
RESEARCH
INSIGHTS
Modern Security Vulnerability Discovery

 NCC Group

CONTENTS
Author											 3

Introduction											 4

Manual analysis							 6

Dynamic analysis								 9

Static code analysis 							 14

Static software composition analysis						 17

Fuzzing 19

Test case management 21

Closing summary 27

Thanks 26

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 2

AUTHOR
NCC Group

This paper is the combined effort of numerous individuals within NCC
Group across various disciplines and offices.

•	 Aaron Adams

•	 Pete Beck
	
•	 Jeremy Boone

•	 Zsolt Imre
	
•	 Greg Jenkins
	
•	 Edward Torkington

•	 Ollie Whitehouse
	
•	 Peter Winter-Smith
	
•	 David Wood	

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 3

INTRODUCTION

The identification of vulnerabilities and understanding what is
involved in their exploitation has numerous applications in both
the attack and defence side of cyber security. The way in which
software vulnerabilities are discovered has evolved considerably
over the last 20 years in terms of techniques, efficiency and the
complexity of the issues found. What was once a mostly manual
process has, over time, become increasingly automated and
augmented to facilitate not only discovery, but also triage and
sometimes exploitation.

However, while this automation and augmentation has helped
the process of vulnerability discovery considerably, it has not
addressed all the challenges faced with increasingly esoteric1
weaknesses being discovered by highly skilled individuals. These
often subtle logic bugs are challenging to find in an automated
fashion and typically rely on a large body of knowledge and
experience being applied to a particular set of circumstances.

This paper is intended for individuals with a technical background
who are responsible for identifying, understanding, mitigating or
responding to security vulnerabilities in software. The paper is
technical in nature, although high level, and is intended to provide
a view on modern vulnerability discovery approaches in 2016.

[1] https://en.wikipedia.org/wiki/Row_hammer

All Rights Reserved. © NCC Group 2016
 NCC Group Research Insights 4

 NCC Group Research Insights 5

[2] https://en.wikipedia.org/wiki/Shatter_attack
[3] https://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 6

Manual analysis

Introduction

Historically, manual programme analysis was the primary method
researchers would use to look for flaws in software, and it is still
a very popular approach. This involves manually reviewing source
code or reverse engineering binaries in order to find vulnerabilities
“by hand”. This will often include using small scripts or tools to aid
in finding some common flaws or questionable function calls, but
won’t typically involve automated testing or intelligent tools that
can actually reason about code constructs. Most people choosing
to review software manually will focus more on understanding the
software and most specifically, the high-risk entry points of any
identified attack surface.

The primary objective of a manual programme analysis is either
to quickly home in on software locations with a high probability of
vulnerability, or to take a more holistic approach to gain a thorough
understanding of the target. The approach taken, as well as the
resulting bug quality, will largely depend on the skill of the reviewer,
as well as their familiarity with the software itself, the internals
of the language used to write the programme and the operating
system on which it is run.

Attack surface determination

Generally, the first thing to do when reviewing code is to determine
the probable attack surface of the target before even starting to
look at any source code or disassembly. Knowing the parts of a
programme that are attackable will give a natural starting point
for analysing code directly in a top-down approach or will serve as
a guiding light while performing a more thorough code analysis
using a bottom-up approach.

Most software will have some obvious attack surface: the kernel
can be attacked by user-land processes issuing system calls; an
HTTP server can be attacked by a client sending HTTP requests;

a setuid binary can be attacked by manipulating environment
variables or command-line arguments. A lot of software might
also include less obvious attack surfaces that only thorough
understanding and analysis will uncover. An interesting historical
example of a non-obvious attack surface would be the discovery
of “shatter” attacks2 against privileged applications running on
Windows. This type of attack would be very difficult to discover
for a researcher who did not have an in-depth understanding of
Windows. Focusing on a target programme in isolation would make
them blind to these additional components of the attack surface.

Researchers approach attack surface modelling in different ways.
Some simply keep notes, others keep internal mental models, and
others will use graphical software that allow different endpoints to
be plotted to visually show a representation of the system being
targeted. The amount of time spent fleshing out the attack surface
will depend on the time being committed to a project, or just the
style and approach of the researcher. The attack surface model
will, however, constantly be revisited and reworked as a more in-
depth understanding is developed.

Analysis approaches

There are effectively two common approaches to manual
programme analysis, dubbed “top-down” and “bottom-up” analysis.
Realistically things aren’t so black and white though. Most
commonly a combination of both approaches described will be
used, as both offer some advantages and can help understand
things at different phases of a review. These two approaches are
summarised below. An exhaustive book on comprehensive manual
programme analysis is The Art of Software Security Assessment
(often referred to as TAOSSA)3, which is highly recommended for
anyone planning on pursuing manual bug finding.

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 7

Top-down analysis

This is probably the most common approach to finding bugs in a
programme. A researcher will make an informed decision, based
on an attack surface analysis, about where to start looking for
bugs. They will then often search for some potentially dangerous
function calls or integer operations in code related to that attack
surface and try to work backwards to determine if they can
actually be abused.

Researchers will begin reviewing code and understanding the
programme only from this “top” part of functionality and then work
down into the deeper portions of code. Often, this allows them to
disregard how the rest of the programme works or is initialised.
This can lead to quick results, but, depending on the complexity
of the programme, can also leave the researcher blind to various
configuration-specific quirks.

Despite the top-down approach being intended to target
interesting functionality, it unfortunately can still end up leading
to numerous false positives. Consider a case where a programme
uses the notorious strcpy function. It’s actually entirely possible to
use this function safely, but a manual reviewer doing a top-down
analysis might search for uses of this function as possible entry
points to more closely focus their analysis. In the event that the
programme’s use of this function is ubiquitous, but also happens
to be largely benign, the researcher could be presented with
hundreds of thousands of results, with no clear indication of where
to usefully start their top-down analysis from or with countless
dead-ends when they do finally start.

There are still times where searching for particular functions can
be extremely useful though and the example above isn’t always
the way things pan out. Consider a case where you’ve identified
some internal function that is relatively infrequently used, but has a
high probability of being used incorrectly.

An example might be a function whose return value was not
consistently checked, and could be easily influenced to return an
unexpected error. Searching for all instances of this function might
lead to a much more acceptable signal to noise ratio than a more
common library function like strcpy.

In reality, the approach used for top-down analysis will often
be determined on-the-fly and based on the complexity of the
programme and the results of initial probing. The fruitlessness of
certain approaches will often quickly become apparent after the
initial “sniffing around” phase.

A realistic example of using the top-down approach against an
HTTP server would be starting with the realisation that HTTP
servers almost always have a significant amount of code related
to configuration and plugin management, which is far less
interesting from a security perspective than the code handling
which handles requests over the network. After identifying code
responsible for handling HTTP requests, a researcher may simply
look for questionable function calls or code constructs (like
integer operations) in the source or disassembly that is associated
specifically with that functionality. Once these calls are found,
investigations can be performed to see if and how attacker-
provided input might be provided to the questionable calls through
the HTTP headers or other request data.

