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INTRODUCTION

The identification of vulnerabilities and understanding what is 
involved in their exploitation has numerous applications in both 
the attack and defence side of cyber security. The way in which 
software vulnerabilities are discovered has evolved considerably 
over the last 20 years in terms of techniques, efficiency and the 
complexity of the issues found. What was once a mostly manual 
process has, over time, become increasingly automated and 
augmented to facilitate not only discovery, but also triage and 
sometimes exploitation. 

However, while this automation and augmentation has helped 
the process of vulnerability discovery considerably, it has not 
addressed all the challenges faced with increasingly esoteric1 
weaknesses being discovered by highly skilled individuals. These 
often subtle logic bugs are challenging to find in an automated 
fashion and typically rely on a large body of knowledge and 
experience being applied to a particular set of circumstances.

  

This paper is intended for individuals with a technical background 
who are responsible for identifying, understanding, mitigating or 
responding to security vulnerabilities in software. The paper is 
technical in nature, although high level, and is intended to provide 
a view on modern vulnerability discovery approaches in 2016.

[1] https://en.wikipedia.org/wiki/Row_hammer
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[2] https://en.wikipedia.org/wiki/Shatter_attack
[3]  https://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426
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Manual analysis

Introduction

Historically, manual programme analysis was the primary method 
researchers would use to look for flaws in software, and it is still 
a very popular approach. This involves manually reviewing source 
code or reverse engineering binaries in order to find vulnerabilities 
“by hand”. This will often include using small scripts or tools to aid 
in finding some common flaws or questionable function calls, but 
won’t typically involve automated testing or intelligent tools that 
can actually reason about code constructs. Most people choosing 
to review software manually will focus more on understanding the 
software and most specifically, the high-risk entry points of any 
identified attack surface.

The primary objective of a manual programme analysis is either 
to quickly home in on software locations with a high probability of 
vulnerability, or to take a more holistic approach to gain a thorough 
understanding of the target. The approach taken, as well as the 
resulting bug quality, will largely depend on the skill of the reviewer, 
as well as their familiarity with the software itself, the internals 
of the language used to write the programme and the operating 
system on which it is run.

Attack surface determination

Generally, the first thing to do when reviewing code is to determine 
the probable attack surface of the target before even starting to 
look at any source code or disassembly. Knowing the parts of a 
programme that are attackable will give a natural starting point 
for analysing code directly in a top-down approach or will serve as 
a guiding light while performing a more thorough code analysis 
using a bottom-up approach. 

Most software will have some obvious attack surface: the kernel 
can be attacked by user-land processes issuing system calls; an 
HTTP server can be attacked by a client sending HTTP requests; 

a setuid binary can be attacked by manipulating environment 
variables or command-line arguments. A lot of software might 
also include less obvious attack surfaces that only thorough 
understanding and analysis will uncover. An interesting historical 
example of a non-obvious attack surface would be the discovery 
of “shatter” attacks2  against privileged applications running on 
Windows. This type of attack would be very difficult to discover 
for a researcher who did not have an in-depth understanding of 
Windows. Focusing on a target programme in isolation would make 
them blind to these additional components of the attack surface.

Researchers approach attack surface modelling in different ways. 
Some simply keep notes, others keep internal mental models, and 
others will use graphical software that allow different endpoints to 
be plotted to visually show a representation of the system being 
targeted. The amount of time spent fleshing out the attack surface 
will depend on the time being committed to a project, or just the 
style and approach of the researcher. The attack surface model 
will, however, constantly be revisited and reworked as a more in-
depth understanding is developed.

Analysis approaches

There are effectively two common approaches to manual 
programme analysis, dubbed “top-down” and “bottom-up” analysis. 
Realistically things aren’t so black and white though. Most 
commonly a combination of both approaches described will be 
used, as both offer some advantages and can help understand 
things at different phases of a review. These two approaches are 
summarised below. An exhaustive book on comprehensive manual 
programme analysis is The Art of Software Security Assessment 
(often referred to as TAOSSA)3, which is highly recommended for 
anyone planning on pursuing manual bug finding.
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Top-down analysis

This is probably the most common approach to finding bugs in a 
programme. A researcher will make an informed decision, based 
on an attack surface analysis, about where to start looking for 
bugs. They will then often search for some potentially dangerous 
function calls or integer operations in code related to that attack 
surface and try to work backwards to determine if they can 
actually be abused. 

Researchers will begin reviewing code and understanding the 
programme only from this “top” part of functionality and then work 
down into the deeper portions of code. Often, this allows them to 
disregard how the rest of the programme works or is initialised. 
This can lead to quick results, but, depending on the complexity 
of the programme, can also leave the researcher blind to various 
configuration-specific quirks. 

Despite the top-down approach being intended to target 
interesting functionality, it unfortunately can still end up leading 
to numerous false positives. Consider a case where a programme 
uses the notorious strcpy function. It’s actually entirely possible to 
use this function safely, but a manual reviewer doing a top-down 
analysis might search for uses of this function as possible entry 
points to more closely focus their analysis. In the event that the 
programme’s use of this function is ubiquitous, but also happens 
to be largely benign, the researcher could be presented with 
hundreds of thousands of results, with no clear indication of where 
to usefully start their top-down analysis from or with countless 
dead-ends when they do finally start.

There are still times where searching for particular functions can 
be extremely useful though and the example above isn’t always 
the way things pan out. Consider a case where you’ve identified 
some internal function that is relatively infrequently used, but has a 
high probability of being used incorrectly. 

An example might be a function whose return value was not 
consistently checked, and could be easily influenced to return an 
unexpected error. Searching for all instances of this function might 
lead to a much more acceptable signal to noise ratio than a more 
common library function like strcpy. 

In reality, the approach used for top-down analysis will often 
be determined on-the-fly and based on the complexity of the 
programme and the results of initial probing. The fruitlessness of 
certain approaches will often quickly become apparent after the 
initial “sniffing around” phase.

A realistic example of using the top-down approach against an 
HTTP server would be starting with the realisation that HTTP 
servers almost always have a significant amount of code related 
to configuration and plugin management, which is far less 
interesting from a security perspective than the code handling 
which handles requests over the network. After identifying code 
responsible for handling HTTP requests, a researcher may simply 
look for questionable function calls or code constructs (like 
integer operations) in the source or disassembly that is associated 
specifically with that functionality. Once these calls are found, 
investigations can be performed to see if and how attacker-
provided input might be provided to the questionable calls through 
the HTTP headers or other request data. 



[4] https://code.google.com/p/google-security-research/issues/list?can=1&q=reporter%3Aforshaw
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Bottom-up analysis

This approach is much simpler to understand, but can be much 
more time consuming and complicated in practice. It will often 
lead to the discovery of significantly more vulnerabilities than the 
top-down approach. Moreover, it can lead to the discovery of the 
type of complex or intricate bug that can only be found through 
manual rather than automated analysis. The idea of bottom-up 
analysis is to effectively start from a given point in the programme, 
typically the main function, and slowly understand and analyse all 
functionality. Realistically, due to time constraints, this will involve 
certain areas that have nothing to do with any attack surface 
being skipped. Using this approach allows one to slowly build up 
a thorough understanding of all of a programme’s components, 
custom functions, and so on. As a result, it becomes possible 
to start identifying new attack surfaces and application-specific 
vulnerability constructs that would be missed by simply looking for 
common mistakes. 

