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1 Executive Summary

Synopsis

During the summer of 2022, Penumbra Labs, Inc. engaged NCC Group to conduct a

cryptographic security assessment of two items: (i) the specification and two

implementations of the decaf377 group, and (ii) a methodology and implementation of

parameter generation for the Poseidon hash function. Decaf377 is a prime-order group

obtained by applying the Decaf construction to a given twisted Edwards curve defined over

the scalar field of the BLS12-377 curve, thus providing a simpler abstraction than the curve

itself by eliminating the curve’s cofactor. Poseidon is a hash function that works natively

over values in a prime field and that can be expressed compactly in arithmetic circuits. 3

consultants performed the review over 2 calendar weeks, for a total of 15 person-days.

Scope

NCC Group’s evaluation included:

Decaf377: Implementations were reviewed for correctness and consistency with each

other; documentation was reviewed for correctness and clarity. 

Specification: https://protocol.penumbra.zone/main/crypto/decaf377.html (generated

from the Markdown source in: https://github.com/penumbra-zone/penumbra/tree/2e

e16676e8e868805941cffb59bd24c51b87c471/docs/protocol/src/crypto).

Implementations in Rust and Sage: https://github.com/penumbra-zone/decaf377/

tree/fbbe6323249294b82b76abe4ef694b5d9948d0f3.

Relevant paper: https://eprint.iacr.org/2015/673.

Poseidon parameter generation: The implementation was reviewed for correctness with

respect to the paper, and the deliberate changes described in the documentation were

reviewed for security. 

Implementation in Rust: https://github.com/penumbra-zone/poseidon377/tree/101151

21e7f00ca66cab6ef0479b4b26bfb62013/poseidon-paramgen.

Documentation: https://protocol.penumbra.zone/main/crypto/poseidon/

paramgen.html (Markdown files are in the same repository as the decaf377

specification).

Relevant paper: https://eprint.iacr.org/2019/458.

Limitations

Correctness of the specifications was evaluated relatively to the source academic papers,

under the assumption that these papers provide an accurate assessment of the security

level that can be expected from the described primitives. In particular, the Poseidon hash

function is still quite recent, and public research on the safety of the construction is still

ongoing.

The reviewed implementations did not aim at providing protection against side channels.

Any use of that code on secret data should occur only on physical systems used in a

context that isolates them from outsiders.

Key Findings

No security vulnerabilities were identified during this review; the decaf377 implementations

appeared to be correct and consistent with each other, and the Poseidon parameter

generation appeared to properly follow the description from the Poseidon paper. The

documentation of both constructions was found to be somewhat incomplete, and to

include a few erroneous formulas and other typographical inconsistencies. Assorted

comments on the documentation and on some details in the implementation can be found

in sections Decaf377 Specification and Implementation Review and Poseidon Parameters

Selection Process of this report. Almost all of NCC Group’s recommendations were

subsequently applied by Penumbra to their code and documentation.

• 

◦ 

◦ 

◦ 

• 

◦ 

◦ 

◦ 
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2 Dashboard

Target Data Engagement Data

Name Penumbra Type Cryptographic security

assessment

Type Cryptocurrency network Method Code-assisted

Environment Local instance Dates 2022-07-18 to

2022-07-29

Consultants 3

Level of Effort 15 person-days

Targets

Decaf377 implementations https://github.com/penumbra-zone/decaf377

Decaf377 specification https://protocol.penumbra.zone/main/crypto/

decaf377.html

Poseidon parameter generation

implementation

https://github.com/penumbra-zone/poseidon377/tree/

main/poseidon-paramgen

 Critical  High  Medium  Low  Informational 
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3 Decaf377 Specification and

Implementation Review

In this section, we list assorted comments on the documentation that specifies decaf377,

and on the two reviewed implementations (in the Sage and Rust languages, respectively).

Both implementations appear to be correct and consistent with each other (except for

some edge cases in the Sage code); the documentation, however, is unclear at times, and

contains some incorrect formulas.

Update after re-test: almost all of the recommendations listed thereafter have been

applied by Penumbra to their documentation and implementations, as of the following

commits:

Documentation: commit 192b569395661b4c98e73cda87d16474072fc7c6 of the 

penumbra  repository.

Decaf377 implementations: commit e52a957afeeeec4af0f38d4d6a56cc8bbddb1da8 of

the decaf377  repository.

Poseidon parameter generation: commit 77d9e3370863eab60365f726a7d49a58f6080a

cb of the poseidon377  repository.

The only exception is the implementation of a constant-time square root operation, which

was put on hold since the field implementation backend (the Arkworks library) is not itself

constant-time. A specific issue was created to keep track of this future update.

Documentation Review

The documentation on decaf377 consists of section 5.2 of the Penumbra protocol. The

HTML files are generated from a Markdown source tree, located in the Penumbra main

repository, in the docs/protocol/src/crypto/  directory. This review was based on the

latest change available at the time of the engagement, i.e. commit 2ee16676e8e86880594

1cffb59bd24c51b87c471. Relevant files are decaf377.md , and the subsection files in the 

decaf377/  subdirectory. There are a few mistakes in the formulas listed in the

documentation; we list these issues as well as other comments below, file by file.

decaf377.md

The documentation refers to an elliptic curve that was defined (but not named) by the

“Zexe paper”. No link is provided to the said paper (it is available on eprint). The paper itself

does not actually fully define the curve; it refers to a twisted Edwards curve (denoted 

E
Ed/BLS

 in the paper), defined over the base field of integers modulo a 253-bit prime

(which is denoted r in the paper, and specified in figure 16, page 44; we will hereafter call

that integer q) but does not provide the constants for the curve equation.