[4] https://code.google.com/p/google-security-research/issues/list?can=1&q=reporter%3Aforshaw

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 8

Bottom-up analysis

This approach is much simpler to understand, but can be much
more time consuming and complicated in practice. It will often
lead to the discovery of significantly more vulnerabilities than the
top-down approach. Moreover, it can lead to the discovery of the
type of complex or intricate bug that can only be found through
manual rather than automated analysis. The idea of bottom-up
analysis is to effectively start from a given point in the programme,
typically the main function, and slowly understand and analyse all
functionality. Realistically, due to time constraints, this will involve
certain areas that have nothing to do with any attack surface
being skipped. Using this approach allows one to slowly build up
a thorough understanding of all of a programme’s components,
custom functions, and so on. As a result, it becomes possible
to start identifying new attack surfaces and application-specific
vulnerability constructs that would be missed by simply looking for
common mistakes.

Using the bottom-up approach typically involves keeping
significantly more documentation and is often the best approach
when a researcher will be spending lots of time on a project. Even
if time constraints prevent all code from being analysed, it will help
to highlight the areas to focus on in future engagements.

For interesting examples of the type of vulnerabilities that can be
discovered from a long-term bottom-up analysis see the Windows
operating system flaws discovered by James Forshaw of Google’s
Project Zero4 .

Functionality-specific analysis

Functionality-specific analysis can also be useful when the sheer
size of a codebase makes it impossible to do a full bottom-up
analysis. For example, an operating system kernel is so massive
that it’s not feasible to review or understand all of the functionality.
However, following a reasonably thorough bottom-up analysis, one
can do future engagements that consist of smaller functionality-
specific reviews that focus on certain bug classes or certain

interactions, and effectively ignore other functionality that’s not
of interest. In this way, a researcher can slowly build out a more
thorough understanding of the kernel, piece by piece. This might
consist of re-reading the same pieces of core functionality multiple
times, but with a new frame of reference, and can often allow bugs
that were previously missed to be discovered thanks to a new
understanding or perspective.

Relevance

Several other approaches to finding bugs are discussed later in
this paper. These have become increasingly popular, and in many
ways are more commonly used for vulnerability discovery than
manual analysis. Many would argue that these more modern
approaches are much easier to pursue. Although this is often
true, for the foreseeable future there will always be a degree of
shallowness to the bugs found in this way. Static analysis and
fuzzing are capable of finding a lot of different bug classes, but
they still lack the ability to find abstract logical issues that are
usually only found with the help of the thorough and holistic
understanding of a programme’s behaviour that is achieved
through manual analysis. Additionally, many researchers still prefer
manual analysis because it helps to avoid the massive signal to
noise problem that can result from automated analysis. By doing
things yourself, it is possible to focus on vulnerabilities that will
have a high probability of exploitation (as opposed to those which
result only in a crash). A significant number of vulnerabilities
being discovered on a day-to-day basis are the product of manual
program analysis.

Conclusion

At an abstract level most manual programme analysis follows a
simple flow that consists of only a small set of actual approaches.
Until automated analysis becomes significantly more robust, there
will always be room for manual programme analysis and it should
still be a significant part of most assessment approaches, while
being augmented with more modern automated analysis.

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 9

Overview

Dynamic analysis is a term used to describe the testing or analysis
of software that is performed while running the programme. It
usually refers to testing that is conducted by an automated tool.
It allows a researcher to observe the internal state of a running
program and see how it changes in response to different inputs.

Dynamic analysis can be both passive and active. Passive dynamic
analysis merely observes the program as it runs and records its
actions. Active dynamic analysis changes a program’s behaviour
in some way; for example, causing certain actions to fail to
investigate error handling mechanisms.

Dynamic analysis tools mostly fall into one of two categories. The
first type of tool modifies the programme under test to add extra
code to perform the desired action. This modification can be done
at compile time, which has the advantage of introducing very little
performance hit but requires source code, or at run time - which
only requires the binary. The second type of tool runs the program
within some kind of test harness. Most commonly, this would use
an operating system’s debugging API to allow the harness to
observe and/or modify the behaviour of the programme under test.
This incurs a much larger penalty in terms of performance, but is
considerably more flexible and powerful.

One advantage of automated dynamic analysis is that it scales
very easily. Typically, each instance of the programme under
test is independent and therefore, running multiple instances
simultaneously is reasonably straightforward given the necessary
computing resources.

Vulnerability discovery

Most passive dynamic analysis techniques do not directly identify
vulnerabilities. What they do is enable researchers to observe the
state of the programme or measure the effectiveness of other
techniques such as fuzzing.

Active dynamic analysis techniques can be used to find
vulnerabilities directly. This could be through exercising parts of
the code that are difficult to test, or through additional sanitisation
and validation of runtime data.

Debuggers are essentially manual dynamic analysis tools that
are used extensively by researchers. However, since the focus of
this part of the paper is automated dynamic analysis, they are not
discussed further.

Code instrumentation

Instrumentation is the most common form of passive dynamic
analysis. It allows a researcher to observe the state of a running
programme which can greatly aid vulnerability discovery.

One technique is known as API tracing and the Linux programme
strace is a good example. Each time an API of interest is called a
log entry is generated, which typically includes details of the caller
and any parameters. For example, it can easily show if attacker-
controlled input is used by insecure APIs such as strcpy. It is
much easier to use a technique like this to directly observe data
being passed into functions than attempting to obtain the same
information by performing full dataflow analysis for a binary.

Dynamic analysis

[5] http://j00ru.vexillium.org/?p=1695
[6] https://www.ernw.de/download/xenpwn.pdf
[7] http://valgrind.org/
[8] https://github.com/google/sanitizers
[9] https://www.microsoft.com/en-gb/download/details.aspx?id=20028

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 10

Code coverage analysis records how frequently each part of
the programme is executed. It can be used to measure the
effectiveness of a test set, possibly by demonstrating a test set is
incomplete, or by eliminating cases that do not contain new unique
code coverage. It is also used by some fuzzers to reduce the size
of the test set without losing coverage.

Code coverage analysis is also used by some whole-program
optimisers during compilation to group commonly executed code
together in memory, which reduces the working set size for a
binary. This is why some functions are split into several chunks
in different parts of a binary. The code that the compiler thinks
represents “normal” execution would be in one location while the
rest would be stored elsewhere.

Another notable instrumentation technique that is increasing in
popularity is the use of hypervisors to instrument functionality that
is hard to analyse dynamically using more traditional techniques.
The main research prompting this was a project called Bochspwn5
whereby the Windows kernel was instrumented to automate the
identification of kernel time-of-check time-of-use (TOCTOU) race
condition vulnerabilities, to great success. This involved logging
user-land memory accesses from the kernel to identify code
that accessed the same memory location two or more times in
the same code path. A more recent incarnation of this, called
Xenpwn6, instrumented the Xen hypervisor in order to identify
similar TOCTOU issues.