Using the bottom-up approach typically involves keeping 
significantly more documentation and is often the best approach 
when a researcher will be spending lots of time on a project. Even 
if time constraints prevent all code from being analysed, it will help 
to highlight the areas to focus on in future engagements.

For interesting examples of the type of vulnerabilities that can be 
discovered from a long-term bottom-up analysis see the Windows 
operating system flaws discovered by James Forshaw of Google’s 
Project Zero4 .

Functionality-specific analysis

Functionality-specific analysis can also be useful when the sheer 
size of a codebase makes it impossible to do a full bottom-up 
analysis. For example, an operating system kernel is so massive 
that it’s not feasible to review or understand all of the functionality. 
However, following a reasonably thorough bottom-up analysis, one 
can do future engagements that consist of smaller functionality-
specific reviews that focus on certain bug classes or certain 

interactions, and effectively ignore other functionality that’s not 
of interest. In this way, a researcher can slowly build out a more 
thorough understanding of the kernel, piece by piece. This might 
consist of re-reading the same pieces of core functionality multiple 
times, but with a new frame of reference, and can often allow bugs 
that were previously missed to be discovered thanks to a new 
understanding or perspective. 

Relevance

Several other approaches to finding bugs are discussed later in 
this paper. These have become increasingly popular, and in many 
ways are more commonly used for vulnerability discovery than 
manual analysis. Many would argue that these more modern 
approaches are much easier to pursue. Although this is often 
true, for the foreseeable future there will always be a degree of 
shallowness to the bugs found in this way. Static analysis and 
fuzzing are capable of finding a lot of different bug classes, but 
they still lack the ability to find abstract logical issues that are 
usually only found with the help of the thorough and holistic 
understanding of a programme’s behaviour that is achieved 
through manual analysis. Additionally, many researchers still prefer 
manual analysis because it helps to avoid the massive signal to 
noise problem that can result from automated analysis. By doing 
things yourself, it is possible to focus on vulnerabilities that will 
have a high probability of exploitation (as opposed to those which 
result only in a crash). A significant number of vulnerabilities 
being discovered on a day-to-day basis are the product of manual 
program analysis.

Conclusion

At an abstract level most manual programme analysis follows a 
simple flow that consists of only a small set of actual approaches. 
Until automated analysis becomes significantly more robust, there 
will always be room for manual programme analysis and it should 
still be a significant part of most assessment approaches, while 
being augmented with more modern automated analysis.
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Overview

Dynamic analysis is a term used to describe the testing or analysis 
of software that is performed while running the programme. It 
usually refers to testing that is conducted by an automated tool. 
It allows a researcher to observe the internal state of a running 
program and see how it changes in response to different inputs.

Dynamic analysis can be both passive and active. Passive dynamic 
analysis merely observes the program as it runs and records its 
actions. Active dynamic analysis changes a program’s behaviour 
in some way; for example, causing certain actions to fail to 
investigate error handling mechanisms.

Dynamic analysis tools mostly fall into one of two categories. The 
first type of tool modifies the programme under test to add extra 
code to perform the desired action. This modification can be done 
at compile time, which has the advantage of introducing very little 
performance hit but requires source code, or at run time - which 
only requires the binary. The second type of tool runs the program 
within some kind of test harness. Most commonly, this would use 
an operating system’s debugging API to allow the harness to 
observe and/or modify the behaviour of the programme under test. 
This incurs a much larger penalty in terms of performance, but is 
considerably more flexible and powerful.

One advantage of automated dynamic analysis is that it scales 
very easily. Typically, each instance of the programme under 
test is independent and therefore, running multiple instances 
simultaneously is reasonably straightforward given the necessary 
computing resources. 

Vulnerability discovery

Most passive dynamic analysis techniques do not directly identify 
vulnerabilities. What they do is enable researchers to observe the 
state of the programme or measure the effectiveness of other 
techniques such as fuzzing.

Active dynamic analysis techniques can be used to find 
vulnerabilities directly. This could be through exercising parts of 
the code that are difficult to test, or through additional sanitisation 
and validation of runtime data. 

Debuggers are essentially manual dynamic analysis tools that 
are used extensively by researchers. However, since the focus of 
this part of the paper is automated dynamic analysis, they are not 
discussed further.

Code instrumentation 

Instrumentation is the most common form of passive dynamic 
analysis. It allows a researcher to observe the state of a running 
programme which can greatly aid vulnerability discovery. 

One technique is known as API tracing and the Linux programme 
strace is a good example. Each time an API of interest is called a 
log entry is generated, which typically includes details of the caller 
and any parameters. For example, it can easily show if attacker-
controlled input is used by insecure APIs such as strcpy. It is 
much easier to use a technique like this to directly observe data 
being passed into functions than attempting to obtain the same 
information by performing full dataflow analysis for a binary. 

Dynamic analysis



[5]  http://j00ru.vexillium.org/?p=1695
[6]  https://www.ernw.de/download/xenpwn.pdf
[7]  http://valgrind.org/
[8]  https://github.com/google/sanitizers
[9]  https://www.microsoft.com/en-gb/download/details.aspx?id=20028

All Rights Reserved.      © NCC Group 2016

 NCC Group Research Insights      10

Code coverage analysis records how frequently each part of 
the programme is executed. It can be used to measure the 
effectiveness of a test set, possibly by demonstrating a test set is 
incomplete, or by eliminating cases that do not contain new unique 
code coverage. It is also used by some fuzzers to reduce the size 
of the test set without losing coverage. 

Code coverage analysis is also used by some whole-program 
optimisers during compilation to group commonly executed code 
together in memory, which reduces the working set size for a 
binary. This is why some functions are split into several chunks 
in different parts of a binary. The code that the compiler thinks 
represents “normal” execution would be in one location while the 
rest would be stored elsewhere. 

Another notable instrumentation technique that is increasing in 
popularity is the use of hypervisors to instrument functionality that 
is hard to analyse dynamically using more traditional techniques. 
The main research prompting this was a project called Bochspwn5  
whereby the Windows kernel was instrumented to automate the 
identification of kernel time-of-check time-of-use (TOCTOU) race 
condition vulnerabilities, to great success. This involved logging 
user-land memory accesses from the kernel to identify code 
that accessed the same memory location two or more times in 
the same code path. A more recent incarnation of this, called 
Xenpwn6, instrumented the Xen hypervisor in order to identify 
similar TOCTOU issues.

Fault injection

Fault injection is an active dynamic analysis technique used to 
simulate failures of a program that would be unlikely to occur 
during normal operation. It is commonly used to test error handling 
for cases that are difficult to engineer without causing other 
failures. For example, out-of-memory conditions or open file 
handle limits can easily be simulated by causing memory allocation 
functions to fail only in one process, or when called by specific 
functions, using tools such as Valgrind7. 

This allows parts of the programme that would not be executed 
during normal operation to be tested. Bugs in error handling are 
far less likely to be found during development as the code in 
question would rarely be exercised. 