Both the Sage and Rust implementations use the following parameters for the base curve

over which decaf377 is defined:

Base field: integers modulo a 253-bit prime q = 0x12ab655e9a2ca55660b44d1e5c37b0

0159aa76fed00000010a11800000000001

Curve equation: ax
2 + y2 = 1 + dx

2
y

2, with constants a = -1 and d = 3021

Curve order is 4r, with r = 2111115437357092606062206234695386632838870926408

408195193685246394721360383

Moreover, a conventional generator point B is defined by the Rust implementation; it is the

group element whose hexadecimal encoding is: 080000000000000000000000000000000

• 

• 

• 

• 

• 

• 

4 / 17 – Decaf377 Specification and

Implementation Review  

Client Confidential 

https://github.com/penumbra-zone/penumbra/tree/192b569395661b4c98e73cda87d16474072fc7c6
https://github.com/penumbra-zone/penumbra/tree/192b569395661b4c98e73cda87d16474072fc7c6
https://github.com/penumbra-zone/decaf377/tree/e52a957afeeeec4af0f38d4d6a56cc8bbddb1da8
https://github.com/penumbra-zone/decaf377/tree/e52a957afeeeec4af0f38d4d6a56cc8bbddb1da8
https://github.com/penumbra-zone/poseidon377/tree/77d9e3370863eab60365f726a7d49a58f6080acb
https://github.com/penumbra-zone/poseidon377/tree/77d9e3370863eab60365f726a7d49a58f6080acb
https://github.com/penumbra-zone/poseidon377/tree/77d9e3370863eab60365f726a7d49a58f6080acb
https://github.com/penumbra-zone/poseidon377/tree/77d9e3370863eab60365f726a7d49a58f6080acb
https://github.com/arkworks-rs/algebra
https://github.com/penumbra-zone/decaf377/issues/33
https://protocol.penumbra.zone/main/crypto/decaf377.html
https://github.com/penumbra-zone/penumbra
https://github.com/penumbra-zone/penumbra
https://github.com/penumbra-zone/penumbra/tree/2ee16676e8e868805941cffb59bd24c51b87c471/docs/protocol/src/crypto
https://github.com/penumbra-zone/penumbra/tree/2ee16676e8e868805941cffb59bd24c51b87c471/docs/protocol/src/crypto
https://github.com/penumbra-zone/penumbra/tree/2ee16676e8e868805941cffb59bd24c51b87c471/docs/protocol/src/crypto
https://github.com/penumbra-zone/penumbra/tree/2ee16676e8e868805941cffb59bd24c51b87c471/docs/protocol/src/crypto
https://github.com/penumbra-zone/penumbra/blob/2ee16676e8e868805941cffb59bd24c51b87c471/docs/protocol/src/crypto/decaf377.md
https://eprint.iacr.org/2018/962


0000000000000000000000000000000. The decoding process on that value produces a

twisted Edwards point (x
B

, y
B

) with:

x
B

 = 49594457893468207253524844878558289152525123079476247878349783788

72129235627

y
B

 = 6060471950081851567114691557659790004756535011754163002297540472747

064943288

Note that the point generates the whole decaf377 group (of order r), but, on the base

curve, its order is 2r.

These curve parameters should be included in the documentation.

decaf377/costs.md

This documentation page explains that the Decaf construction needs a definition of what

makes a field element “negative”; any convention is possible as long as it is compatible with

the subtraction, i.e. that for any non-zero field element x, exactly one of x and -x is

negative. The Legendre symbol cannot be used in the used field, because q = 1 mod 4,

which implies that -1 is a square modulo q. The two other known possibilities are the MSB

and LSB tests; both encode the field element x into an integer j in the 0 to q-1 range, then

define that:

MSB: x is negative if j ≥ (q+1)/2

LSB: x is negative if j is odd

While the page properly explains that both functions lead to about the same cost in

arithmetic circuits, it fails to specify which convention is used in decaf377. The Sage and

Rust implementations use the LSB sign test.

decaf377/invsqrt.md

Value ζ is used in the definition of sqrt_ratio_zeta()  and isqrt()  before being defined.

In fact, any non-square element in the field could work here; the value used in the

implementations was obtained circumstantially from the Sage code, and is a primitive 247th

root of 1.

The isqrt()  function is said to be defined as a wrapper around sqrt_ratio_zeta() , but

there are two subtle differences that could be more detailed:

isqrt(0)  returns (True, 0), while sqrt_ratio_zeta(1, 0)  returns (False, 0).

When the input is a non-square, the factor ζ is multiplied with the denominator in 

isqrt() , while sqrt_ratio_zeta()  applies it to the numerator.

To avoid misimplementation issues in edge cases involving zero and non-squares, NCC

Group recommends specifying isqrt()  as pseudocode:

The “Constants” section states that ζ is “a non-square root of unity”, which is an ambiguous

and arguably incorrect terminology; there are two square roots of 1 in the field, and both

are squares. For computations to be correct, it only suffices that ζ is a non-square. The

chosen value happens to also be a primitive 247th root of 1, but this specific property is not

leveraged.

• 

• 

• 

• 

• 

• 

def isqrt(x):

(wns, y) = sqrt_ratio_zeta(1, zeta*x)

return (not(wns), y)
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In the “Precomputation” section, the s lookup table is defined formally, and a few elements

are provided. In the latter list, g is raised to the power 2-39, which is incorrect: the

exponent should be -239.

The “Procedure” starts with a few relations (extracted from Sarkar’s paper) that are not

really understandable by themselves. The description would be much clearer if that

paragraph stated explicitly that:

The x
i
 and α

i
 values are field elements.

Values q
i
 are small unsigned integers of at most l

i
 bits each.

t
0

 = 0.

The algorithm computes the x
i
 first, then the other values successively, so that they

fulfill the relations; the relations are not the definition of the values, only the goal that

the algorithm tries to reach.