Fault injection

Fault injection is an active dynamic analysis technique used to
simulate failures of a program that would be unlikely to occur
during normal operation. It is commonly used to test error handling
for cases that are difficult to engineer without causing other
failures. For example, out-of-memory conditions or open file
handle limits can easily be simulated by causing memory allocation
functions to fail only in one process, or when called by specific
functions, using tools such as Valgrind7.

This allows parts of the programme that would not be executed
during normal operation to be tested. Bugs in error handling are
far less likely to be found during development as the code in
question would rarely be exercised.

Another advantage of fault injection is that it allows testing of
potentially fatal system-wide issues without impacting other
processes. Causing memory allocations to actually fail would likely
render the testing system unusable.

Fault injection should not be confused with general Fault Injection
aka Fuzzing which is discussed later in this paper.

Runtime verification

Another technique related to fault injection is runtime verification.
It involves inserting additional runtime code to verify the validity
of data before it is used. This is done by initialising variables to
deliberately invalid values and testing for these values when a
variable is used.

Tools such as Address Sanitizer8 and Application Verifier9 both
use this technique. In combination with fuzzing it is a method of
identifying vulnerabilities. Many of the bugs it finds are very hard
to identify using other techniques such as static analysis or even
manual code review. It can detect bugs including uninitialised
pointer use, buffer overflows and use-after-free conditions. For
example, the tools can detect use-after-free conditions by adding
code to memory management routines to set buffers to specific
values when the memory is allocated or freed. The values are
chosen to be invalid addresses so that any attempt to use them as
pointers will cause an exception. The tool can then determine the
type of bug based on the address the code attempted to access.

[10] http://cvc4.cs.nyu.edu/web/
[11] http://stp.github.io/
[12] https://github.com/Z3Prover/z3
[13] http://research.microsoft.com/en-us/projects/betterbug/castro08better.pdf

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 11

SMT solvers

Satisfiability Modulo Theories (SMT) solvers, or constraint
resolvers, attempt to find a set of values that meet a certain set of
conditions. They have numerous applications in computer science,
several of which are relevant to dynamic analysis.

At the conceptual level, SMT solvers allow the following kinds of
question to be answered:

•	 How must the input change to make program execution
follow the other path at this branch?

•	 Is there any input that can cause this calculation to overflow?

•	 Is there any input that causes both these function calls to
execute?

Common SMT solvers used in security research include CVC410 ,
STP11 and Z312 - the first two of these are academic projects, and
the third is by Microsoft Research.

SMT solvers have been used in a number of dynamic analysis
tools to increase their effectiveness. They are generally used with
a technique called Symbolic Execution whereby a programme is
analysed to determine how different inputs cause different parts of
the code to execute. This is normally achieved using an interpreter
and symbolic values for inputs. The result is a set of expressions
and constraints in terms of input symbols for following different
branches. The SMT solver can then attempt to find inputs that
cause specific instructions to execute.

For example, a common fuzzing technique is to mutate the input
data, while monitoring the code coverage graph to understand
whether the mutation allowed new code to be reached. With
an SMT solver, input that exercises specific code branches can
be intelligently generated, instead of brute-forced by traditional
fuzzing.

However, this added intelligence can be extremely computationally
expensive. The SAGE fuzzer from Microsoft uses this technique to
maximise code coverage.

A novel application of SMTs from Microsoft Research was
generating a clean input that reproduced a particular crash13.
For example, if an application crashed while editing a sensitive
document, users would likely be reluctant to submit crash dump
files in case they contained parts of the document. The solution
was to rerun the application and record every branch taken,
then use Z3 to generate an input that would follow exactly the
same code path. Users could then send the generated file to the
application vendor without the risk of compromising private data.

SMT solvers have also been used by a number of static analysis
tools to significantly reduce the number of false positives, by
allowing path sensitive analysis. This involves computing the
constraints necessary to follow a specific path and determining if
that is consistent with exercising the vulnerable code. Some static
analysis tools refer to this capability as “value tracking”.

[14] http://lcamtuf.coredump.cx/afl/

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 12

Common tools

The following sections describe some of the common tools
available to perform dynamic analysis. Several do not require
the source code of the application being tested. AFL, Address
Sanitizer and Application Verifier are standalone tools used for
vulnerability finding, while Detours and Pin are frameworks to be
used in building other dynamic analysis tools.

American Fuzzy Lop (AFL)

AFL14 is a fuzzer that uses compile-time instrumentation and
genetic algorithms to automatically discover new, interesting
test-cases that trigger new internal states of the target binary. It is
currently one of the most popular fuzzers and has found numerous
vulnerabilities in a wide variety of applications. While not purely a
dynamic analysis tool, its extensive use of dynamic analysis makes
its inclusion in this section appropriate.

Although AFL performs best when applications can be recompiled
to add its instrumentation, a binary-only mode is also available.
AFL also contains lots of interesting features for security
researchers.

•	 Given one test case, try to generate a smaller one that
follows the same code path.

•	 Generate valid files for a given parser without a reference
set.

•	 Infer the format for input files by observing code flow in the
parser.

AFL is still under active development and the available features
are likely to increase.

Address Sanitizer

Address Sanitizer (ASan) is a fast memory error detector. It
comprises a compiler instrumentation module and a runtime
library. It can detect various memory-related issues including:

•	 Out-of-bounds accesses to heap, stack and globals.

•	 Use-after-free.

•	 Use-after-return (to some extent).

•	 Double-free, invalid free.

Address Sanitizer is implemented in both the Clang and GCC
compilers. In order for ASan to operate, the target binaries
must be recompiled with the appropriate command line flags.
Therefore, access to the target source code is mandatory.

ASan is currently used extensively by the developers of the
Firefox and Chrome web browsers and has found numerous
memory corruption vulnerabilities. It is regularly combined with
fuzzing tools such as AFL, as this greatly improves the quality of
the results.

Application verifier

Application Verifier is a runtime verification tool developed by
Microsoft. It can find subtle programming errors that can be
extremely difficult to identify with normal application testing.
Application Verifier operates by simulating various error
conditions to understand how the application handles these rare
edge cases. Consequently, it can identify errors related to heap
corruption, invalid handles and critical section usage.

The most effective method of finding vulnerabilities with
Application Verifier is to enable its various checks then run the
application under a debugger. This means that any issue found
will cause the debugger to break.

[15] http://research.microsoft.com/en-us/projects/detours/
[16] https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 13

Detours

Detours15 is a library written by Microsoft Research that
allows dynamic instrumentation of binaries. It enables a
researcher to build applications to hook functions at runtime
in order to perform dynamic analysis. Despite the description
as an instrumentation tool, Detours can be used to write
tools that perform either passive or active analysis. Detours
does not require the source code of the programme under
analysis, however, debugging symbols enable some additional
functionality such as looking up function addresses at runtime.

The Detours library enables interception of function calls. It
achieves this by replacing the first few instructions of a target
function with a jump to a user supplied detour function. The
overwritten instructions are preserved in a trampoline function
which comprises the overwritten instructions and a jump to the
remainder of the code. The code for the trampoline function is
created automatically by the Detours library. All a user needs to
provide is a pointer that gets set to the appropriate code once a
detour has been put in place.

