirectly by searching for one of its data members. In the target game, a number of viable
techniques existfor locating a data member within player objects. One of the simplestis to switch the player’s
active weapon and look for corresponding changes in memory. Changing the active weapon and scanning
for 4-byte integers containing those numbers quickly isolates one address.

£ Cheat Engine 6.6 =3 ol =
File Edit Table D3D Help
- 000009A8-BF2.
=
Found:1
hddress Value Previous [Mew Scan] ’ Mext Scan [Chen Expine]
- - Settings
ZBOBEEAY 3 4 Value: g
Hex [] 4
Scan T}rpe’Exact‘ufalue vl [] Mot
Value Type| 4 Bytes
Memory Scan Options [F] Unrandomizer
[] Enable Speedhack
Writable [H] Executable
CopyOnWrite
(@ Alignment
FastScan| 4 |~ - .
Last Digits
Pause the game while scanning
[Mernory view] [Add Address Manually |
]
Active Description Address Type Value
Advanced Options Table Extras

Figure 4: The address of the user-controlled player's weapon selection at a particular point in time.

13 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

Y, -

nccoroup®

4.2 Obtaining a Suitable Address

Using OllyDbg,® a memory breakpoint can be set on the address containing the weapon selection value.
One of the breakpoint triggering instructions ismov eax, [esi + 1e@], suggesting that the weapon se-
lection could be stored at an offset of 0x1e0 within its containing object. A quick check of the memory using
Cheat Engine's structure dissect tool at the address held by esi shows that the address appears to have a
vtable pointer, suggesting that it is indeed the beginning of an object.

'E Structure dissectiunnamed structure E\@
File View Structures Structure Options
Group 1
| 280889C4
Offset-description Address: Value
unnamed structure -
20000 - Pointer to Butocreated 2B0B89C4 : P->008E80F8 ||
50000 — Pointer BEBOFE : P->0063F370
0004 — Pointer SES0FC : P->006159A0
:A-DDDEI - Polnter to Butocreatef8EBS100 : P->006159B0
- 0000 — 4 Bytes (Hex) 61535B0 : 0le08183
0004 — 4 Bytes (Hex) 6155B4 : S6FF0OO00
0008 — 4 Bytes (Hex) £155B8 : 01e0B1lEB
- 000C — 4 Bytes (Hex) 6135BC : F&830000
0010 — 4 Bytes (Hex) 6155C0 : 018BO773
0014 — 4 Bytes (Hex) 6155Cc4 : S0FFOleRr
0018 — 4 Bytes (Hex) 6155C8 : SECGHEB14
--001C — 4 Bytes (Hex) 6l35%CC : ccccccc3
0020 — 4 Bytes (Hex) 6155D0 : BBECHBSS
0024 — 4 Bytes (Hex) 6155D4 : S558B0O845
.-0028 — Pointer 615508 : P->T7441850C
-002C — 4 Bytes (Hex) 6135DC : 8510458B
0030 — Float 6155E0 : 17.18374825
..0034 — Pointer &61l55E4 : P->0CC25D7C
0038 — 4 Bytes (Hex) &139E8 : ccCcccccoo
--003C — 4 Bytes (Hex) 61l3%EC : CCCCCCCC
0040 — 4 Bytes (Hex) 6155F0 : DSECHBSS
0044 — Float 6155F4 : 4463.531738
-0048 — 4 Bytes (Hex) 6135F8 : 7841DS508
- 004C — 4 Bytes (Hex) 6135FC : DS9S74458B
.-0050 — Pointer 615200 : P->0DBBS0458
EMDDS4 - 4 Bytes (Hex) 615n04 : SDOBSBDS -
4| 1 | 3

Figure 5: The bytes shown correspond to plausible assembly code. Most apparently, the many hexadecimal
CCs correspond to INT3 instructions which are commonly found between chunks of actual code.

By supplying PSR with the address of the containing object instead of the weapon selection value, it can
return results faster as the objectis accessed more frequently than the weapon selection value. Afew minutes
after the game’s process ID and the address of the object are supplied to PSR, several traces are produced.
Many of the traces produced are fairly unhelpful — they do not start with a static address — but several of the
traces do begin with a static address.

8http://www.ollydbg.de/

14 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

http://www.ollydbg.de/

nccoroup”

4.3 Analyzing PSR Output and Identifying Structures

Many of the traces appear to show the same few sequences. One of the common traces shows a sequence
leading from an unchanging address (0xA@8F60) all the way to the object containing player's weapon selec-

tion. The below screenshots show the sequence and the memory associated with it.