In “Step 1”, the “*” symbol begins to be used to denote multiplication, but it is not applied

systematically. This will also happen in subsequent documentation pages, with several

formulas mixing multiplications with or without the “*” symbol, in a seemingly haphazard

way. NCC Group recommends consistent use (or non-use) of that symbol, to improve the

clarity of the document.

In “Step 3”, and again near the end of “Step 4”, some newlines are missing, leading to some

spurious merging of formulas.

In “Step 4”, the formulas for t
3

, t
4

 and t
5
 are incorrect: they assert that defining q’‘

1
 = 2q’

1
leads to 224

q’‘
1
 = 223

q’
1
, which is factually wrong (it would yield to 225

q’
1
 instead). What

was probably meant here is that q’
1
 is always an even integer, and thus the low byte of

each value consists entirely of q’
0

 (its high bit is not modified by the addition of q’
1
). The

same issue happens in the second formula for t in “Step 5”.

The last formula of “Step 5” (y2 - ζN = 0) is incorrect; it should be: y2
D - ζN = 0

The documentation does not explain what actually happens if the source fraction N/D is

not a square; it merely restates the intended output. In such a case, the looked-up value 

q’
0

 happens to be an odd integer, and thus t is odd. At that point, the Sage and Rust

implementations do things in two correct but different ways:

The Sage implementation ( sqrt_alg.sage ) computes the candidate square root 

y = uvg
floor(t/2); if the input is non-square, then this leads to y2 = (N/D)/g, and the

correction is multiplying y by a square root of ζg.

The Rust implementation ( src/invsqrt.rs ) computes the candidate square root 

y = uvg
ceil(t/2); if the input is non-square, then this leads to y2 = (N/D)g, and the

correction is multiplying y by a square root of ζ/g.

The documentation should explain how non-square inputs are detected through the parity

of t, and how to apply the corrective factor.

decaf377/decoding.md

Step 1 of the decoding process only states that a field element is decoded from s_bytes ,

i.e. presumably from some sequence of bytes, but it does not specify the encoding

convention. The Sage and Rust implementations use the following rules:

A field element x is encoded by first representing it as an integer in the 0 to q-1 range,

then converting that integer to bytes with the unsigned little-endian convention.

The output always has size exactly 32 bytes; if the conversion yields fewer bytes, then

extra bytes of value 0x00 are appended.

• 

• 

• 

• 

• 

• 

• 

• 
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When decoding, the input is checked to have length exactly 32 bytes. The top 3 bits of

the last byte are ignored (the Rust backend library, Arkworks, can use these bits to

embed extra Boolean flags). The remaining 253 bits are verified to be canonical (i.e.

bytes that would lead to an integer not lower than q are rejected).

Update after re-test: Penumbra decided to make the encoding less malleable and changed

the Rust implementation so that it now enforces the top 3 bits to be zero. The Sage

implementation has not been modified accordingly yet; a ticket was created to keep track

of that task.

Step 4 uses the d constant, which was not previously defined in the documentation. This is

one of the constants of the curve equation (d = 3021). Note that step 3 uses the other

constant (a) implicitly, by assuming that a = -1 (value u
1
 is computed as 1 - s2, which really

is 1 + as
2).

Step 6 applies the sign check on the internal value 2su
1
v. It may be worth pointing out that

this check is different from what was done in the original Decaf paper; in that paper, the

MSB convention was used, and the check applied on a multiple of that value. The

convention is arbitrary and what decaf377 uses works properly, as long as decoders and

encoders apply the convention in a consistent way.

Step 7 uses a wrong formula for the y coordinate of the output: it uses (1 + s2)vu
2
, but this

should be (1 + s2)vu
1
 (i.e. using u

1
, not u

2
).

decaf/encoding.md

Step 2 uses a formula in a monospace font (simulating use of code). In that formula, the

symbol x  (lowercase) appears. It should probably be mentioned in the documentation that

this is the X value from the extended coordinates, not the x affine coordinate.

As in the decoding section, the curve equation parameter d is used explicitly in the

formulas, and the other parameter (a) is used implicitly.

decaf/group_hash.md

Contrary to what was done in the encoding and decoding sections, this section uses both

curve equation parameters explicitly, under the names A and D (though their actual values

are nowhere in the documentation, as was previously mentioned). Uppercase letters are

now used for these parameters, though in step 7 they are designated with the lowercase a

and d. To harmonize with the rest of the specification, NCC Group recommends using a

lowercase d systematically, and use the parameter a = -1 implicitly.

In step 2, the expression of u
1
 is incorrect, since it uses a division instead of a

multiplication. The correct formula would be: u
1
 = (dr - d - 1)(dr + r - d)

In step 3, the formula for n
1
 is incorrect: the final division by u

1
 should not be there.

In step 7, the conversion map from the Jacobi quartic to the twisted Edwards coordinates

produces a wrong value for y, because it lacks some parentheses; it should read as: 

y = (1 + s2)/t. Also, the formulas for x and y appear on the same line in the HTML output

with no separator, which is confusing.

The conversion map uses division operations, which are expensive (and that cost is why it

was worthwhile to merge a square root and an inversion in the isqrt()  function call).

