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Executive Summary
Synopsis
During the summer of 2021, Horizen Labs engaged
NCC Group to conduct a cryptography review of Zen-
doo protocol’s proof verifier. This system generates
and verifies modified Marlin proofs with a polynomial
commitment scheme based on the hardness of the
discrete logarithm problem in prime-order groups. The
system also provides optimized batch verification of
accumulated proofs. The review included a large
number of supporting elements for the proof system,
such as the underlying field arithmetic, instantiations
of specific elliptic curves, a custom hash function, and
optimized Merkle Tree implementations. NCC Group
assigned three consultants for a total of 42 person-days
over the course of five calendar weeks on this review.

Following this review, NCC Group performed a retest of
the findings uncovered during the initial engagement a
few weeks later.

Scope
NCC Group’s evaluation included:

• Selected portions of the ginger-lib repository:
github.com/HorizenOfficial/ginger-lib on branch
development_tmp at commit
b8b3a9feb8f1c4dde5ce3a3f2e951d597ec9d696.
More specifically:
– Field and BigInteger arithmetic and their cor-

responding serialization and deserialization func-
tions,

– Assembly optimizations of the underlying arith-
metic,

– Tweedle Curves and their corresponding fields,
– Multi Scalar Multiplication (MSM) and Fast Fourier

Transforms (FFT),
– Implementation of the snark-friendly hash function

Poseidon,
– Concrete parameter instantiation of the Poseidon

hash for the Tweedle curves,
– Merkle trees and paths implementations,
– Coboundary Marlin and Final Darlin batch verifica-

tion and accumulation using Discrete Log Accumu-
lators;

• Marlin implementation: https://github.com/Horizen
Labs/marlin on branch dev at commit
eaf2a6a4ebfbb8034f158583f29179765a2f5297;

• Polynomial commitment implementation: https://gith
ub.com/HorizenLabs/poly-commit on branch dev at
commit
7d8a0f38c218229288c8885fb416b4005f9f7d59, in-
cluding pull request 28: Proof size optimization;

• zendoo-cctp-lib to support cross chain transfers
for the Zendoo protocol: https://github.com/Horizen
Official/zendoo-cctp-lib on branch dev at commit
f7aeeba5266a2a6d82e2186958d11ead165191ab;

• zendoo-mc-cryptolib, an FFI library crate that
exposes the ginger-lib Rust components needed to
support Zendoo in mainchain: https://github.com/H
orizenOfficial/zendoo-mc-cryptolib on branch sync_w
ith_cctp_lib at commit
ac1a8d59330953d9bfabf8c65b11b21bde6669f9.

Limitations
Due to the large size of the different code bases under
review, the NCC Group team focused their efforts on the
scope described above and did not venture outside of
the specific repositories listed. Overall, good coverage
was achieved on the items in scope.

At the time of the review, some portions of the code
were still under development, as evidenced by a number
of “TODO”s throughout the repositories and some
commented code portions. The NCC Group team
also performed the review on dedicated development
branches, which eventually will have to be completed
and integrated within the larger Zendoo ecosystem.

Additionally, side-channel attacks leveraging timing
leaks were not an area of concern for the Horizen Labs
team and as such non constant-time operations were
not investigated in detail.

Finally, the changes introduced in the different pull
requests prior to the retest sometimes contained
modifications to files that were out of the initial scope.
These updates were not reviewed in great depth.

Key Findings
The NCC Group team reported a total of 22 findings
during the course of the engagement. Themost notable
findings were:

• Missing Polynomial Normalization after Arithmetic
Operations: Incorrect polynomial representation
resulting from arithmetic operations may break as-
sumptions and lead to erroneous computations or
may result in denial of service attacks via Rust panics.
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• Batch Proof Verification Bypass: A maliciously
crafted set of proofs or tampered verification keys
may pass the batch (and aggregated) verification
procedure. This might allow attackers to tamper with
proofs without legitimate users noticing, potentially
impacting the trust in the zero-knowledge proof
system.

• Incorrect Random Polynomial Generation: The
generation of masking polynomials with inadequate
random coefficients may invalidate the security proofs
and breach the zero-knowledge property.

• Missing Length Check in Canonical Deserialization:
Different serialized field elements may be deserialized
to the same value, resulting in potentially adverse
and unexpected consequences, including breach of
consensus.

• No Domain Separation inMerkle Tree Implementa-
tion: An attacker may be able to produce a series of
leaves which allows them to forge an inclusion proof
in the Merkle tree.

• Merkle Leaf Nodes Not Zeroed on Reset: Incorrect
values may be computed for root nodes, subtree
nodes, and tree paths. Computed values may not be
reproducible between users or between consecutive
program executions.

The NCC Group team also collected a number of
informational engagement notes which are provided
in Appendix B on page 50.

After retesting, NCC Group found that a large majority
of the findings had been addressed. Out of a
total of twenty-two (22) original findings, fourteen (14)
were marked as Fixed and one (1) as Partially Fixed.
Additionally, three (3) findings were marked as False
Positive and four (4) were marked as Risk Accepted, after
discussions with the Horizen Labs team.

Strategic Recommendations
Consider cleaning up the different repositories by
deleting all unused code. The current code bases
are large, and contain a lot of unused, outdated, or
otherwise unnecessary implementations. This makes
the code bases more difficult to maintain and eventually
increases the attack surface.