Microsoft makes extensive use of Detours in its own testing. In
fact, the Microsoft compilers were modified to make function
hooking in the emitted binaries significantly easier. Every
function has a fixed pattern at its start and end to enable safe
and efficient detouring. Specifically, the first two bytes of every
function are a NOP-equivalent, while the five bytes before each
function are all NOPs. These can be safely modified by Detours
to hook calls to a given function.

The free version of Detours only supports Windows on 32-bit
x86 platforms. The Microsoft-internal and professional versions
also support x64 and ARM CPUs.

Pin

Pin16 is a framework written by Intel that allows dynamic
instrumentation of binaries at runtime. Like Detours, it does not
require the source code of binaries under test. It can be used
to develop tools that perform both passive and active dynamic
analysis. For example, it is very common for Pin to be used
alongside a fuzzer to measure code coverage.

Pin can perform instrumentation at a very low level – down to
individual instructions if required. It can also add instrumentation
at basic block or function level. It also supports multiple
operating systems, including Windows, Linux, OSX and Android
on both 32-bit and 64-bit Intel CPUs.

Conclusion

Dynamic analysis covers a wide range of programme
instrumentation methods. Passive dynamic analysis can
significantly increase the efficiency of other vulnerability
discovery techniques such as fuzzing. Active dynamic analysis
can be used to discover vulnerabilities that are extremely
difficult to detect by any other method.

There are bugs that dynamic analysis would be very unlikely
to ever discover. The same can be said for static analysis and
manual code review. However, the best method for finding
vulnerabilities is always likely to be a combination of techniques.
AFL has shown that by combining relatively simple fuzzing with
dynamic analysis, the efficiency of fuzzing can be massively
increased, resulting in many vulnerabilities being found.

The frameworks available with which to build bespoke dynamic
analysis tools are incredibly flexible and powerful. The only limits
on what can be achieved are available computing resources and
imagination.

[17] https://github.com/octopus-platform/joern

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 14

Static code analysis

Overview

Static analysis and Static Application Security Testing (SAST)
are terms used to describe the testing or analysis of software
that is performed without needing to actually execute the
programme. The term is usually applied to testing that is
conducted by an automated tool, whereas human analysis is
typically called security-focused code review or simply manual
analysis.

The vast majority of static analysis tools will perform their
analysis on a programme’s source code, although some tools
do support the analysis of object, byte or even machine code.
These days, you can find a static analysis tool for pretty
much every programming language, with varying degrees of
usefulness.

The primary objective of a static analysis tool is to gain an
understanding of the target software’s behaviour, usually with
the aim of uncovering security, privacy and quality issues. As
such, static code analysis tools can be extremely valuable when
performing vulnerability research.

The importance of intelligent programme
analysis

Many static analysis tools do not attempt to deeply understand
the behaviour of the software being tested, instead opting to
simply scratch the surface with naïve grep-like pattern matching.
This is unfortunate, because it can increase the rate of false
positive detections. Separating the wheat from the chaff can
place significant triage burden on the vulnerability researcher.

For example, a naïve tool might simply say: “Here are all the
places that strcpy is called”, which is to some extent helpful, but
still places considerable onus on the researcher to verify which
instances are potentially vulnerable. In contrast, an intelligent
tool would say: “Here are the places where external input to the
programme could induce a buffer overflow in strcpy”.

These types of naïve tools should be avoided. They can produce
useful results, but these tend to be buried deep inside a
haystack of false positives. Use these tools only if you have an
excess of free time and suspect the target software contains
low hanging vulnerabilities.

So then, what constitutes intelligent programme analysis?
One could write hundreds of pages on this topic, but we will
try to summarise it in simple terms here. Intelligent static
analysis tools will frequently take additional steps beyond
simply tokenizing and parsing the code into an abstract syntax
tree. Generally, a smart static analyser will generate an intra-
procedural, or better, an inter-procedural data-flow graph.
This construct indicates how data will propagate through the
programme via function calls and assignment operations. For
static analysis of C/C++ code, an excellent tool that has these
capabilities is Joern17.

Data-flow analysis is often supported by some form of abstract
interpretation and value tracking. These are techniques for
evaluating mathematical and boolean expressions in an attempt
to characterise the behaviour of the program. For example, this
is useful for automatically determining whether user-supplied
input can control the evaluation of a series of conditions or
expressions that are needed to induce a vulnerability found
deep within the code.

But how does a static analysis engine understand the concept
of an array, and that it should never be accessed out of bounds?
And for that matter, how does the static analyser understand
the semantics of security-impacting functions such as the
previously-mentioned strcpy? These answers are described in
the next section.

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 15

Rulesets

Essentially, a rule is a set of conditions that, when met, instruct
the static analysis tool to trigger a vulnerability warning. In
the above example, a static analyser might have a rules which
explains that an array can be imagined as a sequence of bytes
in memory, and that the [] operators access the array at a
certain offset, and this offset must never exceed the size of the
array. Static analysers will have hundreds of other such rules.
For example, a ruleset might encode the notion that a pointer
must never be re-used after it has been passed to free, or that
when calling strcpy, the length of the source buffer must never
exceed the length of the destination buffer.

At this point, it should be clear that in order to detect a
diverse and comprehensive set of security vulnerabilities, the
static analyser must have a deep understanding of not only
the programming language syntax, but also the compiler,
target architecture, and the semantics of security-impacting
functions in the standard library and common frameworks.
Each of these can introduce architectural abstractions that
can confuse a naïve tool, but more importantly, they may
encourage programming patterns that can have unsafe security
consequences. Therefore, the static analyser must understand
concepts such as dynamic memory allocation, must be able to
resolve layers of abstraction, and must be able to follow method
calls made via function pointers or dynamic dispatch techniques.
If it doesn’t do these things, it will fail to detect many genuine
vulnerabilities.

For example, the static analysis tool must know whether the
target is 32-bits or 64-bits, as this can inform the analysis
engine of when an integer type will overflow. Similarly, a static
analysis tool that doesn’t understand the semantics of abort
(programme execution ends here), malloc (dynamic memory is
created here), or copy_from_user (untrusted user-supplied data
enters the system here) is going to yield poor false positive and
false negative rates. A static analysis tool must understand
these concepts, and many others, in order to thoroughly analyse
software.

This is often the difference between commercial and open
source static analysis tools. Commercial static code analysis
tools will be packaged with a diverse collection of rulesets
and support analysis techniques such as data-flow graph
traversal and abstract interpretation. On the other hand, free
static analysis tools tend to be a mixed bag. Some come with a
handful of rules, while others ship with zero rulesets, expecting
you to write you own. But this is not necessarily a bad thing.
In fact, we should celebrate static analysis tools that expose
a flexible detection engine to the user. This is where we, as
security researchers, can leverage our expertise.