Thus, a practical implementation would not apply that map as specified, but would instead

produce extended projective coordinates, via:

    E ← 2s

    F ← 1 - s2

    G ← 1 + s2

• 
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    H ← t

    X ← EH

    Y ← FG

    Z ← FH

    T ← EG

The Elligator 2 map produces a non-uniform output, with a distribution that is easy to

differentiate from a uniform (pseudo)random selection. Such biases may or may not matter

in any given protocol; some uses of the decaf377 group may require the complete process

(“full hashing”) in which a hash function is used to produce two separate field elements,

each being mapped to a group element with Elligator 2, and the two elements are then

added together. The documentation alludes to that extended process, but does not explain

why or when it would be needed, nor how the two source input field elements are to be

generated (e.g. they should not be the same value, nor two values linked together through

a simple algebraic relation). Moreover, the use of the “hash-to-group” terminology for the

Elligator 2 map may induce third party users to wrongly believe that the single-width

process provides the properties usually expected from “a hash function” (e.g. that the

output is indistinguishable from uniform random selection). In order to avoid such hard-to-

detect failures, NCC Group recommends applying the conventions used in the hash-to-

curve draft:

The one-way process with a non-uniform output is called encode_to_curve .

The full process with two invocations of the map and addition of the two results is

called hash_to_curve .

The documentation should also specify how input bytes are converted to field elements,

and what are the expectations for the input to the “full-width” process. The Sage

implementation truncates the input to its first 253 bits (i.e. only the first 32 bytes are used,

and the 3 upper bits for the 32nd byte are ignored), then interprets the bytes with the

unsigned little-endian convention. Contrary to the bytes-to-field conversion used in the

element decoding process, this conversion accepts inputs longer than 32 bytes (extra

bytes are ignored), and also accepts 253-bit integer values numerically greater than q-1

(the integer is implicitly reduced modulo q).

decaf377/test_vectors.html

NCC Group verified that the provided test vectors are correct, using the proper formulas

(with the fixes suggested above) and the conventions from the implementations where the

documentation was lacking some specification (i.e. unsigned little-endian encoding, and

use of LSB for the sign).

The hash-to-group test vectors work over the s coordinate in the Jacobi quartic curve. This

curve was not described anywhere; in the context of the documentation, it was mostly

used as an intermediate step between the Elligator 2 map and the conversion into twisted

Edwards coordinates. These test vectors do not cover the latter. Test vectors for the

combination of Elligator 2 and the conversion to the twisted Edwards coordinates would

provide a more comprehensive validation of the correctness of an implementation.

Sage Implementation Review

The ristretto.sage  script implements operations for several curves and groups. This

review focused on the parts which are used for decaf377; parts relative to other curves

and groups were not investigated. In general, it was found that the Sage script is a correct

implementation of the documented decaf377 functionalities, with a few caveats listed

below. The reviewed implementation was the latest version available at the time of the

engagement, i.e. commit fbbe6323249294b82b76abe4ef694b5d9948d0f3.

• 

• 
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The isqrt()  function raises an exception when the input is not a square, which does not

align with the documentation. In fact, what is called isqrt()  in the Inverse Square Roots

page corresponds to the isqrt_i()  function in the Sage script.

The isqrt_i()  function uses the ζ value, which is a fixed, conventional non-square.

However, it recomputes that value upon each invocation, by repeatedly computing square

roots, starting with -1, until a non-square is reached:

This has two drawbacks:

This computation is expensive, since it involves computing 46 square roots in the field,

and it is done again for every call to isqrt_i() .

For any given non-zero square, there are two distinct square roots, hence the result

obtained from this process may vary, depending on which of the two square roots is

returned by the sqrt()  function. It so happens that Sage currently uses a deterministic

choice, by returning the “lower” of the two square roots (the field elements are

converted to integers in the 0 to q-1 range, and the comparison is performed on these

integers; in other words, sqrt()  returns the non-negative root in the MSB convention).

This is done internally in the Sage source code with an explicit call to a sorting function.

However, this is not a documented feature, and it might change in later versions of

Sage. If Sage ever changes its behaviour in that respect, then the implementation of the

Elligator 2 map to decaf377 will break.

NCC Group recommends using the hardcoded ζ value instead (i.e. the cls.qnr  field); this

would greatly improve the performance of isqrt_i() , and avoid a possible breakage in a

later version of Sage.

The a parameter of the curves is assumed to be either 1 or -1 in various places. This is not

a problem for decaf377, for which a = -1; in fact, all the curves supported by this script use 

a = 1 or -1. This makes some expressions deviate from their descriptions in research

papers. For instance, on line 338, an expression uses s^4 , whereas one would have

expected a^2*s^4  in all generality. Since the Sage implementation is meant to serve as a

reference and an educational tool, this assumption would be worth mentioning, e.g. as a

source code comment.

The Decaf_1_1_Point.decode()  function uses the isqrt()  function (line 485) instead of 

isqrt_i()  (which would correspond to the isqrt()  function of the documentation). A

difference between isqrt()  and isqrt_i()  is that the former returns 0 for an input of

value 0 with no error, whereas the latter returns an explicit flag informing the caller that the

input was not valid. A call to isqrt(0)  may happen if the input s  is equal to 1 or -1. Since 1

is a “negative” value (in the LSB convention), it would get rejected earlier, but a -1 (q-1)

value would go through, and lead to the invalid coordinates (x,y) = (0,0). The decoding

would ultimately be rejected because the constructor for the point class includes a failsafe

verification that the provided coordinates designate a point on the curve. However, the

raised exception is then a NotOnCurveException  instead of the expected 

InvalidEncodingException . It is also a fragile construction since the failsafe call is mostly

meant to be a debug aid, and could be removed in a later version, since the Decaf formulas

should never produce invalid coordinates.

The Decaf_1_1_Point.elligatorSpec()  function (line 558), and its optimized version Deca

f_1_1_Point.elligator()  (line 577), use the bytesToGf()  call to decode input bytes into a

• 

• 

gen = x.parent(-1)

while is_square(gen): gen = sqrt(gen)
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field element. The mustBeProper=False  parameter is used, so that extra bytes beyond the

first 32 are silently ignored, and non-canonical 253-bit integers are accepted and implicitly

reduced. However, this also has the side effect of silently accepting short inputs, i.e. inputs

of length less than 32 bytes; this is probably unintended. If inputs shorter than 32 bytes

are not intended to be supported, then an explicit test is advised.