Another advantage of fault injection is that it allows testing of 
potentially fatal system-wide issues without impacting other 
processes. Causing memory allocations to actually fail would likely 
render the testing system unusable. 

Fault injection should not be confused with general Fault Injection 
aka Fuzzing which is discussed later in this paper.

Runtime verification

Another technique related to fault injection is runtime verification. 
It involves inserting additional runtime code to verify the validity 
of data before it is used. This is done by initialising variables to 
deliberately invalid values and testing for these values when a 
variable is used. 

Tools such as Address Sanitizer8  and Application Verifier9  both 
use this technique. In combination with fuzzing it is a method of 
identifying vulnerabilities. Many of the bugs it finds are very hard 
to identify using other techniques such as static analysis or even 
manual code review. It can detect bugs including uninitialised 
pointer use, buffer overflows and use-after-free conditions. For 
example, the tools can detect use-after-free conditions by adding 
code to memory management routines to set buffers to specific 
values when the memory is allocated or freed. The values are 
chosen to be invalid addresses so that any attempt to use them as 
pointers will cause an exception. The tool can then determine the 
type of bug based on the address the code attempted to access.



[10] http://cvc4.cs.nyu.edu/web/
[11] http://stp.github.io/
[12] https://github.com/Z3Prover/z3
[13] http://research.microsoft.com/en-us/projects/betterbug/castro08better.pdf

All Rights Reserved.      © NCC Group 2016

 NCC Group Research Insights      11

SMT solvers

Satisfiability Modulo Theories (SMT) solvers, or constraint 
resolvers, attempt to find a set of values that meet a certain set of 
conditions. They have numerous applications in computer science, 
several of which are relevant to dynamic analysis.

At the conceptual level, SMT solvers allow the following kinds of 
question to be answered:

•	 How must the input change to make program execution 
follow the other path at this branch?

•	 Is there any input that can cause this calculation to overflow?

•	 Is there any input that causes both these function calls to 
execute?

Common SMT solvers used in security research include CVC410 , 
STP11 and Z312 - the first two of these are academic projects, and 
the third is by Microsoft Research. 

SMT solvers have been used in a number of dynamic analysis 
tools to increase their effectiveness. They are generally used with 
a technique called Symbolic Execution whereby a programme is 
analysed to determine how different inputs cause different parts of 
the code to execute. This is normally achieved using an interpreter 
and symbolic values for inputs. The result is a set of expressions 
and constraints in terms of input symbols for following different 
branches. The SMT solver can then attempt to find inputs that 
cause specific instructions to execute.

For example, a common fuzzing technique is to mutate the input 
data, while monitoring the code coverage graph to understand 
whether the mutation allowed new code to be reached. With 
an SMT solver, input that exercises specific code branches can 
be intelligently generated, instead of brute-forced by traditional 
fuzzing. 

However, this added intelligence can be extremely computationally 
expensive. The SAGE fuzzer from Microsoft uses this technique to 
maximise code coverage.

A novel application of SMTs from Microsoft Research was 
generating a clean input that reproduced a particular crash13. 
For example, if an application crashed while editing a sensitive 
document, users would likely be reluctant to submit crash dump 
files in case they contained parts of the document. The solution 
was to rerun the application and record every branch taken, 
then use Z3 to generate an input that would follow exactly the 
same code path. Users could then send the generated file to the 
application vendor without the risk of compromising private data. 

SMT solvers have also been used by a number of static analysis 
tools to significantly reduce the number of false positives, by 
allowing path sensitive analysis. This involves computing the 
constraints necessary to follow a specific path and determining if 
that is consistent with exercising the vulnerable code. Some static 
analysis tools refer to this capability as “value tracking”.



[14]   http://lcamtuf.coredump.cx/afl/
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Common tools

The following sections describe some of the common tools 
available to perform dynamic analysis. Several do not require 
the source code of the application being tested. AFL, Address 
Sanitizer and Application Verifier are standalone tools used for 
vulnerability finding, while Detours and Pin are frameworks to be 
used in building other dynamic analysis tools.

American Fuzzy Lop (AFL)

AFL14 is a fuzzer that uses compile-time instrumentation and 
genetic algorithms to automatically discover new, interesting 
test-cases that trigger new internal states of the target binary. It is 
currently one of the most popular fuzzers and has found numerous 
vulnerabilities in a wide variety of applications. While not purely a 
dynamic analysis tool, its extensive use of dynamic analysis makes 
its inclusion in this section appropriate.

Although AFL performs best when applications can be recompiled 
to add its instrumentation, a binary-only mode is also available. 
AFL also contains lots of interesting features for security 
researchers.

•	 Given one test case, try to generate a smaller one that 
follows the same code path.

•	 Generate valid files for a given parser without a reference 
set.

•	 Infer the format for input files by observing code flow in the 
parser.

AFL is still under active development and the available features 
are likely to increase.

Address Sanitizer

Address Sanitizer (ASan) is a fast memory error detector. It 
comprises a compiler instrumentation module and a runtime 
library. It can detect various memory-related issues including:

•	 Out-of-bounds accesses to heap, stack and globals.

•	 Use-after-free.

•	 Use-after-return (to some extent).

•	 Double-free, invalid free. 

Address Sanitizer is implemented in both the Clang and GCC 
compilers. In order for ASan to operate, the target binaries 
must be recompiled with the appropriate command line flags. 
Therefore, access to the target source code is mandatory.

ASan is currently used extensively by the developers of the 
Firefox and Chrome web browsers and has found numerous 
memory corruption vulnerabilities. It is regularly combined with 
fuzzing tools such as AFL, as this greatly improves the quality of 
the results.

Application verifier

Application Verifier is a runtime verification tool developed by 
Microsoft. It can find subtle programming errors that can be 
extremely difficult to identify with normal application testing. 
Application Verifier operates by simulating various error 
conditions to understand how the application handles these rare 
edge cases. Consequently, it can identify errors related to heap 
corruption, invalid handles and critical section usage.

The most effective method of finding vulnerabilities with 
Application Verifier is to enable its various checks then run the 
application under a debugger. This means that any issue found 
will cause the debugger to break. 



[15] http://research.microsoft.com/en-us/projects/detours/
[16] https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
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Detours

Detours15 is a library written by Microsoft Research that 
allows dynamic instrumentation of binaries. It enables a 
researcher to build applications to hook functions at runtime 
in order to perform dynamic analysis. Despite the description 
as an instrumentation tool, Detours can be used to write 
tools that perform either passive or active analysis. Detours 
does not require the source code of the programme under 
analysis, however, debugging symbols enable some additional 
functionality such as looking up function addresses at runtime. 

The Detours library enables interception of function calls. It 
achieves this by replacing the first few instructions of a target 
function with a jump to a user supplied detour function. The 
overwritten instructions are preserved in a trampoline function 
which comprises the overwritten instructions and a jump to the 
remainder of the code. The code for the trampoline function is 
created automatically by the Detours library. All a user needs to 
provide is a pointer that gets set to the appropriate code once a 
detour has been put in place.