Flexible detection engines allow us to extend the analyser to
detect entirely new classes of vulnerabilities. Perhaps you are
performing a security assessment of a software system that is
unique in how it allows untrusted data to enter the system, such
as a custom my_recv implementation or a hypothetical foo_
protocol_packet_parser function. Or perhaps you’ve stumbled
across a new coding pattern that describes a novel class of
vulnerability that was previously unknown. This is where the fun
starts.

[18] http://blog.regehr.org/archives/1125
[19] http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
[20] http://security.coverity.com/blog/2014/Feb/a-quick-post-on-apple-security-55471-aka-gotofail.html
[21] http://blog.klocwork.com/static-analysis/rather-than-fail-goto-success/
[22] https://github.com/fabsx00/joern
[23] https://scan.coverity.com/projects

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 16

Modeling untrusted data entry points

When conducting a security assessment of a new software
product, one of the first and most important steps will be to
enumerate the attack surface. Typically, this involves building
a comprehensive understanding of how data enters and exits
the system at its boundaries. When data first enters a software
system, we must treat this data as untrusted, and it should
therefore be validated and sanitised before being used.

In static code analysis tools that utilise data-flow analysis, a
data entry point is often called a source, whereas the location
that consumes this untrusted data is often called a sink. An
intelligent static analysis engine will allow its users to write
custom models that describe the semantics of additional
sources and sinks. Doing so will enable the analysis engine
to track this data as it propagates through the program. The
ultimate goal is to ensure that untrusted data is sanitised before
transitively tainting other data, or being used in a sensitive
operation, such as controlling the size argument to memcpy.

As mentioned previously, custom modelling will come into play
when auditing software that diverges from established coding
patterns. In these cases, a static analysis tool simply cannot
be expected to infer the input and output semantics of the
software. For example, when you encounter a custom library,
you should strongly consider modelling its API, ensuring that the
static analysis engine can track how the untrusted data flows
between the library and the application.

Automation and variation hunting

When we perform security-focused code review, we sometimes
discover unique coding patterns that lead to original security
vulnerabilities. These emergent classes of vulnerabilities could
be unique to an individual developer’s particular coding style, or
they may be unintentionally encouraged by a poorly-designed
API within a library or framework.

The ambitious security researcher will want to understand
whether these bad smells are repeated elsewhere in the target
code base. Conducting this search by hand can be tedious
and time consuming, so this type of variation hunting is simply
begging to be automated through the use of a static code
analysis tool.

For example, in recent memory, there was a rush by commercial
Static Application Security Testing vendors to demonstrate they
could detect the general patterns exhibited by the ‘Heartbleed’18

19 and ‘Goto Fail’20 21 vulnerabilities. In some cases, the
commercial tools did not detect the vulnerability, and new
detection heuristics or rules had to be created.

This reveals how a static analysis engine can be tricked by
even the most subtle variation of a seemingly well understood
(yet flawed) coding pattern. But don’t be dismayed! This is
actually great news for a security researcher. If you ever stumble
across what appears to be an interesting pattern that leads to
a vulnerability, consider creating a ruleset in a flexible tool like
Joern22. You’re likely to find variations elsewhere in the code
base.

Conclusion

In many cases you do not need to bother writing custom models
or rule sets if dealing with an application that uses common
languages and frameworks. In fact, finding vulnerabilities using
static analysis can often be as simple as running an off-the-
shelf tool in the default configuration. Although, if the code is
open source it is likely to have already been scanned by every
static analysis tool on the planet, multiple times over. Just
take a look at the Coverity Scan project23, which has scanned
thousands of open source code bases. But if you’re looking
at a fresh code base that has never been exposed to static
analysis tools, get ready and prepare yourself for a bonanza of
vulnerabilities.

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 17

Overview

When analysing software, it is often necessary to understand
how it is built and what third party components it depends
upon. This type of software analysis is becoming increasingly
important as we look to identify the weak links and deal with
monolithic blobs such as firmware for embedded systems.
The approaches used for composition analysis can be applied
universally across a variety of platforms such as mobile, web
application, desktop or embedded.

Being able to understand what software is comprised of can not
only facilitate weak link identification but also provide indicators
as to means of exploitation as well as general security posture.

In the sections which follow we summarise the approaches used
to identify how software is composed.

Static Open Source Enumeration &
analysis

An important element of software maintenance involves the
software bill-of-materials (BOM), but maintaining such a BOM
by hand can be cumbersome or impossible due to the complex
nature of dependency chaining. For example, your software may
depend upon a third party package that, unbeknownst to you,
depends upon additional third party packages, through either
static or dynamic linkage.

Consequently, it can be quite difficult to understand which
versions of what third-party components are built into your
application. And yet, being able to quickly answer this type of
question is an essential aspect of a mature Security Incident
Response process, such as when a newly patched vulnerability
affecting specific versions of an open source library is disclosed,
and it is necessary to determine whether you need to update
your software.

A number of static analysis techniques and approaches can
be employed to solve the third party library identification and
versioning problem. Commercial tools such as BlackDuck,
Protecode, TripleCheck or Palamida will parse code or compiled
binaries and apply a set of heuristics or rules that determine
which libraries are compiled in. This information may be derived
directly from proprietary databases or from package manager
metadata included with the source repository.

After library and version information has been obtained it can
then be cross-referenced with vulnerability databases such as
NIST NVD in order to identify those libraries that represent a
security risk.

Static software
composition analysis.

[24] http://www.trapkit.de/tools/checksec.html
[25] https://github.com/olliencc/WinBinaryAudit
[26] http://binwalk.org/
[27] https://github.com/misterch0c/firminator_backend

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 18

Static closed source enumeration and
analysis

At a very high level, the aspects of software composition which
could usefully be analysed by tools are listed below.

•	 Platform binary

•	 CPU architectures

•	 Compiler and versions

•	 Third party external libraries used, and their versions

•	 Compiler level protections leveraged

•	 Operating system protections leveraged

Examples of tools which facilitate this include checksec24 and
WinBinaryAudit25.

Beyond these we are increasingly seeing automation to a far
greater depth of analysis, at the level of both individual binaries
and monolithic firmware blobs. These enhanced capabilities
include enumeration and at times automatic extraction around a
number of other areas, such as:

•	 Structure

•	 Compression, packing/obfuscation and encryption

•	 Statically linked libraries and their version or if specifically
vulnerable

Examples of tools that provide such functionality include
binwalk26 and fiminator27.

Conclusion

Modern software is increasingly made up of a collection of third
party libraries and components. The ability to efficiently and
effectively identify the composition of software is increasingly
important in vulnerability discovery as well as understanding
how software may be attacked in the future.

[28] https://fuzzinginfo.files.wordpress.com/2012/05/cmiller-csw-2010.pdf and https://www.youtube.
com/watch?v=Xnwodi2CBws
[29] https://ece.uwaterloo.ca/~vganesh/Publications_files/vg2006-EXE-CCS.pdf

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 19

Overview

Fuzzing is a vulnerability discovery technique in which large
quantities of data, packaged as individual ‘test cases’, are
submitted as input to the target system – software or hardware
– with the aim of causing crashes, faults or other behaviours.
Typically this process involves the use of a purpose-built piece
of hardware or software – a ‘fuzzer’ – to generate and submit
the test cases. Security researchers may choose to use a
publicly available fuzzing tool, or to create their own as needs
dictate.