Rust Implementation Review

The Rust implementation is located in the same repository as the Sage implementation; we

again use commit fbbe6323249294b82b76abe4ef694b5d9948d0f3.

src/element.rs

On line 52, the Element::is_identity()  function tests whether a point is a representation

of the identity element by doing an equality comparison with the neutral:

The equality comparison involves two multiplications in the field. A more efficient test can

be implemented, without any multiplication at all, by simply checking whether the X

coordinate is zero, as indicated in section 4.5 of the Decaf paper.

src/invsqrt.rs

The sqrt_ratio_zeta()  function uses Sarkar’s method, a table-based optimization over

the classic Tonelli-Shanks algorithm. Since lookup tables are involved, this function is

inherently non-constant-time. In most protocols that use elliptic-curve based groups, the 

decoding operation is performed on public data, thereby not vulnerable to any side-

channel leaks. However, this is often not the case of encoding, where the source point is

the result of computations that may have involved secret values.

Indeed, the Element::compress_to_field()  function (implemented in src/encoding.rs,

lines 74-98) operates on a point in extended coordinates (X:Y:Z:T), which are such that 

x = X/Z, y = Y/Z, and xy = T/Z. The function then calls sqrt_ratio_zeta()  on 

X
2(X + T)(X - T), which scales with the value Z3. Thus, even if the resulting point (x,y) is

considered public, information on the internal scaling factor Z may leak through timing-

based side channels resulting from the use of lookup tables with data-dependent indices.

The scaling factor is a result of which operations were performed to obtain that point; in

the typical case of multiplying a known point by a secret scalar, the value of Z depends on

the scalar. In the context of short Weierstraß curves, the possibility of leveraging such a

leak was explored theoretically by Naccache, Smart and Stern in 2003, and a practical

demonstration was performed by Aldaya, García and Brumley in 2020. A similar attack

should conceptually apply on decaf377.

While the current implementation of decaf377 does not aim at constant-time operations

(notably because it uses Arkworks libraries, which are not constant-time), the possibility to

support constant-time operations was specified as a long-term goal. One function in the

implementation ( Element::vartime_multiscalar_mul() , in src/element.rs) already uses the

“vartime” token in its name to document its inherent non-constant-time behaviour. NCC

Group recommends the following:

Make the non-constant-time nature of the public compress() , compress_to_field()

and decompress()  functions more explicit by including the “vartime” token in their

respective names.

Investigate implementing a constant-time version of sqrt_ratio_zeta() . One possible

method is to make all array accesses constant-time by reading all table elements and

• 

• 

pub fn is_identity(&self) -> bool {

self == &Element::default()

}
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selecting the right one through Boolean bitwise logic. Another strategy is random

blinding: when calling sqrt_ratio_zeta()  on two integers N and D, first generate a

random non-zero field element R with a cryptographically strong random generator, and

compute the function on NR
2 and DR

4 instead, then multiply the result by R.

If sqrt_ratio_zeta()  is thus modified, then compress() , compress_to_field()  and 

decompress()  will become constant-time as well when the backend library for field

element operations is switched to a constant-time implementation.

On lines 117, 123, 130, 138, 147 and 157, q0_prime  is used as lookup index, where one

would expect t & 0xFF . This is correct, since the low 8 bits of t  always match q0_prime

(the addition of q1_prime<< 7  on line 119 does not change bit 7 of t  because q1_prime  is

always an even integer); however, use of the expression t & 0xFF  would make the logic

clearer to human readers, at negligible runtime cost.

On lines 165-166, the result status (i.e. whether the source fraction was a quadratic

residue or not) is obtained by squaring the candidate root and comparing it with the source

fraction, a process which entails a squaring and a multiplication in the field. However, the

same information is more readily available by looking at the least significant bit of 

q0_prime : the source fraction was a square if and only if that bit is equal to zero.

src/lib.rs

The basepoint()  function (lines 29-36) returns the conventional base point for the group

by decompressing its encoding. The decompression is a relatively expensive operation, and

it is done again for every call to basepoint() , which is suboptimal. For efficiency, the base

point should be hardcoded as a constant.

src/on_curve.rs

The is_on_curve()  function verifies that the coordinates of a given point indeed designate

a valid point on the curve:

This function is not an exhaustive validity test, for the following reasons:

The function does not verify that Z ≠ 0.

The function does not verify that the point has order at most 2r (where the complete

curve order is 4r); indeed, only such curve points are valid representatives of decaf377

elements.

Nominally, such a function would not be needed, since the other functions in the API can

only produce valid points; in the decaf377 source code, is_on_curve()  is only used for

debug purposes (from debug_assert  calls). However, insofar as this function is deemed

useful to catch incorrect formulas and problematic edge cases in a given implementation,

then it should probably be as exhaustive as it can be.

• 

• 

fn is_on_curve(&self) -> bool {

let XX = self.x.square();

let YY = self.y.square();

let ZZ = self.z.square();

let TT = self.t.square();

let on_curve = (YY + P::COEFF_A * XX) == (ZZ + P::COEFF_D * TT);

let on_segre_embedding = self.t * self.z == self.x * self.y;

on_curve && on_segre_embedding

}
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4 Poseidon Parameters Selection Process

Overview

The second part of the engagement was a review of the methodology used to select

parameters for the Poseidon hash function, when used over the finite field of integers

modulo q, which is also the base field for the twisted Edwards curve used in the decaf377

group. The modulus q is a given 253-bit prime integer.