Note: Some offsets have been omitted for space.

— Trace analysziz completed —
Instruction
mov ecx, dwoprd
mov eax, dword
moyv eax.
moyv eax.
mov eax.

ptr
ptr
pte
pte

dword
dword
dword

[BxaB8f6A1
[ecx + Bx6A1]
[esi + BxB01]
[eax + 41

Value

BxH14fhecd
BxH14fhecd
Bx222hab8c
BxH3df56fc
Bx2bhBAh8%c4

UTahble

BxBB8aa5a8
BxBB8aa5a8
BxBd8ac53A

HxBABeBALFH

Figure 6: A trace from a predictable address to an object containing the weapon selection value.

E Structure dissecttunnamed structure
File
Group 1
| a08f60

View Structures Structure Options

Offzet-description
unnamed =structure

FREELiL

- Polinter

0000 - Pointer
0004 - Pointer
0008 - Pointer to Rutocreate
000C - Poilnter
0010 - Pointer to Rutocreate
0014 - Pointer
0018 - Pointer
005C - Pointer
400680 - Pointer to Rutocreate
50000 — Pointer
0004 - Pointer
0008 - Pointer
0060 - Pointer
&4 — String
72 - Byte
7C — 4 Bytes

to Autocrea

4 i

Addres=: Value

o e

to Rutocreated RA08F&0

14FBEC4
14FBECS
14FBECC
14FBEDO
14FBED4
14FBEDS
14FBEDC

Fj
[w]
Fxj
[ST %]
W O

o
(3N £

]
0]
]

fa
g%
Lo
1]
wn
[=2]
9]

-

ez}

by ka3
ka3 k2
WD
Lnoon
oo
[*=Y [

o]

[o%]
%]
o
[us]
w
=
9]

by ka3
ka3 k2
WD

e}
Ln
rr
=

fa
g%
Lo
e}
L]
=
=]

%)
Lo
o]
(=]
9}

[n]

R T IR
s3] o
3

Ly ka
]
rj
r1|
¥}

5]
=
rzj

ot
-l
[w B v B) |

[S]

o o

4
a

SC
Sc
L

[s

2B0BEE

2ZBOBSEBRS
2BOBEBLC
2BOBSEEOD
2ZBOBSEE4

ToNDoDD O
I

=5 ECR =

E->014FBEC4

P->008RA5SHES

P->04E438AC
P->74616CT0

P->01C3B124

E->225BRSHC
P->008RCS30
P->03ERES38
p->008RCS51C
p->01Cc101592
defaultPlayer

142

T1E+

P->»250C6E14

15 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries

NCC Group

nccoroup”

The pointer sequence of offsets and dereferences starts at 9xAQ8F60 and leads to the weapon selection

(0x3) value at address @x2BOB8BA4. The address supplied to PSR, the address of the object containing the
weapon selection supplied to PSR is naturally present as well. Also, observe that the user-controlled player’s
name, "defaultPlayer”, is present within the object starting at 9x229BA58C.

Another common trace in PSR's output uses a different pointer sequence leading to the object containing
the weapon selection value. The below screenshots show this sequence and associated memory contents.

Note: Some offsets have been omitted for space.

— Trace analysziz completed —
Instruction
mou

lea
mowv
mov
mowv
mowv
mow
mowv

ECX.,
B ax .
BaX,
edi,
ECX.,
BaX .,
eax,

dvord ptr

[BxaBBf6H]

[ecx + Bxcl

duword
dword
duord
duword
dword
duord

pte
pt»
ptr
ptr
pt»

edx,

[eax + 4]
[eax]

[edi + B8]
[ezi + HxBA]
[eax + 41
[eax]

Value

Bxd14f hecd
BxH14f hecd
BxA14f bedd
BxA1c5hiz4
BxibhYefcf4
Bx229bab8c
BxA3d4f56fc
BxZ2hdh8?c4

UTable
AxBB8aa5al
BxBB8aa5bal

BxBB8ac538
BxBO8eBAf 8

Figure 7: Alternate sequence from a predictable address to an object containing the weapon selection value.