The principle behind fuzzing is to leverage the power of the
computer, generally favouring quantity over quality. In an ideal
setup, a researcher might hope for their fuzzer to evaluate
thousands or even millions of test cases per second. Once a
fuzzer has successfully induced a crash, it will typically flag the
corresponding test case as interesting and continue searching
for other faults or anomalous behaviour. The researcher will
eventually want to manually analyse the test cases marked as
interesting with a view to reproducing the fault, determining if it
is likely to be exploitable and ultimately refining a working proof-
of-concept exploit.

The rate at which most systems can be fuzzed in this way
draws attention to a trade-off between development time and
execution time of the fuzzer: sometimes at the most simple send
random bits or bytes to the target will be sufficient to generate
crashes, whereas a more hardened system would require a
degree of configuration and tailoring such that the test cases
resemble valid data. The ideal test cases will be ‘correct enough’
to pass early validation logic, with deliberate faults further into
the structure designed to trip up the more sensitive code paths.
This balancing act is at the crux of productive fuzzing, and the
techniques and technology are constantly evolving.

This ‘shotgun’ approach to vulnerability discovery is very
different from the manual and informed strategies such as code
review and static analysis, and unsurprisingly it tends to yield a
different flavour of bugs. For this reason, researchers will use
their judgement to decide upon the best approach, often using
fuzzing in combination with other techniques.

Fuzzing in the context of software vulnerability research has
existed for two decades or more, and so the vulnerability
landscape is also constantly changing. High-value targets
which were once rich with exploitable vulnerabilities have now
been fuzzed extensively over the years and most of the low-
hanging fruit is gone. This diminishing supply of vulnerabilities
continues to push the boundaries of what is considered to be a
‘good’ fuzzer and while the number of bugs being found through
fuzzing may have tapered off in recent years, the ever-increasing
complexity of these bugs is testament to the quality of modern
tools.

Fuzzing is one of the most common vulnerability discovery
techniques with valid input to a programme (say an image
or document) mutated in some way then loaded into the
programme, in the hope that the malformed input will be
handled incorrectly causing a crash.

As previously mentioned there are various strategies when
fuzzing. Some maintain a “keep it simple” approach. Charlie
Miller’s famous “5-lines of Python”28 that mutates random
bytes with no knowledge of the underlying structure of the
data being mutated is probably the most extreme example. This
is known as “dumb fuzzing”. At the other end of the spectrum
there are highly complex fuzzers that might use knowledge of
the underlying format of the data they are fuzzing e.g. PE COFF
files29.

Fuzzing

[30] https://blogs.technet.microsoft.com/srd/2010/02/24/using-code-coverage-to-improve-fuzzing-
results/

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 20

Others use constraint resolvers to identify which parts of the
input to change to exercise different parts of the program;
Microsoft’s SAGE is probably the best known example.

Interestingly, empirical evidence suggests30 that all well-written
fuzzers find roughly the same number of bugs in a given time
period on the same hardware. The basic dumb fuzzer requires
almost no time to generate test cases, though each case has a
relatively low probability of finding a bug. The intelligent fuzzer
requires much more time to generate each test case so the total
number it can try is much lower, even though each case has a
much higher probability of finding a bug.

The most popular strategy currently combines dumb fuzzing
with code coverage analysis. This allow rapid generation of
test cases but provides feedback on which ones exercised new
code and are therefore worth keeping as the basis for further
mutations. AFL is the most popular example of this.

Test Case Management

Code coverage as a metric

In recent years, the measure of a fuzzer’s quality has moved
away from simply ‘how many bugs it finds’ and more towards
achieving good code coverage. To explain this by way of a
question: if your fuzzer finds no bugs, is that because the fuzzer
isn’t very effective, or because the software is well secured?
Probably a bit of both, but certainly one can be confident that a
fuzzer is working if the volume of code being exercised within
the target application during execution of test cases is high and
continuing to grow.

So how to ensure that a fuzzer is generating test cases that
exercises as many code paths as possible? There are two main
approaches: mutation-based and grammar-based fuzzing.

Mutation-based fuzzing

A mutation-based fuzzer will take known-good input and perturb
it slightly – perhaps flip a random bit, or replace a randomly
chosen 32-bit section of the file with a boundary value. This
new mutated data will become another test case for submission
to the target application. But of course, when you consider the
size of a typical test case (say, for example a JPEG file) and
the number of ways in which it can be mutated, the number
of permutations can quickly become unmanageable. To test
every possible mutation of all but the most trivial test cases
is infeasible, so a fuzzer will need to make its choices wisely.
Furthermore, if all test cases are based on a single known-
good base case, it is likely that they will all result in execution
of similar code paths, and hence be less likely to find new bugs.
As an extreme example, consider an audio player being fuzzed
through mutation of a single MP3 file. One might hope to find
some bugs in the MP3 decoder, but it would take more than a
stroke of luck to stumble upon a bug within the FLAC-parsing
code. For this reason, it is important for mutation-based fuzzers
to be primed with a broad set of base cases. Ideally these will
span the range of functionality supported by the target and
together obtain a good degree of code coverage.
Finally, for a mutation-based fuzzer to be effective it should
have some knowledge of how the data it is mutating will be
processed. The algorithms used by one target to parse XML
data will be radically different from that of another which
handles ZIP files. Correspondingly the kind of bugs in these
two targets will be very different and the fuzzing techniques
required to trigger bugs in one format will be ineffective for
another. Furthermore, the presence of integrity checksums
within file formats can often present a major stumbling block
for uninformed fuzzing engines. Therefore, researchers will
often create dedicated logic or rules within their fuzzer (or its
configuration) to tailor it to what is known about the way that
the target processes its data. Although laborious, this can yield
significant improvements during fuzzing by allowing deeper and
less thoroughly tested code paths to be reached.

[31] http://lcamtuf.coredump.cx/afl/
[32] https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
[33] http://www.dynamorio.org/

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 21

Grammar-based fuzzing

Turning this idea on its head, we arrive at grammar-based
fuzzers. In this approach, rather than mutating a set of known
good base cases, we feed the fuzzer with nothing other than a
semantic description of what kind of data the target is designed
to handle – in the form of a grammar or schema. The fuzzer
will use this to synthesise new test cases from scratch, taking
opportunities to strategically perturb the structure or content
where appropriate.

This grammar-based approach of test case generation tends to
yield a much greater signal-to-noise ratio than mutation-based
fuzzing, and its capabilities are bound only by the level of detail
within the grammar. However, it is not without its limitations,
and in many real-world cases the data formats being dealt with
simply cannot be neatly described within the language of the
fuzzer. Often the language semantics are too simple to describe
a rich data format, or are so complex that even defining a simple
grammar is arduous and error-prone. The development time
required to author a useful grammar-based fuzzer also tends to
be significantly greater than that for a mutation-based fuzzer.
These two approaches to test case generation are not mutually
exclusive and many fuzzers use a combination of both to good
effect.

