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•Why 
•How 
•Conclusions 
 

 



What? 

 
 



What? 

Without debug symbols or source    code identify Windows binaries    that do not leverage  the available    defenses … easily and quickly  
 



What? 

•OS provided defenses 
•Compiler provided defenses 
•Compiler enabled defenses 
•Linker enabled defenses 
•Developer enabled defenses 
•Developer secure coding practices 
 

 



What? 

•Version of compiler / linker 
•Compiler / linker enabled protections 

• ASLR 
• DEP (NX) 
• Stack cookies 
• Safe Structured Exception Handling 

•Developer used defensive APIs 
• Heap corruption behavior, DEP policy 
• DLL planting, pointer encoding 

 
 



What? 

•SDL banned APIs 
•Dangerous APIs  

• undermining compiler/linker protections 
•UAC / Integrity Level - Developer 
• .NET security - Developer 

• Unmanaged code 
• Strong names 
• Partially trusted callers 

 
 



Why? 

 
 



Why? - Defensive 

•A product == many vendors 
•e.g. Adobe Reader 10.0 == [guess?] 

•License != source code 
•License != private symbols 
•SDL assurance… 

• getting the free security features enabled 
•End user assurance / threat awareness 

• Understanding where you need EMET 
 

 



Or put another way 

•A vendors SDL is not enough 
• doesn’t always flow upstream 

•A vendor who ships doesn’t assure 
• all third party components 

•End user organisations taking ownership 
• of risk 
• of mitigations 

 
 



Why? - Offensive 

•Mitigations are expensive / difficult 
•Application specific bugs are 
expensive  

•Maximize research ROI 
•if your goal is to exploit 
•… find the weak link 
•… reduce headaches 

 
 



Or put another way 

• IIS 7.5 FTP DoS 
•Chris Valasek / Ryan Smith school us 

• ‘Modern Heap Exploitation using the Low 
Fragmentation Heap’ 

•Achieved EIP 
• … still no win … ASLR 
• … try an minimize the need for info leaks … 
• … lets minimize the tears … 
• … unless you want to info leak to win … 

 
 



How? 

 
 



Version of Compiler / Linker 

•Linker version in the PE header 
 
 

• ‘Rich’ header 
• Microsoft compiler specific 
• documented in 29a virus e-zine in 2004 
• further documented in 2008 
• embeds compiler IDs  
• XOR encoded 

 
 



Version of Compiler / Linker 

 
 



Version of Compiler / Linker 

•Version mapping exercise 
undertaken in January 2010 

•Visual Studio 6 -> Visual Studio 
2010 mapped 

•Why? 
•Missing compiler protections 
•Weaker compiler protections 

 
 



Compiler / Linker Protections 

•ASLR compatibility – PE header 
 
 

•Data Execution Prevention – PE header 
 

 
  * always on for 64bit no matter what 
 

 



Compiler / Linker Protections 

•Stack Cookies – PE Header, Imports and 
Heuristics 
 
 

• imports 
•_crt_debugger_hook 

•heuristics – GS function epilogue / prologue 
• allows versioning 
• using FLIRT like signatures 

 
 



Compiler / Linker Protections 

•SafeSEH – PE header (32bit only) 
•SEH  == Structured Exception Handling 
 
 
 

 
 



Compiler / Linker Protections 

•Load Configuration Directory size 
• If size of directory entry <> 64 then MS12-
001 

• NOT the size field in the LCD! 
• Microsoft Visual C msvcr71.dll == 72 
• Anything built with Microsoft Visual C++ 
.NET 2003 RTM 

•suprising amount of stuff 
 

 



Default Process Heap 

•Default process heap executable 
•PE header 

 
 



Shared Sections 

•Shared sections executable & writeable 
• PE header 
• would be mapped across processes 

 
 



Defensive APIs 

•HeapSetInformation 
•HeapEnableTerminationOnCor
ruption 

•SetProcessDEPPolicy 
•PROCESS_DEP_ENABLE 

•EncodePointer 
 

 



Banned APIs 

•Microsoft SDL banned APIs 
•parse the Import Address Table 
•145 or them 
•indication of security awareness 

 
 



Dangerous APIs 

•VirtualAlloc 
• doesn’t benefit from ASLR 
• if mapping pages executable == win 
• released VirtualAlloc_s.h at Recx 

•LoadLibrary 
• if DLL planting mitigations aren’t used 

 
 



DLL / Executable Planting 

•Use of LoadLibrary / CreateProcess 
•But doesn’t use 

•SetDLLDirectory 
•SetDefaultDllDirectories 
•AddDllDirectory 

•There is also a registry key 
• … more on this later 

 
 



UAC / Integrity Level 

•In the binaries manifest 
 

 



.NET Security 

•Strong name checks 
•Allow partially trusted callers 

•AllowPartiallyTrustedCalle
rsAttribute 

 
 



.NET Security 

 
 



Windows 8 Containers 

•New for Windows 8 
•a new DLL characteristic 

•Manifest 
•detailing capabilities 

•… for more information refer to 
http://recxltd.blogspot.com/2012/03/wind
ows-8-app-container-security-notes.html 
… 

 
 

http://recxltd.blogspot.com/2012/03/windows-8-app-container-security-notes.html
http://recxltd.blogspot.com/2012/03/windows-8-app-container-security-notes.html


Miscellaneous 

•Force Integrity 
 
 

•Company  
•File Version resource section 

•Signer 
•Signature type 
 

 



Existing tools… 



Existing Tools – Looking Glass 

• from Errata Security 
• http://www.erratasec.com/ 

• .NET Based PE Scanner 
•Scans the file system or running processes 
•Limitations in checks (some) 

• No /SafeSEH  
• No /GS 
• No HeapSetInformation / 
SetProcessDEPPolicy 

 
 



Existing Tools - BinScope 

• from Microsoft 
• http://www.microsoft.com/download/en/detai
ls.aspx?id=11910 

•Lots of checks 
• some of what I’ve discussed, but not all! 

•Some Extra 
• non-GS friendly initialization / coverage 
• ATL version and vulnerable check 

•Needs private symbols! 
 

 



How I did it… 



Demo 



Beyond binaries 

•Defense in depth features via the registry 
•Needs installer teams buy-in 
•or after market adoption 
• Image Execution Options 

•MitigationOptions 
•CWDIllegalInDllSearch 
•DisableExceptionChainValidation 

 
 



But… 



Even with all these… 
we don’t mitigate vtable overwrites… 

 
 



Bonus Material - ELF 

•Similar(ish) tool exists for ELF 
• readelf && a  
shell script (checksec.sh  
@ trapkit.de) 

•RPATH / RUNPATH 
• contained in a section of an ELF 
• can override library locations 
• path doesn’t exist and you can  
create == win 

 



Summary / Conclusions 

 
 



Summary / Conclusions 

•First pass binaries analysis doesn’t have to 
be rocket science 

•Help with assurance / assessment 
• for vendors and / or end organisations 

•Help with target identification 
• target lower hanging fruit 
• less SDL aware components 

•Without the use of symbols… 
 

 



There is still more to do… 

 
Detect the use of the /sdl switch 
http://blogs.msdn.com/b/sdl/arc
hive/2011/12/02/security.aspx 
 

 

http://blogs.msdn.com/b/sdl/archive/2011/12/02/security.aspx
http://blogs.msdn.com/b/sdl/archive/2011/12/02/security.aspx
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Thanks! Questions? 
 

Ollie Whitehouse 
ollie.whitehouse@nccgroup.com 
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