'E: Structure dissect:unnamed structure
File

Group 1
| =0sf0

View Structures Structure Options

Offset-description
unnamed structure

Address: Value

e

(= o =]

Pointer to Rutocreated ROBFE0
- Pointer 14FBECHY a
- Polinter 14FEBECS 1
— Pointer to Autocreatel4FBECC 0 438AC
- Pointer 14FBEDD P->T74616C70
- Pointer to Rutocreatel4FBED4 P—->01Cc5B124
40000 - Pointer to RAutocrealCS5B124 E->1BT7G6FCF4
— Pointer to RutocrlB7&FCF4 P->01CEBE&DE4
1B76FCF8 P->01C5Bl124
1B76FCFC P->229BL58C
229BRLSAEC P->00BRCS530
229BR550 P->03ERES538
225BASEC P->01Cl0152
2259BASFO defaultPlayer
229BLSFE 142
225BR608 0
229BRE0C P->03DF36FC
3DFS6FC 7
13DF5700
2ZBOBASC4
ZBEOBASCE
ZBOBASCC
C 2ZBOBABRO
01E0 - 4 Bytes Z2BOE8BR4 -
- 4 Bytes ZBOBABLA

16 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries

NCC Group

nccoroup”

Further analysis of the data structure at address @x1C5B124 reveals that it is a circular doubly-linked list
containing pointers to every player object. The screenshot below shows the sentinel node of the list.

%:Shudumdkﬂxtumﬁnwdshudum l:::]l!:lEgiﬂ
File Wiew Structures Structure Options
Group 1
| 20860
Offset-description Address: Value
unnamed structure -
'A-DDDD - Pointer to Zutocreated ROBFED : P->014FBEC4 D
».0000 — Pointer 14FBEC4 : P->008AASAS
ﬁDDD4 - Pointer 14FBECE : P->00000001
&DDDE — Polnter to RZutocreatel4FBECC : P->04E438LC
,.000C - Pointer 14FBED0 : P->74616C70
;DDlD — Polnter to Autocreatel14FBED4 : P->01CS5B124
ﬁDDDD — Pointer to RutocrealCS5BlZ4 : BP->1BT7GFCF4
;0004 - Polnter 1C05El128 : P->01CEGDE4
e G dmmm .0 |
..000C - 4 Bytes 1C5B130 : 66
&DDID - Pointer 1c58134 @ p->01C5EFR4
ﬁDDl4 - Pointer 1058138 : p->»01CSEF84
0018 — 4 Bytes 1Cc5B13C : O
-001C — 4 Bytes 1c5El140 : 66
0020 — Pointer 1C05El144 @ P->1BT76EFT734
;0024 - Polnter 1C5E148 : P->1B7621F4
0028 — 4 Bytes 1c5B14C :: O
-002C — 4 Bytes 1Cc58B150 : 66
0030 — 4 Bytes 1058154 = O A
4 1 3

As can be seen above, the pointers at offsets 9x0 and x4 pointto the firstand last nodes. These each contain
pointers to the first and last player objects, respectively. The null pointer further at offset x8 indicates that
it is the sentinel node of the list.

17 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

nccoroup”

Examining the pointers contained within each node confirms that they encapsulate player data. The objects
they point to contain the names of the two players currently playing, the user-controlled "defaultPlayer,” and
the computer-controlled "D. Yee.” Also observable within the following screenshots are the vtable pointers
of these player objects; they are the same for both objects (0x8AC530), indicating that they are of the same

type and not different subclasses of a shared base class.

P->014FBEC4
P->0082R5REB
p->00000001
P->04E438AC
P->T74616CT0
p->01C5E124
P->1B7E6FCF4

: P->01CBG6DB4

: P—>01cSEl24

: P->Z229BRSEC

: P->008RC330

: P->03ERES38

: P->01cCc10152

: defaultPlayer

: 142

: 0

: P->03DF3EFC

: P->15BFEBOCC

: P->03ERB330

: 0

HIY

=N e >

'E Structure dissectunnamed structure
File View Structures Structure Options
Group 1
| 20860
Offset-description Address: Value
unnamed structure
40000 - Pointer to Autocreated BOBFE0 :
50000 — Pointer 14FBECA
, 0004 - Pointer 14FBECH
:»DDDE - Pointer to Autocreatel4FBECC
»000C - Pointer 14FBEDD
;DDlD - Pointer to Butocreatel4FBED4
4.0000 - Pointer to BRutocrealC5E124
0000 - Pointer to AutocrlB7GFCF4
».0004 - Pointer 1B76FCFB
;DDDE - Pointer to AutocrlBT7eFCFEC
50000 - Pointer 229BAS8C
».0004 - Pointer 229BA590
».0060 - Pointer 229EASEC
E - String 225BASFOD
- Byte 225BLSFE
- 4 Bytes 225BR608
- Pointer to Auteo229%BRE0C
- Pointer 229BRE10
- Polnter 229BLR614
- 4 Bytes 2259BL618
- 4 Bytes 229Bre1C
‘| 1

Figure 8: Navigating to the player object for "defaultPlayer” through the linked list.