Poseidon is specified by a paper from Grassi, Khovratovich, Rechberger, Roy and

Schofnegger. That paper (thereafter called “the Poseidon paper”) was revised several

times; at the time of the engagement, the latest revision was dated from December 12th,

2020, which was also published as part of USENIX Security ‘21. Relevant to Poseidon are

two other articles:

Mind the Middle Layer: The HADES Design Strategy Revisited, by Keller and Rosemarin,

which will be denoted here as “the KR paper”.

Proving Resistance Against Infinitely Long Subspace Trails: How to Choose the Linear

Layer, by Grassi, Rechberger and Schofnegger, that we will call “the GRS paper”.

Poseidon is a sponge-structured hash function built over a permutation that works on

sequences of t field elements, for some configurable parameter t. The hash function itself

accepts r new elements (the rate) for each invocation of the internal permutation; the 

capacity is the quantity c = t - r. In the use cases envisioned by Penumbra, c = 1, while t

ranges from 2 to 6 (for a rate between 1 and 5). The parameters for Poseidon include the

following:

The state size t.

The number of rounds R = R
F
 + R

P
, which splits into R

F
 “full rounds” and R

P
 “partial

rounds”.

The S-box function, which is either x → xα for a small integer α (relatively prime to q-1),

or x → 1/x.

An internal t×t matrix, called the MDS matrix.

A number of round constants.

Penumbra’s parameter selection process uses a Rust reimplementation of the Poseidon

paper rules for proper parameter selection. Its principle is described in Penumbra’s HTML

documentation, itself generated from Markdown files. The implementation source code is in

its own repository, specifically in the poseidon-paramgen  subdirectory. While this review

was about the methodology more than the implementation, the source code (from commit 

10115121e7f00ca66cab6ef0479b4b26bfb62013) was used to supplement the

documentation for unspecified parts.

Penumbra’s parameter selection method slightly departs from the Poseidon paper in a few

places; however, the end result appears to still conform to the expected security properties

laid out in the Poseidon paper. In the following sections, we provide extra details and

comments.

Choice of S-Box Exponent

The S-Box operates on a single field element as input; it boils down to exponentiation by α,

which is either a small positive integer (relatively prime to q-1, so that the S-Box is

bijective) or -1 (i.e. inversion in the field). In the Poseidon paper, α is defined as the

smallest prime which does not divide q-1, in practice 3 or 5, or -1 if that is more convenient

in a given situation. Penumbra’s method is slightly more involved:

Candidate α values are explored as the first few rows in a given tree of minimal-length

addition chains. The tree is provided as reference in Penumbra’s documentation. Only

rows 2 to 5 are considered, and values are considered right-to-left in each row.

• 

• 

• 

• 

• 

• 

• 

• 
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A candidate is suitable if it is relatively prime to q-1. If no suitable candidate is found in

the considered tree rows, then inversion (α = -1) is used.

Penumbra’s documentation does not explain the rationale behind this specific process.

However, the following can be inferred:

Lower α values promote performance. In an arithmetic circuit, the best performance is

obtained with inversion, since that involves only one constraint per S-Box invocation.

However, for non-circuit implementations, inversion is vastly more expensive than

exponentiation with a small positive exponent, which is why the latter is preferred.

For a small positive exponent, the number of required constraints for each S-Box

invocation is exactly the number of element multiplications that are needed to compute

the exponentiation, which is itself equal to the depth of the exponent value within the

tree of shortest addition chains.

For a given number of multiplications (i.e. for a given cost), larger α values are

preferable since that allows using slightly fewer rounds for a given security level. The

reduction in the number of rounds is never enough to make it preferable to select an α

from a deeper row in the tree, but it is still a nice optimization to leverage.

For non-circuit implementations, field element squarings are somewhat faster than

general multiplications; thus, values α that use more squarings are preferred (e.g. x17

can be computed in 4 squarings and 1 multiplication, while x13 needs 3 squarings and 2

multiplications).

Penumbra’s method, in practice, leads to the following list of candidates for α: 3, 5, 7, 17, 13,

11. Even integers cannot be selected (since they would not be invertible modulo q-1), and

integers 9 and 15 cannot be selected either since when they are suitable candidates, then

3 is also suitable, and offers better performance. This list maximizes performance as per

the criteria detailed above. It may be noted that extending Penumbra’s description to

exponents in the sixth row of the addition chain tree would lead to preferring exponent 19

over 23, even though the latter would offer the exact same performance as the former in

arithmetic circuits, and conceptually better security.

The cut-off at depth 6 of the addition chain tree is arbitrary; it is a trade-off between circuit

implementations (for which inversion is preferable) and non-circuit implementations (that

much prefer small positive integers). In the case of the specific q modulus from the

decaf377 group, the selected α with the process above is 17.

Penumbra’s implementation of this process follows Penumbra’s formal description to the

letter, including testing all the integers from the addition chain tree that cannot be

selected, e.g. even integers. The implementation thus performs a number of useless GCD

operations; the overall impact on the generation time is negligible, since some other steps

in the Poseidon parameter selection are vastly more expensive.

Recommendations:

Describe in the documentation the criteria for selection of α and their link with addition

chains.

Write explicitly that α = 17 for the field of interest on which Poseidon is going to be used

in Penumbra.

Matrix Generation

A t×t MDS matrix is used in each Poseidon round. After the initial publication of the

Poseidon paper, it was discovered by Keller and Rosemarin that in some cases, the MDS

matrix could fail to provide the expected security properties, leading to subspaces that

were conserved throughout all rounds, allowing some differential attacks (see the KR

• 

• 

• 

• 

• 

• 

• 
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paper). Most of the potential weaknesses impacted the use of the structure in Starkad, a

construction similar to Poseidon but using binary fields (Starkad used to be part of the

Poseidon paper but was ultimately dropped from it). This prompted Grassi, Rechberger and

Schofnegger to develop methods to test whether a given matrix has any of the reported

weaknesses, so that a new one may be generated instead. The GRS paper includes three

algorithms that perform these tests. The current version of the Poseidon paper then

describes the Poseidon matrix generation as follows:

Use a given pseudorandom generator to produce two sequences of t field elements,

dubbed x
i
 and y

j
.

