
Finding the Weak Link in Binaries
Ollie Whitehouse

Agenda

•What
•Why
•How
•Conclusions

What?

What?

Without debug symbols or source code identify Windows binaries that do not leverage the available defenses … easily and quickly

What?

•OS provided defenses
•Compiler provided defenses
•Compiler enabled defenses
•Linker enabled defenses
•Developer enabled defenses
•Developer secure coding practices

What?

•Version of compiler / linker
•Compiler / linker enabled protections

• ASLR
• DEP (NX)
• Stack cookies
• Safe Structured Exception Handling

•Developer used defensive APIs
• Heap corruption behavior, DEP policy
• DLL planting, pointer encoding

What?

•SDL banned APIs
•Dangerous APIs

• undermining compiler/linker protections
•UAC / Integrity Level - Developer
• .NET security - Developer

• Unmanaged code
• Strong names
• Partially trusted callers

Why?

Why? - Defensive

•A product == many vendors
•e.g. Adobe Reader 10.0 == [guess?]

•License != source code
•License != private symbols
•SDL assurance…

• getting the free security features enabled
•End user assurance / threat awareness

• Understanding where you need EMET

Or put another way

•A vendors SDL is not enough
• doesn’t always flow upstream

•A vendor who ships doesn’t assure
• all third party components

•End user organisations taking ownership
• of risk
• of mitigations

Why? - Offensive

•Mitigations are expensive / difficult
•Application specific bugs are
expensive

•Maximize research ROI
•if your goal is to exploit
•… find the weak link
•… reduce headaches

Or put another way

• IIS 7.5 FTP DoS
•Chris Valasek / Ryan Smith school us

• ‘Modern Heap Exploitation using the Low
Fragmentation Heap’

•Achieved EIP
• … still no win … ASLR
• … try an minimize the need for info leaks …
• … lets minimize the tears …
• … unless you want to info leak to win …

How?

Version of Compiler / Linker

•Linker version in the PE header

• ‘Rich’ header
• Microsoft compiler specific
• documented in 29a virus e-zine in 2004
• further documented in 2008
• embeds compiler IDs
• XOR encoded

Version of Compiler / Linker

Version of Compiler / Linker

•Version mapping exercise
undertaken in January 2010

•Visual Studio 6 -> Visual Studio
2010 mapped

•Why?
•Missing compiler protections
•Weaker compiler protections

Compiler / Linker Protections

•ASLR compatibility – PE header

•Data Execution Prevention – PE header

 * always on for 64bit no matter what

Compiler / Linker Protections

•Stack Cookies – PE Header, Imports and
Heuristics

• imports
•_crt_debugger_hook

•heuristics – GS function epilogue / prologue
• allows versioning
• using FLIRT like signatures

Compiler / Linker Protections

•SafeSEH – PE header (32bit only)
•SEH == Structured Exception Handling

Compiler / Linker Protections

•Load Configuration Directory size
• If size of directory entry <> 64 then MS12-
001

• NOT the size field in the LCD!
• Microsoft Visual C msvcr71.dll == 72
• Anything built with Microsoft Visual C++
.NET 2003 RTM

•suprising amount of stuff

Default Process Heap

•Default process heap executable
•PE header

Shared Sections

•Shared sections executable & writeable
• PE header
• would be mapped across processes

Defensive APIs

•HeapSetInformation
•HeapEnableTerminationOnCor
ruption

•SetProcessDEPPolicy
•PROCESS_DEP_ENABLE

•EncodePointer

Banned APIs

•Microsoft SDL banned APIs
•parse the Import Address Table
•145 or them
•indication of security awareness

Dangerous APIs

•VirtualAlloc
• doesn’t benefit from ASLR
• if mapping pages executable == win
• released VirtualAlloc_s.h at Recx

