
USB under the bonnet
Andy Davis, Research Director NCC Group

Who am I

• Research Director at NCC Group

• 10 years working in various security roles within UK Government

• 13 years working in commercial Cyber Security roles, primarily research-related

• Hands-on researcher - presented many security papers at conferences and identified
over 100 vulnerabilities in USB hosts and devices.

• Responsible for all NCC Group’s research output

Agenda

• An overview of USB basics and some classic examples of where
vulnerabilities have been previously identified

• How to test for USB host security vulnerabilities using a combined
hardware/software approach

• The power of open source software when triaging bugs in embedded
systems

• How exploitable are USB bugs?

• What are the unique challenges for USB security within an automotive
environment?

• Lessons that can be learned from the non-embedded world

Why talk about USB in cars?

• When did USB first appear in cars?

• What is USB used for in cars?

• Why is USB a security concern?

• How do attackers exploit USB vulnerabilities?

USB Primer

USB primer - architecture

• The aim of USB was to find a solution to the mixture of connection methods

to the PC

• Currently four speeds of data transfer:

• Low – 1.5Mbps (keyboard, mouse etc.)

• Full – 12Mbps (originally for all other devices)

• High – 480Mbps (developed in response to FireWire)

• SuperSpeed – 5Gbps (Latest version – 3.x)

• Architecture is a tiered star topology:

• Single host controller and up to 127 slave devices

• A device can be plugged into a hub, and that hub can be plugged into

another hub and so on. The maximum number of tiers permitted is six

• Host is Master - all communications on this bus are initiated by the host

• Devices cannot communicate directly with other devices (except for USB On-

The-Go protocol)

USB primer - terminology

• The USB bus

• When the host is transmitting a packet of data, it is sent to every device

connected to an enabled port. It travels downwards via each hub in the

chain which resynchronises the data transitions as it relays it. Only one

device, the addressed one, actually accepts the data

• Endpoints

• Each USB device has a number of endpoints. Each endpoint is a source

or sink of data. A device can have up to 16 OUT and 16 IN endpoints.

• OUT always means from host to device.

• IN always means from device to host.

• Endpoint 0 is a special case which is a combination of endpoint 0 OUT

and endpoint 0 IN, and is used for controlling the device.

• Pipe

• A logical data connection between the host and a particular endpoint, in

which we ignore the lower level mechanisms for actually achieving the

data transfers.

Configurations, Interfaces, and Endpoints

• The device contains a number of

descriptors (as shown to the right)

which help to define the device’s

capabilities

• A device can have more than one

configuration, though only one at a

time, and to change configuration the

whole device would have to stop

functioning

• A device can have one or more

interfaces. Each interface can have a

number of endpoints and represents a

functional unit belonging to a particular

class

• Each endpoint is a source or sink of

data

USB enumeration

Recent USB host bugs in the IT world

• CVE-2011-2295: Oracle Sun Solaris USB Local Buffer

Overflow Vulnerability

• CVE-2012-3723: Apple Mac OS X USB Hub Descriptor

bNbrPorts Heap overflow

• MS13-027: The Windows 8 RNDIS kernel pool overflow

• CVE-2013-3200: Microsoft Windows USB Descriptor Handling

Local Privilege Escalation

Image: http://www.biro-media.hr

USB host bugs in IVI systems

• We have tested a number of different infotainment USB

implementations

• Embedded systems are just as vulnerable to USB driver bugs

as the IT world

• We have generally identified more bugs in embedded

systems within vehicles than traditional operating systems

• Exploitation would only require physical access for seconds

Image: http://img.fruugo.com

How I first started finding USB bugs (2011)

• Arduino microcontroller

• Fuzzer written in C++

• Only emulates USB HID devices

• Only allows semi-automated fuzzing

• Identified bugs in:

• Windows 7

• Windows XP

• OS X

• Limitations – not really fast enough to emulate most USB devices

USB fuzzer – the next generation (2012)

• Dedicated USB test equipment hardware

• USB capture and playback

• Emulates any USB host or device

• Understands and analyses the different USB device classes

• Uses a scripting language to generate USB traffic

• Costs approx. USD1200 (plus specific class analysis options)

• Limitations – doesn’t have a software API to control it

Image: www.mqp.com

How I find them now (2013 onwards)

• Facedancer and umap

• Umap is open source software - https://github.com/nccgroup/umap

• Facedancer is open source hardware - http://goodfet.sourceforge.net/hardware/facedancer21/

Image: http://blog.j-michel.org/

https://github.com/nccgroup/umap
https://github.com/nccgroup/umap
https://github.com/nccgroup/umap
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/

Demo: USB testing

The power of open source

• Fuzz testing is very effective, but only identifies potential bugs

• To triage bugs, either a development environment is required…

• …or if the USB stack is open source you can triage on Linux

Image: http://images.atelier.net

How else can USB be exploited?

• Malicious firmware updates

• Malicious content that attacks media parsers

• Viral code that uses USB as the transport mechanism

• USB-based vendor engineering tools usage

 Image: http://us.cdn4.123rf.com

USB exploitation restrictions

• Bug triage is often challenging

• Driver exploit development is not for the faint hearted!

• USB descriptors often have limited space for attack payloads

• Race condition bugs can sometimes have strict timing limitations

• Physical access is required in order to insert a malicious USB device

• But…

Image: http://pagesunforgotten.files.wordpress.com

USB exploitation impact

• Code Execution: Running malicious code on an infotainment

system, potentially (depending on vehicle architecture) resulting

in access to the CAN bus and to cyber physical systems

• Data Loss: Exfiltrating sensitive data such as Personally

Identifiable Information (PII) or credit card details from apps

running on the infotainment system

• Malware: Installing malware that stays resident within the

vehicle and performs undesirable actions

Image: http://www.smartenergyjournal.com

Unique challenges in automotive
• Challenges:

• People want to listen to their music

• People want to charge their devices

• Firmware and map data needs to be updated

• Vehicle systems need to be tested using USB-based tools

• BadUSB recently highlighted the implicit trust issues around USB

• Solutions:

• Ensure all firmware/map updates have been cryptographically signed and the software that

performs the code signing checks has been rigorously tested

• Ensure devices drivers for vendor testing tools are removed from production vehicles

• Ensure all media parsing code has been rigorously security tested

• Ensure the USB driver stack has been rigorously security tested

• Ensure only required USB class drivers are installed

Image: leadershipfreak.files.wordpress.com

Security through obscurity – Lessons from the IT world

• Time and time again we see this in embedded systems

• Hidden “Security mechanisms” designed to authenticate

users who are allowed to update firmware

• Hidden USB class drivers that are used for vendor tools

• Hidden engineering menus that assist with fuzz testing

instrumentation

• Just because something is hidden doesn’t mean it is

protected!

Image: http://farm8.static.flickr.com

Conclusions

• The USB protocol is already in many vehicles and is here to stay

• USB within vehicles may not have been previously considered a serious attack vector

• I have shown that the impact of successful USB attack can be serious

• Just because physical access is required doesn’t mean the threat can be ignored

• As users continue to want new functionality and creative ways to interact with their

vehicles, the attack surface will continue to increase

Questions?

Andy Davis, Research Director NCC Group

andy.davis ‘at’ nccgroup ‘dot’ com

An engineering approach to cyber security for

Automotive

The Unique Automotive Cyber Security Partnership

Cyber Security Experts

info@nccgroup.com info@sbd.co.uk

System & Software Security

Security Leadership

Connected Car Architectures

Industry Insight

Penetration Testing

Information Assurance

Automotive Expertise