If any two elements in either of these lists are equal to each other, start again at step 1.

Compute the matrix coefficients as: m
i,j

 = 1/(x
i
 + y

j
) (this is a Cauchy matrix).

Run algorithms 1 to 3 from the GRS paper; if any of them reports the matrix as

potentially weak, start again at step 1.

Penumbra’s method departs from this process, in that it does not generate the x
i
 and y

j

pseudorandomly; instead, it sets x
i
 = i and y

j
 = t + j systematically. Algorithms 1 to 3 of the

GRS paper are not run (nor even implemented in the Rust code); it is just assumed that the

resulting matrix is fine.

There appears to have been some confusion between the research papers on the subject

of the matrix. The GRS paper authors state explicitly (in particular in appendix C.1 of the

paper, equation 10) that Poseidon defines the MDS matrix in the same way as used by

Penumbra, i.e. with no pseudorandom number generation; however, the Poseidon paper

does not actually define them that way, but instead recommends use of the pseudorandom

generator (and all previous versions of the Poseidon paper used that pseudorandom

method). The Filecoin protocol draft specification followed the assertion from the GRS

paper, i.e. without the pseudorandom generation, and Penumbra did the same.

Further confusion appears in Penumbra’s documentation, and in their source code, which

explicitly references section 5.4 of the KR paper as describing the deterministic Cauchy

matrix generation method, but the KR paper in general, and section 5.4 in particular, talks

about the Starkad situation in binary fields, and does not mandate, describe, or even

comment on the deterministic generation method in the case of Poseidon.

In practice, for all practical parameter sets that Penumbra is going to use, the matrix is fine.

NCC Group verified that for the intended finite field (with the 253-bit modulus q), the

deterministic matrix is declared safe by algorithms 1 to 3 of the GRS paper, for all values of 

t from 1 to 100. It seems that the feared weak structures may appear only when t is not too

small relative to the field characteristic (indeed, many of the examples used in the KR and

GRS paper focus on fields of size at most 16 bits). The tests performed by the GRS paper

algorithms can be described as the evaluation of some rational expressions in the field,

with coefficients that depend only on t, failure cases corresponding to some of these

expressions yielding the value 0. It can be heuristically expected that either such an

expression simplifies to zero symbolically, in which case it would fail for all possible field

moduli, or instead it yields a non-zero integer that vanishes only for moduli that divides it,

so that the probability that a given large prime hits such a case is negligible.

Recommendations:

Penumbra’s documentation should explain that the deterministic matrix generation was

verified to produce safe matrices for all relevant parameter combinations.

The comment in the source code should be fixed so as not to refer to the KR paper as

the source for the method, since that is not true.

1. 

2. 

3. 

4. 

• 

• 
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Ideally, algorithms 1 to 3 would be implemented in the Rust code; failing that, an explicit

test rejecting small fields (e.g. smaller than 128 bits) would help with avoiding silent

security degradation, should Penumbra’s code be reused in a different context with a

small field characteristic.

Round Constants

Each Poseidon round involves the use of round constants, which are generated

pseudorandomly. Not many properties are expected from these constants, and random

choice should be fine, even if the random generation is not of cryptographic quality; the

main goal of the constant generation process is to convince third parties that the values

were not specifically chosen for some unspecified algebraic properties (i.e. the constants

should be nothing-up-my-sleeve numbers).

In the original Poseidon paper, a custom LFSR is used. Penumbra’s code instead uses 

Merlin, so that the constants are intrinsically bound to all relevant parameters (field

modulus, state size t…). Given that the constants do not have to fulfill any specific

property, the Keccak-based PRNG used by Merlin is necessarily good enough.

Penumbra’s documentation does not explain the details of the generation of the constant

values from the bytes generated out of the Merlin transcript. The source code shows that

some extra bytes are obtained (beyond the field size), and the bytes are then interpreted

as an integer (with the unsigned little-endian convention), which is reduced modulo the

field order:

The intent was to produce at least n+128 bits (for a field of size n bits), so that any bias

resulting from the fact that q cannot evenly divide a power of 2 would be negligible. The

integer division by 8, as shown above, prevents reaching that exact goal, since integer

divisions round the value down. In practice, this means that for a 253-bit field, 47 bytes

(376 bits) are obtained from the Merlin PRNG, i.e. an excess of “only” 123 bits over the field

size, instead of the expected 128 bits. As explained previously, for the Poseidon round

constants, this has no practical impact on security.

Recommendation:

Explain the constant generation process in the documentation, so that the constants

may be regenerated independently without using Penumbra’s source code.

Round Number Selection

The number of rounds R is a trade-off between security and performance:

Attacks become harder when there are more rounds. The Poseidon paper describes

three classes of known statistical attacks (differential/linear distinguishers, subspace

trails, and Gröbner basis attacks) and includes upper bounds on the number of rounds

that may be attacked with these methods.

The Poseidon usage cost is proportional to the number of rounds.