•LoadLibrary
• if DLL planting mitigations aren’t used

DLL / Executable Planting

•Use of LoadLibrary / CreateProcess
•But doesn’t use

•SetDLLDirectory
•SetDefaultDllDirectories
•AddDllDirectory

•There is also a registry key
• … more on this later

UAC / Integrity Level

•In the binaries manifest

.NET Security

•Strong name checks
•Allow partially trusted callers

•AllowPartiallyTrustedCalle
rsAttribute

.NET Security

Windows 8 Containers

•New for Windows 8
•a new DLL characteristic

•Manifest
•detailing capabilities

•… for more information refer to
http://recxltd.blogspot.com/2012/03/wind
ows-8-app-container-security-notes.html
…

http://recxltd.blogspot.com/2012/03/windows-8-app-container-security-notes.html
http://recxltd.blogspot.com/2012/03/windows-8-app-container-security-notes.html

Miscellaneous

•Force Integrity

•Company
•File Version resource section

•Signer
•Signature type

Existing tools…

Existing Tools – Looking Glass

• from Errata Security
• http://www.erratasec.com/

• .NET Based PE Scanner
•Scans the file system or running processes
•Limitations in checks (some)

• No /SafeSEH
• No /GS
• No HeapSetInformation /
SetProcessDEPPolicy

Existing Tools - BinScope

• from Microsoft
• http://www.microsoft.com/download/en/detai
ls.aspx?id=11910

•Lots of checks
• some of what I’ve discussed, but not all!

•Some Extra
• non-GS friendly initialization / coverage
• ATL version and vulnerable check

•Needs private symbols!

How I did it…

Demo

Beyond binaries

•Defense in depth features via the registry
•Needs installer teams buy-in
•or after market adoption
• Image Execution Options

•MitigationOptions
•CWDIllegalInDllSearch
•DisableExceptionChainValidation

But…

Even with all these…
we don’t mitigate vtable overwrites…

Bonus Material - ELF

•Similar(ish) tool exists for ELF
• readelf && a
shell script (checksec.sh
@ trapkit.de)

•RPATH / RUNPATH
• contained in a section of an ELF
• can override library locations
• path doesn’t exist and you can
create == win

Summary / Conclusions

Summary / Conclusions

•First pass binaries analysis doesn’t have to
be rocket science

•Help with assurance / assessment
• for vendors and / or end organisations

•Help with target identification
• target lower hanging fruit
• less SDL aware components

•Without the use of symbols…

There is still more to do…

Detect the use of the /sdl switch
http://blogs.msdn.com/b/sdl/arc
hive/2011/12/02/security.aspx

http://blogs.msdn.com/b/sdl/archive/2011/12/02/security.aspx
http://blogs.msdn.com/b/sdl/archive/2011/12/02/security.aspx

UK Offices
Manchester - Head Office

Cheltenham

Edinburgh

Leatherhead

London

Thame

North American Offices
San Francisco

Chicago

Atlanta

New York

Seattle

Boston

Australian Offices
Sydney

European Offices
Amsterdam - Netherlands

Munich – Germany

Zurich - Switzerland

Thanks! Questions?

Ollie Whitehouse
ollie.whitehouse@nccgroup.com

	Finding the Weak Link in Binaries
	Agenda
	What?
	What?
	What?
	What?
	What?
	Why?
	Why? - Defensive
	Or put another way
	Why? - Offensive
	Or put another way
	How?
	Version of Compiler / Linker
	Version of Compiler / Linker
	Version of Compiler / Linker
	Compiler / Linker Protections
	Compiler / Linker Protections
	Compiler / Linker Protections
	Compiler / Linker Protections
	Default Process Heap
	Shared Sections
	Defensive APIs
	Banned APIs
	Dangerous APIs
	DLL / Executable Planting
	UAC / Integrity Level
	.NET Security
	.NET Security
	Windows 8 Containers
	Miscellaneous
	Existing tools…
	Existing Tools – Looking Glass
	Existing Tools - BinScope
	How I did it…
	Demo
	Beyond binaries
	But…
	Even with all these…
	Bonus Material - ELF
	Summary / Conclusions
	Summary / Conclusions
	There is still more to do…
	Slide Number 44