Microsoft makes extensive use of Detours in its own testing. In 
fact, the Microsoft compilers were modified to make function 
hooking in the emitted binaries significantly easier. Every 
function has a fixed pattern at its start and end to enable safe 
and efficient detouring. Specifically, the first two bytes of every 
function are a NOP-equivalent, while the five bytes before each 
function are all NOPs. These can be safely modified by Detours 
to hook calls to a given function.

The free version of Detours only supports Windows on 32-bit 
x86 platforms. The Microsoft-internal and professional versions 
also support x64 and ARM CPUs.

Pin

Pin16 is a framework written by Intel that allows dynamic 
instrumentation of binaries at runtime. Like Detours, it does not 
require the source code of binaries under test. It can be used 
to develop tools that perform both passive and active dynamic 
analysis. For example, it is very common for Pin to be used 
alongside a fuzzer to measure code coverage.

Pin can perform instrumentation at a very low level – down to 
individual instructions if required. It can also add instrumentation 
at basic block or function level. It also supports multiple 
operating systems, including Windows, Linux, OSX and Android 
on both 32-bit and 64-bit Intel CPUs. 

Conclusion

Dynamic analysis covers a wide range of programme 
instrumentation methods. Passive dynamic analysis can 
significantly increase the efficiency of other vulnerability 
discovery techniques such as fuzzing. Active dynamic analysis 
can be used to discover vulnerabilities that are extremely 
difficult to detect by any other method.

There are bugs that dynamic analysis would be very unlikely 
to ever discover. The same can be said for static analysis and 
manual code review. However, the best method for finding 
vulnerabilities is always likely to be a combination of techniques. 
AFL has shown that by combining relatively simple fuzzing with 
dynamic analysis, the efficiency of fuzzing can be massively 
increased, resulting in many vulnerabilities being found. 

The frameworks available with which to build bespoke dynamic 
analysis tools are incredibly flexible and powerful. The only limits 
on what can be achieved are available computing resources and 
imagination. 



[17] https://github.com/octopus-platform/joern
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Static code analysis

Overview

Static analysis and Static Application Security Testing (SAST) 
are terms used to describe the testing or analysis of software 
that is performed without needing to actually execute the 
programme. The term is usually applied to testing that is 
conducted by an automated tool, whereas human analysis is 
typically called security-focused code review or simply manual 
analysis. 

The vast majority of static analysis tools will perform their 
analysis on a programme’s source code, although some tools 
do support the analysis of object, byte or even machine code. 
These days, you can find a static analysis tool for pretty 
much every programming language, with varying degrees of 
usefulness.

The primary objective of a static analysis tool is to gain an 
understanding of the target software’s behaviour, usually with 
the aim of uncovering security, privacy and quality issues. As 
such, static code analysis tools can be extremely valuable when 
performing vulnerability research.

The importance of intelligent programme 
analysis

Many static analysis tools do not attempt to deeply understand 
the behaviour of the software being tested, instead opting to 
simply scratch the surface with naïve grep-like pattern matching. 
This is unfortunate, because it can increase the rate of false 
positive detections. Separating the wheat from the chaff can 
place significant triage burden on the vulnerability researcher. 

For example, a naïve tool might simply say: “Here are all the 
places that strcpy is called”, which is to some extent helpful, but 
still places considerable onus on the researcher to verify which 
instances are potentially vulnerable. In contrast, an intelligent 
tool would say: “Here are the places where external input to the 
programme could induce a buffer overflow in strcpy”. 

These types of naïve tools should be avoided. They can produce 
useful results, but these tend to be buried deep inside a 
haystack of false positives. Use these tools only if you have an 
excess of free time and suspect the target software contains 
low hanging vulnerabilities.

So then, what constitutes intelligent programme analysis? 
One could write hundreds of pages on this topic, but we will 
try to summarise it in simple terms here. Intelligent static 
analysis tools will frequently take additional steps beyond 
simply tokenizing and parsing the code into an abstract syntax 
tree. Generally, a smart static analyser will generate an intra-
procedural, or better, an inter-procedural data-flow graph. 
This construct indicates how data will propagate through the 
programme via function calls and assignment operations. For 
static analysis of C/C++ code, an excellent tool that has these 
capabilities is Joern17.

Data-flow analysis is often supported by some form of abstract 
interpretation and value tracking. These are techniques for 
evaluating mathematical and boolean expressions in an attempt 
to characterise the behaviour of the program. For example, this 
is useful for automatically determining whether user-supplied 
input can control the evaluation of a series of conditions or 
expressions that are needed to induce a vulnerability found 
deep within the code. 

But how does a static analysis engine understand the concept 
of an array, and that it should never be accessed out of bounds? 
And for that matter, how does the static analyser understand 
the semantics of security-impacting functions such as the 
previously-mentioned strcpy? These answers are described in 
the next section.
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Rulesets

Essentially, a rule is a set of conditions that, when met, instruct 
the static analysis tool to trigger a vulnerability warning. In 
the above example, a static analyser might have a rules which 
explains that an array can be imagined as a sequence of bytes 
in memory, and that the [] operators access the array at a 
certain offset, and this offset must never exceed the size of the 
array. Static analysers will have hundreds of other such rules. 
For example, a ruleset might encode the notion that a pointer 
must never be re-used after it has been passed to free, or that 
when calling strcpy, the length of the source buffer must never 
exceed the length of the destination buffer.

At this point, it should be clear that in order to detect a 
diverse and comprehensive set of security vulnerabilities, the 
static analyser must have a deep understanding of not only 
the programming language syntax, but also the compiler, 
target architecture, and the semantics of security-impacting 
functions in the standard library and common frameworks. 
Each of these can introduce architectural abstractions that 
can confuse a naïve tool, but more importantly, they may 
encourage programming patterns that can have unsafe security 
consequences. Therefore, the static analyser must understand 
concepts such as dynamic memory allocation, must be able to 
resolve layers of abstraction, and must be able to follow method 
calls made via function pointers or dynamic dispatch techniques. 
If it doesn’t do these things, it will fail to detect many genuine 
vulnerabilities.

For example, the static analysis tool must know whether the 
target is 32-bits or 64-bits, as this can inform the analysis 
engine of when an integer type will overflow. Similarly, a static 
analysis tool that doesn’t understand the semantics of abort 
(programme execution ends here), malloc (dynamic memory is 
created here), or copy_from_user (untrusted user-supplied data 
enters the system here) is going to yield poor false positive and 
false negative rates.  A static analysis tool must understand 
these concepts, and many others, in order to thoroughly analyse 
software.

This is often the difference between commercial and open 
source static analysis tools. Commercial static code analysis 
tools will be packaged with a diverse collection of rulesets 
and support analysis techniques such as data-flow graph 
traversal and abstract interpretation. On the other hand, free 
static analysis tools tend to be a mixed bag. Some come with a 
handful of rules, while others ship with zero rulesets, expecting 
you to write you own. But this is not necessarily a bad thing. 
In fact, we should celebrate static analysis tools that expose 
a flexible detection engine to the user. This is where we, as 
security researchers, can leverage our expertise.

Flexible detection engines allow us to extend the analyser to 
detect entirely new classes of vulnerabilities. Perhaps you are 
performing a security assessment of a software system that is 
unique in how it allows untrusted data to enter the system, such 
as a custom my_recv implementation or a hypothetical foo_
protocol_packet_parser function. Or perhaps you’ve stumbled 
across a new coding pattern that describes a novel class of 
vulnerability that was previously unknown. This is where the fun 
starts.