Penumbra’s parameter selection strategy follows the Poseidon paper: it evaluates all

combinations of full and partial rounds (with R
P

 ranging from 1 to 399, and R
F
 from 4 to

99), rejecting all the potentially unsafe combinations as per the computed upper bounds on

• 

• 

• 

• 

fn round_constant<F: PrimeField>(&mut self) -> F {

let size_in_bytes = (F::size_in_bits() + 128) / 8;

let mut dest = vec![0u8; size_in_bytes];

self.challenge_bytes(b"round-constant", &mut dest);

F::from_le_bytes_mod_order(&dest)

}
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the statistical attacks, and keeping the combination that offers the lowest cost (among

candidates that have the minimal cost, a lower number of full rounds is preferred). The

Poseidon paper estimates from section 5.5.1 are dutifully transcribed into the source code,

with two small differences:

On line 141, the ceil()  function is applied on the sum of log
α

(t) and another value

already rounded to an integer, instead of the logarithm alone (as would be expected

from equation 3 in the Poseidon paper). This does not change the result mathematically,

but can impact the exact rounding when using concrete floating-point values with a

necessarily finite precision.

On line 197, the ceil()  function is used on the computed bounds for Gröbner basis

attacks. There are two such bounds ( grobner_1  and grobner_2  in the code), and the

lower of the two bounds is used and returned; the caller (function is_secure() ) will

reject a candidate R if it is lower than, or equal to, the returned bound. For instance,

when the exponent α is positive, the tests are on lines 56 to 63:

When α = -1, the two values grobner_1  and grobner_2  are already rounded to integers,

and the ceil()  function does nothing; but when α is positive, the two values are not

integers (as in their formal description in equation 5 in the paper); see lines 177 to 187:

Thus, in the latter case, it is possible for Penumbra’s code to reject an R value that would

have otherwise been deemed acceptable per the paper formulas (e.g. if the formulas yield

an upper bound of 35.4, Penumbra’s implementation will round it up to 36 with the ceil()

call on line 197, and the test in is_secure()  will reject R = 36, since that value is not 

strictly greater than the rounded up value 36, even though that R is strictly greater than the

computed 35.4 and should be acceptable per the Poseidon paper).

The second item above might possibly lead Penumbra’s code to use slightly more rounds

than necessary. This does not make the result unsafe, but it is still a departure from the

intended process and resulting parameter set.

• 

• 

Alpha::Exponent(_) => {

if self.total() <= RoundNumbers::algebraic_attack_interpolation(input, alpha) {

return false;

}

if self.total() <= RoundNumbers::algebraic_attack_grobner_basis(input, alpha) {

return false;

}

}

// First Grobner constraint

let grobner_1_min_args = [(input.M as f64 / 3.0), (input.log_2_p / 2.0)];

grobner_1 = 2f64.log(*exp as f64)

* grobner_1_min_args.iter().min_by(cmp_f64).expect("no NaNs");

// Second Grobner constraint

let grobner_2_min_args = [

2f64.log(*exp as f64) * input.M as f64 / (input.t as f64 + 1.0),

2f64.log(*exp as f64) * input.log_2_p / 2.0,

];

grobner_2 = (input.t - 1) as f64

+ grobner_2_min_args.iter().min_by(cmp_f64).expect("no NaNs");
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It should be noted that the original source script ( calc_round_numbers.py ) from the

Poseidon paper authors (as imported in Penumbra’s repository) uses ceil()  as well, but

also accepts values R equal to the rounded-up bound:

In that script, the test shown above appears in the sat_inequiv_alpha()  function, and a

returned True  signifies acceptance. This script slightly departs from the Poseidon paper

itself, in the following sense: the computed upper bound is the maximum number of rounds

that can be potentially attacked with a cost lower than the intended security level; thus, if

that bound happens to be exactly an integer (before rounding), then it should not be

deemed acceptable as a number of rounds, since, by definition, the formula says that so

many rounds are potentially vulnerable. We could say that, in this specific case, the script

from the Poseidon paper authors does not follow the paper, and Penumbra’s code is “more

correct”. However, in the much more common case where the computed value is not an

integer (if only because it uses transcendental functions), then the original script is correct,

and Penumbra’s code is more restrictive than necessary.

The chosen number of rounds is slightly increased afterwards, as an extra “security

margin”, as per the Poseidon paper recommendations. Moreover, the KR paper, while

mostly about Starkad and binary fields, offers (in section 3) some analysis about Poseidon,

to the effect that the bounds used by the Poseidon paper are probably overestimated.

Thus, none of the comments above should have any practical impact on the security of the

hash function. In any case, if Penumbra’s implementation slightly errs here, it is in the

direction of extra safety.

A more general comment on the formulas is that the use of floating-point computations

implies that systems using different architectures, or different compiler versions, may

conceptually obtain different round numbers out of the selection process, since rounding

rules are not fully harmonized between architectures. Even though Rust’s f32  and f64

types are defined to correspond to IEEE 754’s binary32 and binary64 formats, respectively,

computations on such values may be subject to evaluation with a higher internal precision,

as well as compiler optimizations that expect mathematical associativity, or leverage

hardware facilities for fused multiply and add operations. Moreover, the transcendental

function f64.log()  maps to a platform-specific implementation. It is expected that in

some rare cases, slight differences in rounding lead to crossing a threshold, and the code

on one system may deem a given number of rounds to be acceptable, while the same code

on a different system would reject it. In general, complete reproducibility is very difficult

when using floating-point operations.

Recommendations:

Change the ceil()  call on line 197 to floor() , so as to more closely follow the

Poseidon paper. Alternatively, change the comparisons in is_secure()  so that

equalities lead to acceptance of R, not rejection, as in the companion scripts to the

Poseidon paper.

Generate the parameters for the intended q and t combinations, and hardcode them into

the source code, so that a “known good” version is used without risking platform

differences leading to incompatible values.

Document the exact platform details on which these “known good” parameters were

generated, so as to permit ulterior validation by third parties.

• 

• 

• 

R_F_max = max(ceil(R_F_1), ceil(R_F_2), ceil(R_F_3), ceil(R_F_4))

return (R_F >= R_F_max)
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