Generational fuzzing

When a fuzzer finds a bug, it is often probable that other
defects will exist in nearby code paths, in terms of the target’s
logic. For this reason, fuzzers will often want to focus their
mutation efforts upon test cases similar to those that produce
known crashes. Taking this a step further, there is mileage
in concentrating on those test cases that simply exercise a
previously unseen code path, even if no crash occurred. By
feeding these ‘interesting’ test cases back into the pool of base
cases, a mutation-based fuzzer can iteratively discover new
code paths in the target, and hence more bugs.

When supplied with sufficient information about the execution
state of the target, this technique can be used with profound

results as demonstrated by American Fuzzy Lop31 (AFL). Using
source code instrumentation to provide the fuzzing engine with
detailed information of the execution paths taken by the target
as it runs, AFL demonstrates that a relatively simple mutation-
based fuzzer is able to infer the structure of many complex file
formats given no prior knowledge of how they should look. By
initialising the same tool with a meaningless base-case and
pointing it at two very different targets – say a GIF renderer or
an ELF parser – it will produce increasingly intricate test cases
including either valid GIFs or valid ELFs according to how the
target responds to the mutations is generates.

It does this by pivoting upon test cases that exercise previously
unseen code paths, constructing a tree of test cases which
attempts to mirror the structure of the parsing code. Naturally,
this level of code coverage will yield many novel defects,
and AFL has a correspondingly impressive track record.
The tool in its original form, however, is limited to fuzzing of
targets with source code available as it relies on compile-time
instrumentation of the code to operate. Similar techniques can
be applied using dynamic instrumentation (for example, using
PIN32 or DynamoRIO33) and virtualised execution, and research
in this field continues.

Base case pruning

Put simply, the primary problem with mutation-based fuzzers is
that such tools spend too much time executing test cases which
do not result in unique crashes. This is a compound problem,
impacted by many factors including the mutation algorithms,
inability to detect early validation failures, and execution of
redundant code paths. This latter point can be addressed by
careful reduction of redundant base cases. The presence of
multiple base cases which exercise overlapping code paths
tends to cause production of needless test cases by the fuzzing
engine, wasting valuable fuzzing time. This is a particular
problem for generational fuzzers, whose set of base cases is
constantly changing.

Given some knowledge of the execution path taken by the
target when processing a given base case, a fuzzing engine

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 22

can identify the presence of unnecessary samples within its
set of base cases: if all of the code reached during execution
of a given base case is also reached when executing some
combination of others in the pool, then it is unlikely that
mutation of this base case will yield any unique crashes that
wouldn’t be found otherwise. By iteratively applying this as a
pruning algorithm, a fuzzer can strive to eliminate unnecessary
work. This is done by measuring the total coverage for an entire
test set then finding the smallest subset that has the same
coverage, the so-called min-set. Some fuzzers also measure
the additional coverage due to mutations to decide whether a
particular test case is worth keeping and mutating further.

Target management

Once upon a time fuzzers were required only to generate test
cases. Nowadays, expectations are much higher, and some
management of the target process is also required.

In particular, it is generally a quick win for the fuzzer to run
the target under its own debugger when processing test
cases. This way, any crashes that are caused can easily be
detected, analysed and triaged. Modern debugging APIs make
it straightforward for the fuzzer to save a crash dump and
quickly gain knowledge of the important details following a
crash, such as the address of the faulting instruction, what kind
of operation was being performed at the time, the state of the
registers and call stack, etc. This information can be very useful
for automatically gauging how likely the bug is to be exploitable,
and how best to prioritise it in the set of findings for manual
investigation.

As previously mentioned, a fuzzer might also want to keep
track of code coverage and execution paths taken within the
target process. This may be as simple as tracing (or branch-
tracing) the debugged process and logging the addresses
of all functions or basic blocks as they are reached. A less
computationally expensive approach might be to set breakpoints
at the beginning of each function or basic block, removing
them as they are reached to gain an overall view of which parts
of the code were and weren’t exercised (at the cost of losing
knowledge of the order in which they were hit). Information such

as this will typically be fed back to the fuzzing engine, once
the target has crashed, exited or timed out. Armed with this
information, the fuzzing engine can decide whether to pursue
the avenue of mutation that was used to generate this particular
test case, or to move on to other areas.

This analytic data can be made even richer with the use of
target instrumentation, in which the target’s executable code is
modified or augmented to provide additional information about
the flow of execution, or the state of memory and registers
when certain locations are reached.

Instrumentation may be performed against the target’s source
code if available (either prior to or during compilation), or against
the compiled image as necessary. If the researcher only has
a compiled binary to work with, it may be preferable to create
a modified version by instrumenting the target image on disk,
or by applying the hooks/patches on the fly within the running
process, using library injection or a similar technique.

In some cases, instrumentation can even be used in place of
debugging. By instrumenting the target to report information
regarding its execution, control flow and/or completion to the
fuzzing engine in real time (e.g. via shared memory, or a named
pipe/domain socket), the overheads associated with using a
debugger can be avoided.

Handling crashes

When a researcher successfully causes the target process to
crash during fuzzing, the first follow-up action will generally
be to ensure that the fault can be reproduced. Often this is
as simple as resubmitting the test case for execution, but
sometimes the target will behave inconsistently even when
operating on the same data. Fuzzing of stateful targets, such
as network servers, is generally more complex than that of
self-contained programs that operate on files, particularly
when the network protocol is made more complicated by with
authentication, encapsulation, session handling and such. In
these cases, one’s hopes of reliably reproducing a crash would
be much lower.

[34] https://github.com/google/sanitizers/wiki/AddressSanitizer

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 23

Failure to reproduce a test case could occur for many reasons,
such as use of uninitialised memory within the target, interaction
with external data sources (e.g. the network), availability
of system resources or race conditions. It is also common
for stateful target applications to respond to a sequence of
separate test cases, sometimes making it necessary to consider
any residual effects caused by execution of earlier test cases
within the fuzzing run. If a crash can’t be reproduced, then the
researcher may need to resort to analysing the crash-dump
to determine the root cause. In practice, such cases are often
disregarded as the lack of reproducibility often translates to
reduced reliability when producing the final exploit – either
because the bug can’t reliably be triggered, or because the
process becomes unpredictable or unstable when this occurs.

As well as establishing reproducibility, upon detecting a crash
a fuzzing engine will generally want to perform some other
triaging. Rather than treating all crash-causing test cases as
being equally interesting, the fuzzer will want to gain some
estimate towards likely exploitability and uniqueness, to save
valuable effort during manual follow-up.

Uniqueness can be quite reliably determined by considering
the address of the faulting instruction and the call stack of
the faulting thread. If two distinct test cases produce crashes
with identical stack traces then they are likely to correspond
to the same bug, and only one needs to be retained for manual
analysis. Conversely, if they crash at a common location but
have different call stacks then it is very possible that they are
distinct bugs worth investigating separately. This is rather
common when the faulting instruction lies within a common
routine such as memcpy.