[18] http://blog.regehr.org/archives/1125 
[19] http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html 
[20] http://security.coverity.com/blog/2014/Feb/a-quick-post-on-apple-security-55471-aka-gotofail.html 
[21] http://blog.klocwork.com/static-analysis/rather-than-fail-goto-success/ 
[22] https://github.com/fabsx00/joern 
[23] https://scan.coverity.com/projects 
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Modeling untrusted data entry points

When conducting a security assessment of a new software 
product, one of the first and most important steps will be to 
enumerate the attack surface. Typically, this involves building 
a comprehensive understanding of how data enters and exits 
the system at its boundaries. When data first enters a software 
system, we must treat this data as untrusted, and it should 
therefore be validated and sanitised before being used.

In static code analysis tools that utilise data-flow analysis, a 
data entry point is often called a source, whereas the location 
that consumes this untrusted data is often called a sink. An 
intelligent static analysis engine will allow its users to write 
custom models that describe the semantics of additional 
sources and sinks. Doing so will enable the analysis engine 
to track this data as it propagates through the program. The 
ultimate goal is to ensure that untrusted data is sanitised before 
transitively tainting other data, or being used in a sensitive 
operation, such as controlling the size argument to memcpy.

As mentioned previously, custom modelling will come into play 
when auditing software that diverges from established coding 
patterns. In these cases, a static analysis tool simply cannot 
be expected to infer the input and output semantics of the 
software. For example, when you encounter a custom library, 
you should strongly consider modelling its API, ensuring that the 
static analysis engine can track how the untrusted data flows 
between the library and the application.

Automation and variation hunting

When we perform security-focused code review, we sometimes 
discover unique coding patterns that lead to original security 
vulnerabilities. These emergent classes of vulnerabilities could 
be unique to an individual developer’s particular coding style, or 
they may be unintentionally encouraged by a poorly-designed 
API within a library or framework. 

The ambitious security researcher will want to understand 
whether these bad smells are repeated elsewhere in the target 
code base. Conducting this search by hand can be tedious 
and time consuming, so this type of variation hunting is simply 
begging to be automated through the use of a static code 
analysis tool.

For example, in recent memory, there was a rush by commercial 
Static Application Security Testing vendors to demonstrate they 
could detect the general patterns exhibited by the ‘Heartbleed’18  

19 and ‘Goto Fail’20 21 vulnerabilities. In some cases, the 
commercial tools did not detect the vulnerability, and new 
detection heuristics or rules had to be created. 

This reveals how a static analysis engine can be tricked by 
even the most subtle variation of a seemingly well understood 
(yet flawed) coding pattern. But don’t be dismayed! This is 
actually great news for a security researcher. If you ever stumble 
across what appears to be an interesting pattern that leads to 
a vulnerability, consider creating a ruleset in a flexible tool like 
Joern22. You’re likely to find variations elsewhere in the code 
base.

Conclusion

In many cases you do not need to bother writing custom models 
or rule sets if dealing with an application that uses common 
languages and frameworks. In fact, finding vulnerabilities using 
static analysis can often be as simple as running an off-the-
shelf tool in the default configuration. Although, if the code is 
open source it is likely to have already been scanned by every 
static analysis tool on the planet, multiple times over. Just 
take a look at the Coverity Scan project23, which has scanned 
thousands of open source code bases. But if you’re looking 
at a fresh code base that has never been exposed to static 
analysis tools, get ready and prepare yourself for a bonanza of 
vulnerabilities.
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Overview

When analysing software, it is often necessary to understand 
how it is built and what third party components it depends 
upon. This type of software analysis is becoming increasingly 
important as we look to identify the weak links and deal with 
monolithic blobs such as firmware for embedded systems. 
The approaches used for composition analysis can be applied 
universally across a variety of platforms such as mobile, web 
application, desktop or embedded.

Being able to understand what software is comprised of can not 
only facilitate weak link identification but also provide indicators 
as to means of exploitation as well as general security posture. 

In the sections which follow we summarise the approaches used 
to identify how software is composed.

Static Open Source Enumeration & 
analysis

An important element of software maintenance involves the 
software bill-of-materials (BOM), but maintaining such a BOM 
by hand can be cumbersome or impossible due to the complex 
nature of dependency chaining. For example, your software may 
depend upon a third party package that, unbeknownst to you, 
depends upon additional third party packages, through either 
static or dynamic linkage.

Consequently, it can be quite difficult to understand which 
versions of what third-party components are built into your 
application. And yet, being able to quickly answer this type of 
question is an essential aspect of a mature Security Incident 
Response process, such as when a newly patched vulnerability 
affecting specific versions of an open source library is disclosed, 
and it is necessary to determine whether you need to update 
your software.

A number of static analysis techniques and approaches can 
be employed to solve the third party library identification and 
versioning problem. Commercial tools such as BlackDuck, 
Protecode, TripleCheck or Palamida will parse code or compiled 
binaries and apply a set of heuristics or rules that determine 
which libraries are compiled in. This information may be derived 
directly from proprietary databases or from package manager 
metadata included with the source repository.

After library and version information has been obtained it can 
then be cross-referenced with vulnerability databases such as 
NIST NVD in order to identify those libraries that represent a 
security risk.

Static software 
composition analysis.



[24] http://www.trapkit.de/tools/checksec.html
[25] https://github.com/olliencc/WinBinaryAudit
[26] http://binwalk.org/
[27] https://github.com/misterch0c/firminator_backend
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Static closed source enumeration and 
analysis

At a very high level, the aspects of software composition which 
could usefully be analysed by tools are listed below.

•	 Platform binary

•	 CPU architectures

•	 Compiler and versions

•	 Third party external libraries used, and their versions

•	 Compiler level protections leveraged

•	 Operating system protections leveraged

Examples of tools which facilitate this include checksec24 and 
WinBinaryAudit25.

Beyond these we are increasingly seeing automation to a far 
greater depth of analysis, at the level of both individual binaries 
and monolithic firmware blobs. These enhanced capabilities 
include enumeration and at times automatic extraction around a 
number of other areas, such as:

•	 Structure

•	 Compression, packing/obfuscation and encryption

•	 Statically linked libraries and their version or if specifically 
vulnerable

Examples of tools that provide such functionality include 
binwalk26 and fiminator27.

Conclusion

Modern software is increasingly made up of a collection of third 
party libraries and components. The ability to efficiently and 
effectively identify the composition of software is increasingly 
important in vulnerability discovery as well as understanding 
how software may be attacked in the future.



[28] https://fuzzinginfo.files.wordpress.com/2012/05/cmiller-csw-2010.pdf and https://www.youtube.
com/watch?v=Xnwodi2CBws
[29] https://ece.uwaterloo.ca/~vganesh/Publications_files/vg2006-EXE-CCS.pdf
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Overview

Fuzzing is a vulnerability discovery technique in which large 
quantities of data, packaged as individual ‘test cases’, are 
submitted as input to the target system – software or hardware 
– with the aim of causing crashes,  faults or other behaviours. 
Typically this process involves the use of a purpose-built piece 
of hardware or software – a ‘fuzzer’ – to generate and submit 
the test cases. Security researchers may choose to use a 
publicly available fuzzing tool, or to create their own as needs 
dictate. 