18 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries

NCC Group

nccoroup”

Group 1

|maﬁm

Offset-
unnamed structurs
Pointer to Rutocreated ROBF&0D

description

ﬁ Structure dissectiunnamed structure
File View Structures Structure Options

Address: Value

14FBECH4
14FBECS

0008 - Pointer to Rutocreatel4FBECC

40000 -
E-DDDD - Pointer
iD-DDD*l - Pointer
b
;-DDDC - Pointer
a

14FBEDOD

0010 - Pointer to Rutocreatel4FEBED4
40000 - Pointer to RutocrealCS5B124

50000 — Pointer to AutolCEGDB4
,.0004 - Pointer 1C86DES
:‘-DDDE — Pointer to RAutolC86DBC
50000 - Pointer 4E438AC
,.0004 — Pointer 4E438B0
»0060 - Pointer 4E4350C
L.006E — Byte 4E43517
,.006C — Pointer 4E43913
50070 - Pointer 4E4391C
.0074 - 4 Bytes 4E43520
.0078 - 4 Bytes 4E43924
..007C - 4 Bytes 4E43923

40000 - Pointer to RAutocrlBTEFCF4

P->014FBECH4
p->008AR5R8
P->00000001
P->04E438LC
P->74616C7T0
P->D1C3B1l24
P->1B76FCF4

: P->01CBEDE4
P->01C3B124
P->1B76FCF4
P->04E438BAC
P->008RCS30
P->03DE3138
P->04FDF35C

4
P->0F26ECEC
P->0F26ECDC
&

135

0

=N Eo =5

[l »

L

Figure 9: Navigating to the player object for "D. Yee" through the linked list.

Given the sequence produced by PSR, it is now possible to quickly access any player’s object in the game at
any time in the future, enabling mods or other programs to interoperate with this game. Additional reverse
engineering, with PSR or other tools, could be performed to identify other interesting data structures or
determine more about the structure of the player objects and the information contained within. Lastly, now
that it is known that the player object vtable resides at @x8AC530, context can be given to traces produced
by PSR in the future when @x8AC530@ shows up in the Vtable column. Such occurrences would indicate that

the pointer sequence deals with player objects.

19 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries

NCC Group

%
5 The End NCCQroup

5.1 Conclusion

This paper discussed and demonstrated an implementation of a technique for obtaining reliable access to
data structures within a binary. Automated pointer sequence reversing is faster, and usually more accurate,
than Cheat Engine’s pointer scanner, a similar tool implementing a different technique. It provides a starting
point for analyzing an application’s data structures, aiding analysis in order to gain a deeper understanding
of an application and how its internal data structures relate to one another.

PSR does not produce perfect results 100% of the time, but instead quickly produces a number of results
of varying quality, allowing the user to select the best output. Although PSR readily lends itself to reverse
engineering for the purpose of developing game mods, it may be useful in other scenarios as well. The
code for PSR can be found at https://github.com/nccgroup/psr.

5.2 Acknowledgements

| would like to thank my editor, Jeff Dileo, for his hard work, valuable time, and keen insight while | developed
PSR and wrote this paper. | would also like to thank NCC Group for encouraging research projects like this
one.

20 | Automated Reverse Engineering of Relationships Between Data Structures in C++ Binaries NCC Group

https://github.com/nccgroup/psr

	Introduction
	Prior Art
	Techniques
	Assessment

	Pointer Sequence Reverser
	Design and Implementation
	The Debugger
	The Tracer
	Trace Minimization
	Value Column
	Vtable Identification
	Support for x86, x64, and Position-independent Code

	Case Study
	Locating Target Data
	Obtaining a Suitable Address
	Analyzing PSR Output and Identifying Structures

	The End
	Conclusion
	Acknowledgements