Given a new, unique crash, the fuzzer will finally want to perform
some rudimentary exploitability analysis. Inspection of the
faulting instruction and the register contents will generally
provide enough information to quickly rule out certain classes
of bug. For instance, a divide-by-zero exception is generally less
interesting than a null dereference, which itself shows far less
promise than a write access violation near the stack.

Manual investigation of crashes can be a time consuming
process, so the quality of this automatically-generated

information can greatly impact the productivity of a fuzzing
effort – particularly where the number of crashes is high.
Ultimately, the researcher will want the fuzzer to maintain a list
of interesting test cases as it runs, complete with sufficient
information to quickly get a measure of the type of crash
involved and its potential for exploitation.

Some platforms offer development and debugging tools which
can be of real benefit when fuzzing, such as Heap Tagging
and User Mode Stack Tracing on Windows. These OS-
provided settings can be configured per process, and cause
useful metadata to be maintained by the heap manager when
executing the target process. Using the output of these tools,
the otherwise difficult process of determining the owner of a
given heap buffer following crash becomes almost trivial. In a
similar vein, AddressSanitizer34 is an LLVM and GCC compiler
module that inserts heap manager instrumentation into a
program for the purpose of detecting memory errors. Provided
target source code is available, it can be used at little cost to
pick up on a variety of exploitable faults, including ones that
may not have caused a crash during fuzzing (such as off-by-one
overflows and use-after-frees).

Test case reduction

The fuzzing process can cause the accumulation of a
considerable amount of unnecessary data into generated test
cases, and the data responsible for causing the crash isn’t
always obvious. For example, when fuzzing scripting languages
or HTML, a test case may contain thousands of lines, only a
few of which are necessary to reproduce the behaviour. Rather
than investigate this manually, it is often beneficial to automate
the process of reducing the output from the fuzzer to isolate a
minimal test case that induces identical behaviour. The principle
is simple: sections of the test case’s data are iteratively removed
and re-evaluated within the target in order to determine their
necessity. Often a divide-and-conquer algorithm is used for
performance reasons, with the final result being a minimal test
case that is much more manageable to analyse by hand.

[35] http://wiki.qemu.org/

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 24

Hardware fuzzing

While the discussion so far has primarily revolved around
fuzzing of software, most of the ideas and techniques are also
appropriate for hardware and embedded targets. However,
these platforms come with a new set of challenges, particularly
during triage and exploitability analysis.

Not least among these challenges is the fact that debugging
tools for hardware platforms are typically far less mature than
those for software, and in some cases such tools are difficult
to obtain or simply non-existent. In these situations, target
monitoring management reduces to observing the device for
resets or lock-ups. It is usually possible to use automated
methods to determine the occurrence of a device reset (for
instance, by monitoring the potential of certain pins on the
processor or chipset), but knowing where to go from there can
be more of an art than a science. Embedded systems are less
likely to have source code available, and it isn’t always clear
which component has faulted. Even if the exact cause of the
fault is well known, refining the test case into anything more
elegant than a denial-of-service attack can be a complex affair.

Fuzzing enhancements

Depending on the target, the logistics of fuzzing may lend
themselves to parallelisation. Particularly when fuzzing a
programme that operates in isolation on self-contained data,
scaling the fuzzing work across multiple machines may be as
simple as dividing the generated test cases up equally among
the worker hosts and collating the results as they are fed
back. However, some complexities do arise, particularly when
the fuzzer itself has a degree of state to maintain (such as in
generational fuzzing), although these problems are fairly typical
of any distributed computing challenge.

Modern fuzzing has also evolved to take advantage of
virtualisation technologies to perform cross-architecture fuzzing
using hypervisor-based emulation. This can bring performance

benefits where establishment of target state is a bottleneck
(for instance, when fuzzing an operating system kernel) as
restoration of a memory snapshot can sometimes be quicker
than reinitialising the target. Use of a hypervisor can also
enhance dynamic instrumentation capabilities by leveraging
virtualisation extensions for software traps. Furthermore,
it is also possible to take advantage of high-performance
consumer hardware when fuzzing code that is engineered to
run on low-end CPU platforms (such as embedded systems),
through parallel execution using a virtualisation platform such as
QEMU35.

There are also applications of fuzzing to security vulnerability
beyond just memory corruption. These applications are still
highly fertile and are only now just beginning to be publically
explored.

Conclusion

Fuzzing technology, techniques and tooling continues to evolve
and remains one of the go-to techniques for vulnerability
discovery. While the density of trivially discoverable bugs in
mature software is rapidly declining, as well as those trivially
exploited, there are still high impact vulnerabilities discovered
using well-known fuzzing techniques.

High-profile vulnerabilities are being discovered by more
sophisticated fuzzers and while the state of the art has come
a long way in a short time, fuzzing as a technique promises to
continue to push the boundaries.

[36] http://www.vdiscover.org/report.pdf
[37] https://www.usenix.org/legacy/events/woot11/tech/final_files/Yamaguchi.pdf
[38] http://seminaire-dga.gforge.inria.fr/2015/20151009_KonradRieck.pdf

All Rights Reserved. © NCC Group 2016

 NCC Group Research Insights 25

This paper has looked at the topic of software vulnerability
discovery in 2016 as seen by those at the applied end of the
security industry. It is our opinion that whilst much progress has
been made in the last twenty or so years, there is still much to
be done around enhancing consistency, coverage, automation
and techniques.

One challenge that is still largely unanswered in a generic,
automated and scalable manner is the understanding of
systems and their inter-relationships. We see significant
fragmentation in architectures, programming languages,
frameworks and operating systems as never before. This means
that the initial enumeration process of understanding trust
boundaries and data flows still remains primarily a job for skilled
humans.

As system security improves through the widespread
deployment of Trusted Computing Bases that prevent or
complicate low-level access to certain systems, the cost
of discovery is increasing. Furthermore, as many systems
are increasingly reliant on cloud architectures which are
often opaque in terms of hardware and software, the ability
to replicate these environments in laboratory settings to
facilitate analysis is also increasingly challenging, if not at
times impossible. This is not to say that these developments
will in general preclude discovery of vulnerabilities, thanks to
techniques based on virtualisation, static analysis, and other
approaches discussed in this paper. However, the level of
complexity and investment is generally increasing for more
mature software built for more modern operating systems.

Finally, we expect significant gains to be made with the
application of machine learning to vulnerability discovery based
on the research and initial results36 37 38 seen in the past five
years.

Thanks to

The authors would like to thank the below:

Matt Lewis, Richard Turnbull, Michael Tracy, Graham Bucholz,
Addison Amiri, Matthew Braun, Christian Prickaerts, Lucas
Rosevear and Sherief Hammad.

Closing Summary

 NCC Group Research Insights 26

CONTACT US

0161 209 5200
response@nccgroup.trust
@nccgroupplc
www.nccgroup.trust

 NCC Group Research Insights 27

All Rights Reserved. © NCC Group 2016

www.nccgroup.trust
@nccgroupplc

 NCC Group Research Insights 28