The principle behind fuzzing is to leverage the power of the 
computer, generally favouring quantity over quality. In an ideal 
setup, a researcher might hope for their fuzzer to evaluate 
thousands or even millions of test cases per second. Once a 
fuzzer has successfully induced a crash, it will typically flag the 
corresponding test case as interesting and continue searching 
for other faults or anomalous behaviour. The researcher will 
eventually want to manually analyse the test cases marked as 
interesting with a view to reproducing the fault, determining if it 
is likely to be exploitable and ultimately refining a working proof-
of-concept exploit.

The rate at which most systems can be fuzzed in this way 
draws attention to a trade-off between development time and 
execution time of the fuzzer: sometimes at the most simple send 
random bits or bytes to the target will be sufficient to generate 
crashes, whereas a more hardened system would require a 
degree of configuration and tailoring such that the test cases 
resemble valid data. The ideal test cases will be ‘correct enough’ 
to pass early validation logic, with deliberate faults further into 
the structure designed to trip up the more sensitive code paths. 
This balancing act is at the crux of productive fuzzing, and the 
techniques and technology are constantly evolving.

This ‘shotgun’ approach to vulnerability discovery is very 
different from the manual and informed strategies such as code 
review and static analysis, and unsurprisingly it tends to yield a 
different flavour of bugs. For this reason, researchers will use 
their judgement to decide upon the best approach, often using 
fuzzing in combination with other techniques.

Fuzzing in the context of software vulnerability research has 
existed for two decades or more, and so the vulnerability 
landscape is also constantly changing. High-value targets 
which were once rich with exploitable vulnerabilities have now 
been fuzzed extensively over the years and most of the low-
hanging fruit is gone. This diminishing supply of vulnerabilities 
continues to push the boundaries of what is considered to be a 
‘good’ fuzzer and while the number of bugs being found through 
fuzzing may have tapered off in recent years, the ever-increasing 
complexity of these bugs is testament to the quality of modern 
tools.

Fuzzing is one of the most common vulnerability discovery 
techniques with valid input to a programme (say an image 
or document) mutated in some way then loaded into the 
programme, in the hope that the malformed input will be 
handled incorrectly causing a crash. 

As previously mentioned there are various strategies when 
fuzzing. Some maintain a “keep it simple” approach. Charlie 
Miller’s famous “5-lines of Python”28 that mutates random 
bytes with no knowledge of the underlying structure of the 
data being mutated is probably the most extreme example. This 
is known as “dumb fuzzing”. At the other end of the spectrum 
there are highly complex fuzzers that might use knowledge of 
the underlying format of the data they are fuzzing e.g. PE COFF 
files29. 

Fuzzing



[30] https://blogs.technet.microsoft.com/srd/2010/02/24/using-code-coverage-to-improve-fuzzing-
results/

All Rights Reserved.      © NCC Group 2016

 NCC Group Research Insights      20

Others use constraint resolvers to identify which parts of the 
input to change to exercise different parts of the program; 
Microsoft’s SAGE is probably the best known example. 

Interestingly, empirical evidence suggests30 that all well-written 
fuzzers find roughly the same number of bugs in a given time 
period on the same hardware. The basic dumb fuzzer requires 
almost no time to generate test cases, though each case has a 
relatively low probability of finding a bug. The intelligent fuzzer 
requires much more time to generate each test case so the total 
number it can try is much lower, even though each case has a 
much higher probability of finding a bug. 

The most popular strategy currently combines dumb fuzzing 
with code coverage analysis. This allow rapid generation of 
test cases but provides feedback on which ones exercised new 
code and are therefore worth keeping as the basis for further 
mutations. AFL is the most popular example of this. 

Test Case Management

Code coverage as a metric

In recent years, the measure of a fuzzer’s quality has moved 
away from simply ‘how many bugs it finds’ and more towards 
achieving good code coverage. To explain this by way of a 
question: if your fuzzer finds no bugs, is that because the fuzzer 
isn’t very effective, or because the software is well secured? 
Probably a bit of both, but certainly one can be confident that a 
fuzzer is working if the volume of code being exercised within 
the target application during execution of test cases is high and 
continuing to grow.

So how to ensure that a fuzzer is generating test cases that 
exercises as many code paths as possible? There are two main 
approaches: mutation-based and grammar-based fuzzing.

Mutation-based fuzzing

A mutation-based fuzzer will take known-good input and perturb 
it slightly – perhaps flip a random bit, or replace a randomly 
chosen 32-bit section of the file with a boundary value. This 
new mutated data will become another test case for submission 
to the target application. But of course, when you consider the 
size of a typical test case (say, for example a JPEG file) and 
the number of ways in which it can be mutated, the number 
of permutations can quickly become unmanageable. To test 
every possible mutation of all but the most trivial test cases 
is infeasible, so a fuzzer will need to make its choices wisely. 
Furthermore, if all test cases are based on a single known-
good base case, it is likely that they will all result in execution 
of similar code paths, and hence be less likely to find new bugs. 
As an extreme example, consider an audio player being fuzzed 
through mutation of a single MP3 file. One might hope to find 
some bugs in the MP3 decoder, but it would take more than a 
stroke of luck to stumble upon a bug within the FLAC-parsing 
code. For this reason, it is important for mutation-based fuzzers 
to be primed with a broad set of base cases. Ideally these will 
span the range of functionality supported by the target and 
together obtain a good degree of code coverage.
Finally, for a mutation-based fuzzer to be effective it should 
have some knowledge of how the data it is mutating will be 
processed. The algorithms used by one target to parse XML 
data will be radically different from that of another which 
handles ZIP files. Correspondingly the kind of bugs in these 
two targets will be very different and the fuzzing techniques 
required to trigger bugs in one format will be ineffective for 
another. Furthermore, the presence of integrity checksums 
within file formats can often present a major stumbling block 
for uninformed fuzzing engines. Therefore, researchers will 
often create dedicated logic or rules within their fuzzer (or its 
configuration) to tailor it to what is known about the way that 
the target processes its data. Although laborious, this can yield 
significant improvements during fuzzing by allowing deeper and 
less thoroughly tested code paths to be reached.



[31] http://lcamtuf.coredump.cx/afl/ 
[32] https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool 
[33] http://www.dynamorio.org/ 
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Grammar-based fuzzing

Turning this idea on its head, we arrive at grammar-based 
fuzzers. In this approach, rather than mutating a set of known 
good base cases, we feed the fuzzer with nothing other than a 
semantic description of what kind of data the target is designed 
to handle – in the form of a grammar or schema. The fuzzer 
will use this to synthesise new test cases from scratch, taking 
opportunities to strategically perturb the structure or content 
where appropriate.

This grammar-based approach of test case generation tends to 
yield a much greater signal-to-noise ratio than mutation-based 
fuzzing, and its capabilities are bound only by the level of detail 
within the grammar. However, it is not without its limitations, 
and in many real-world cases the data formats being dealt with 
simply cannot be neatly described within the language of the 
fuzzer. Often the language semantics are too simple to describe 
a rich data format, or are so complex that even defining a simple 
grammar is arduous and error-prone. The development time 
required to author a useful grammar-based fuzzer also tends to 
be significantly greater than that for a mutation-based fuzzer.
These two approaches to test case generation are not mutually 
exclusive and many fuzzers use a combination of both to good 
effect. 

Generational fuzzing

When a fuzzer finds a bug, it is often probable that other 
defects will exist in nearby code paths, in terms of the target’s 
logic. For this reason, fuzzers will often want to focus their 
mutation efforts upon test cases similar to those that produce 
known crashes. Taking this a step further, there is mileage 
in concentrating on those test cases that simply exercise a 
previously unseen code path, even if no crash occurred. By 
feeding these ‘interesting’ test cases back into the pool of base 
cases, a mutation-based fuzzer can iteratively discover new 
code paths in the target, and hence more bugs. 

When supplied with sufficient information about the execution 
state of the target, this technique can be used with profound 

results as demonstrated by American Fuzzy Lop31 (AFL). Using 
source code instrumentation to provide the fuzzing engine with 
detailed information of the execution paths taken by the target 
as it runs, AFL demonstrates that a relatively simple mutation-
based fuzzer is able to infer the structure of many complex file 
formats given no prior knowledge of how they should look. By 
initialising the same tool with a meaningless base-case and 
pointing it at two very different targets – say a GIF renderer or 
an ELF parser – it will produce increasingly intricate test cases 
including either valid GIFs or valid ELFs according to how the 
target responds to the mutations is generates.

It does this by pivoting upon test cases that exercise previously 
unseen code paths, constructing a tree of test cases which 
attempts to mirror the structure of the parsing code. Naturally, 
this level of code coverage will yield many novel defects, 
and AFL has a correspondingly impressive track record. 
The tool in its original form, however, is limited to fuzzing of 
targets with source code available as it relies on compile-time 
instrumentation of the code to operate. Similar techniques can 
be applied using dynamic instrumentation (for example, using 
PIN32 or DynamoRIO33) and virtualised execution, and research 
in this field continues.

Base case pruning

Put simply, the primary problem with mutation-based fuzzers is 
that such tools spend too much time executing test cases which 
do not result in unique crashes. This is a compound problem, 
impacted by many factors including the mutation algorithms, 
inability to detect early validation failures, and execution of 
redundant code paths. This latter point can be addressed by 
careful reduction of redundant base cases. The presence of 
multiple base cases which exercise overlapping code paths 
tends to cause production of needless test cases by the fuzzing 
engine, wasting valuable fuzzing time. This is a particular 
problem for generational fuzzers, whose set of base cases is 
constantly changing.

Given some knowledge of the execution path taken by the 
target when processing a given base case, a fuzzing engine 
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can identify the presence of unnecessary samples within its 
set of base cases: if all of the code reached during execution 
of a given base case is also reached when executing some 
combination of others in the pool, then it is unlikely that 
mutation of this base case will yield any unique crashes that 
wouldn’t be found otherwise. By iteratively applying this as a 
pruning algorithm, a fuzzer can strive to eliminate unnecessary 
work. This is done by measuring the total coverage for an entire 
test set then finding the smallest subset that has the same 
coverage, the so-called min-set. Some fuzzers also measure 
the additional coverage due to mutations to decide whether a 
particular test case is worth keeping and mutating further.

Target management

Once upon a time fuzzers were required only to generate test 
cases. Nowadays, expectations are much higher, and some 
management of the target process is also required.

In particular, it is generally a quick win for the fuzzer to run 
the target under its own debugger when processing test 
cases. This way, any crashes that are caused can easily be 
detected, analysed and triaged. Modern debugging APIs make 
it straightforward for the fuzzer to save a crash dump and 
quickly gain knowledge of the important details following a 
crash, such as the address of the faulting instruction, what kind 
of operation was being performed at the time, the state of the 
registers and call stack, etc. This information can be very useful 
for automatically gauging how likely the bug is to be exploitable, 
and how best to prioritise it in the set of findings for manual 
investigation.

As previously mentioned, a fuzzer might also want to keep 
track of code coverage and execution paths taken within the 
target process. This may be as simple as tracing (or branch-
tracing) the debugged process and logging the addresses 
of all functions or basic blocks as they are reached. A less 
computationally expensive approach might be to set breakpoints 
at the beginning of each function or basic block, removing 
them as they are reached to gain an overall view of which parts 
of the code were and weren’t exercised (at the cost of losing 
knowledge of the order in which they were hit). Information such 

as this will typically be fed back to the fuzzing engine, once 
the target has crashed, exited or timed out. Armed with this 
information, the fuzzing engine can decide whether to pursue 
the avenue of mutation that was used to generate this particular 
test case, or to move on to other areas.

This analytic data can be made even richer with the use of 
target instrumentation, in which the target’s executable code is 
modified or augmented to provide additional information about 
the flow of execution, or the state of memory and registers 
when certain locations are reached.

Instrumentation may be performed against the target’s source 
code if available (either prior to or during compilation), or against 
the compiled image as necessary. If the researcher only has 
a compiled binary to work with, it may be preferable to create 
a modified version by instrumenting the target image on disk, 
or by applying the hooks/patches on the fly within the running 
process, using library injection or a similar technique.

In some cases, instrumentation can even be used in place of 
debugging. By instrumenting the target to report information 
regarding its execution, control flow and/or completion to the 
fuzzing engine in real time (e.g. via shared memory, or a named 
pipe/domain socket), the overheads associated with using a 
debugger can be avoided.

Handling crashes

When a researcher successfully causes the target process to 
crash during fuzzing, the first follow-up action will generally 
be to ensure that the fault can be reproduced. Often this is 
as simple as resubmitting the test case for execution, but 
sometimes the target will behave inconsistently even when 
operating on the same data. Fuzzing of stateful targets, such 
as network servers, is generally more complex than that of 
self-contained programs that operate on files, particularly 
when the network protocol is made more complicated by with 
authentication, encapsulation, session handling and such. In 
these cases, one’s hopes of reliably reproducing a crash would 
be much lower.



[34] https://github.com/google/sanitizers/wiki/AddressSanitizer
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Failure to reproduce a test case could occur for many reasons, 
such as use of uninitialised memory within the target, interaction 
with external data sources (e.g. the network), availability 
of system resources or race conditions. It is also common 
for stateful target applications to respond to a sequence of 
separate test cases, sometimes making it necessary to consider 
any residual effects caused by execution of earlier test cases 
within the fuzzing run. If a crash can’t be reproduced, then the 
researcher may need to resort to analysing the crash-dump 
to determine the root cause. In practice, such cases are often 
disregarded as the lack of reproducibility often translates to 
reduced reliability when producing the final exploit – either 
because the bug can’t reliably be triggered, or because the 
process becomes unpredictable or unstable when this occurs.

As well as establishing reproducibility, upon detecting a crash 
a fuzzing engine will generally want to perform some other 
triaging. Rather than treating all crash-causing test cases as 
being equally interesting, the fuzzer will want to gain some 
estimate towards likely exploitability and uniqueness, to save 
valuable effort during manual follow-up.

Uniqueness can be quite reliably determined by considering 
the address of the faulting instruction and the call stack of 
the faulting thread. If two distinct test cases produce crashes 
with identical stack traces then they are likely to correspond 
to the same bug, and only one needs to be retained for manual 
analysis. Conversely, if they crash at a common location but 
have different call stacks then it is very possible that they are 
distinct bugs worth investigating separately. This is rather 
common when the faulting instruction lies within a common 
routine such as memcpy.

Given a new, unique crash, the fuzzer will finally want to perform 
some rudimentary exploitability analysis. Inspection of the 
faulting instruction and the register contents will generally 
provide enough information to quickly rule out certain classes 
of bug. For instance, a divide-by-zero exception is generally less 
interesting than a null dereference, which itself shows far less 
promise than a write access violation near the stack.

Manual investigation of crashes can be a time consuming 
process, so the quality of this automatically-generated 

information can greatly impact the productivity of a fuzzing 
effort – particularly where the number of crashes is high. 
Ultimately, the researcher will want the fuzzer to maintain a list 
of interesting test cases as it runs, complete with sufficient 
information to quickly get a measure of the type of crash 
involved and its potential for exploitation.

Some platforms offer development and debugging tools which 
can be of real benefit when fuzzing, such as Heap Tagging 
and User Mode Stack Tracing on Windows. These OS-
provided settings can be configured per process, and cause 
useful metadata to be maintained by the heap manager when 
executing the target process. Using the output of these tools, 
the otherwise difficult process of determining the owner of a 
given heap buffer following crash becomes almost trivial. In a 
similar vein, AddressSanitizer34 is an LLVM and GCC compiler 
module that inserts heap manager instrumentation into a 
program for the purpose of detecting memory errors. Provided 
target source code is available, it can be used at little cost to 
pick up on a variety of exploitable faults, including ones that 
may not have caused a crash during fuzzing (such as off-by-one 
overflows and use-after-frees).

Test case reduction

The fuzzing process can cause the accumulation of a 
considerable amount of unnecessary data into generated test 
cases, and the data responsible for causing the crash isn’t 
always obvious. For example, when fuzzing scripting languages 
or HTML, a test case may contain thousands of lines, only a 
few of which are necessary to reproduce the behaviour. Rather 
than investigate this manually, it is often beneficial to automate 
the process of reducing the output from the fuzzer to isolate a 
minimal test case that induces identical behaviour. The principle 
is simple: sections of the test case’s data are iteratively removed 
and re-evaluated within the target in order to determine their 
necessity. Often a divide-and-conquer algorithm is used for 
performance reasons, with the final result being a minimal test 
case that is much more manageable to analyse by hand.



[35] http://wiki.qemu.org/
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Hardware fuzzing

While the discussion so far has primarily revolved around 
fuzzing of software, most of the ideas and techniques are also 
appropriate for hardware and embedded targets. However, 
these platforms come with a new set of challenges, particularly 
during triage and exploitability analysis.

Not least among these challenges is the fact that debugging 
tools for hardware platforms are typically far less mature than 
those for software, and in some cases such tools are difficult 
to obtain or simply non-existent. In these situations, target 
monitoring management reduces to observing the device for 
resets or lock-ups. It is usually possible to use automated 
methods to determine the occurrence of a device reset (for 
instance, by monitoring the potential of certain pins on the 
processor or chipset), but knowing where to go from there can 
be more of an art than a science. Embedded systems are less 
likely to have source code available, and it isn’t always clear 
which component has faulted. Even if the exact cause of the 
fault is well known, refining the test case into anything more 
elegant than a denial-of-service attack can be a complex affair.

Fuzzing enhancements

Depending on the target, the logistics of fuzzing may lend 
themselves to parallelisation. Particularly when fuzzing a 
programme that operates in isolation on self-contained data, 
scaling the fuzzing work across multiple machines may be as 
simple as dividing the generated test cases up equally among 
the worker hosts and collating the results as they are fed 
back. However, some complexities do arise, particularly when 
the fuzzer itself has a degree of state to maintain (such as in 
generational fuzzing), although these problems are fairly typical 
of any distributed computing challenge.

Modern fuzzing has also evolved to take advantage of 
virtualisation technologies to perform cross-architecture fuzzing 
using hypervisor-based emulation. This can bring performance 

benefits where establishment of target state is a bottleneck 
(for instance, when fuzzing an operating system kernel) as 
restoration of a memory snapshot can sometimes be quicker 
than reinitialising the target. Use of a hypervisor can also 
enhance dynamic instrumentation capabilities by leveraging 
virtualisation extensions for software traps. Furthermore, 
it is also possible to take advantage of high-performance 
consumer hardware when fuzzing code that is engineered to 
run on low-end CPU platforms (such as embedded systems), 
through parallel execution using a virtualisation platform such as 
QEMU35.

There are also applications of fuzzing to security vulnerability 
beyond just memory corruption. These applications are still 
highly fertile and are only now just beginning to be publically 
explored.

Conclusion

Fuzzing technology, techniques and tooling continues to evolve 
and remains one of the go-to techniques for vulnerability 
discovery. While the density of trivially discoverable bugs in 
mature software is rapidly declining, as well as those trivially 
exploited, there are still high impact vulnerabilities discovered 
using well-known fuzzing techniques. 

High-profile vulnerabilities are being discovered by more 
sophisticated fuzzers and while the state of the art has come 
a long way in a short time, fuzzing as a technique promises to 
continue to push the boundaries.



[36] http://www.vdiscover.org/report.pdf
[37] https://www.usenix.org/legacy/events/woot11/tech/final_files/Yamaguchi.pdf
[38] http://seminaire-dga.gforge.inria.fr/2015/20151009_KonradRieck.pdf
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This paper has looked at the topic of software vulnerability 
discovery in 2016 as seen by those at the applied end of the 
security industry. It is our opinion that whilst much progress has 
been made in the last twenty or so years, there is still much to 
be done around enhancing consistency, coverage, automation 
and techniques. 

One challenge that is still largely unanswered in a generic, 
automated and scalable manner is the understanding of 
systems and their inter-relationships. We see significant 
fragmentation in architectures, programming languages, 
frameworks and operating systems as never before. This means 
that the initial enumeration process of understanding trust 
boundaries and data flows still remains primarily a job for skilled 
humans.

As system security improves through the widespread 
deployment of Trusted Computing Bases that prevent or 
complicate low-level access to certain systems, the cost 
of discovery is increasing. Furthermore, as many systems 
are increasingly reliant on cloud architectures which are 
often opaque in terms of hardware and software, the ability 
to replicate these environments in laboratory settings to 
facilitate analysis is also increasingly challenging, if not at 
times impossible. This is not to say that these developments 
will in general preclude discovery of vulnerabilities, thanks to 
techniques based on virtualisation, static analysis, and other 
approaches discussed in this paper. However, the level of 
complexity and investment is generally increasing for more 
mature software built for more modern operating systems.

Finally, we expect significant gains to be made with the 
application of machine learning to vulnerability discovery based 
on the research and initial results36 37 38 seen in the past five 
years.
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