In order to providemore assurance regarding the lack of
exploitable vulnerabilities (for example, in the presence
of adverse input parameters), more comprehensive unit
tests could be written, particularly around some of the
higher-level primitives such as proof aggregation and
verification. Randomized input testing via fuzzing might
be a valuable approach to uncover potential additional
edge cases. The Rust cargo fuzz subcommand is an
easy-to-use wrapper around libFuzzer.

Due to the deep function hierarchy, it might not
always be evident if and where parameter validation
is performed. As such, consider revisiting some of
the existing functions to assess whether stricter input
validation is necessary. Avoid the use of unsafe Rust
code that can cause panics, and catch possible errors
with informative error messages where possible.

The code base could also benefit frommore specific and
detailed comments, given the complex nature of the
performed operations. Additionally, ensuring that the
reference papers and the implementation use the exact
same terminology for variable and function naming
would greatly help readers follow the flow of complex
cryptographic operations.

3 | Zendoo Proof Verifier Cryptography Review Zen Blockchain Foundation / NCC Group

https://github.com/rust-fuzz/cargo-fuzz


Dashboard
Target Metadata Engagement Data
Name Zendoo Proof Verifier Type Cryptography Implementation Review
Type Cryptographic Libraries Method Code-assisted
Platforms Rust with C FFI Dates 2021-06-07 to 2021-07-09
Environment Local Consultants 3

Level of Effort 42 person-days

Targets
ginger-lib A general purpose zk-SNARK library supporting recursive proof composition: https://github

.com/HorizenOfficial/ginger-lib

poly-commit A Rust library that implements (univariate) polynomial commitment schemes: https://gith
ub.com/HorizenLabs/poly-commit

marlin A Rust library that implements a preprocessing zkSNARK for R1CS with universal and
updatable SRS: https://github.com/HorizenLabs/marlin

zendoo-cctp-lib A Rust library supporting Cross Chain Transfers for Zendoo Protocol: https://github.com/H
orizenOfficial/zendoo-cctp-lib

zendoo-mc-cryptolib An FFI library crate that exposes the ginger-lib Rust components needed to support
Zendoo in mainchain: https://github.com/HorizenOfficial/zendoo-mc-cryptolib

Finding Breakdown
Original Assessment Remaining

Critical issues 0 0
High issues 3 0
Medium issues 3 1
Low issues 10 2
Informational issues 3 2

Category Breakdown
Cryptography 2

Data Exposure 1

Denial of Service 1

Other 1

Component Breakdown
Systemic 1

ginger-lib 4

Key
Critical High Medium Low Informational
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Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 48.

Title Status ID Risk
Missing Polynomial Normalization after Arithmetic Operations Fixed 009 High
Batch Proof Verification Bypass Fixed 016 High
Incorrect Random Polynomial Generation Fixed 017 High
Missing Length Check in Canonical Deserialization False Positive 001 Medium
No Domain Separation in Merkle Tree Implementation Risk Accepted 010 Medium
Merkle Leaf Nodes Not Zeroed on Reset Fixed 015 Medium
Incorrect Hiding Bound in Labeled Polynomial Commitment Fixed 022 Medium
Secure Rust Best Practices Not Always Followed Partially Fixed 002 Low
Misleading Modular Reduction Function Fixed 004 Low
Potential Panic with Zero-Division Fixed 005 Low
Outdated and Vulnerable Rust Dependencies Fixed 006 Low
Insufficient Parameter Checks in Multi-Scalar Multiplication Fixed 008 Low
Insufficient Parameter Validation in Merkle Tree Implementation Fixed 011 Low
Potential DoS via Memory Exhaustion in Merkle Tree Instantiation Risk Accepted 012 Low
Incoherence in Poseidon Round Number Parameters False Positive 013 Low
RNG Implementation Non-Compliant with Rust Documentation Fixed 014 Low
Ambiguous Fiat-Shamir Oracle Instantiation and Input Serialization Fixed 018 Low
Discrepancy with Reference Paper on Random Challenge Domain False Positive 019 Low
Undefined Behavior in Foreign Function Interface Fixed 021 Low
Non Constant-Time Modular Exponentiation Risk Accepted 003 Informational
Missing Memory Zeroization Risk Accepted 007 Informational
Potential to Randomly Generate Trivial Random Challenges Fixed 020 Informational
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Finding Details
Finding Missing Polynomial Normalization after Arithmetic Operations

Risk High Impact: Medium, Exploitability: Medium

Identifier NCC-E001741-009

Status Fixed

Category Data Validation

Component ginger-lib

Location algebra/src/fft/polynomial/dense.rs

Impact Incorrect polynomial representation resulting from arithmetic operations may break assump-
tions and lead to erroneous computations or may result in denial of service attacks via Rust
panics.

Description The file fft/polynomial/dense.rs provides an implementation of dense polynomials to be
used for FFTs. These polynomials are represented by vectors in which each entry corresponds
to a coefficient. These coefficients are elements of a finite field, and as such, the sum of two
coefficients may take any value in the range 0, . . . , p − 1, where p is the order of the prime
field.

When adding two polynomials of the same degree using the function add(), trailing coeffi-
cients that sum to zero are not trimmed. This contradicts an underlying assumption on the
shape of polynomial representations, namely that the coefficient of the leading term is non-
zero.

As an example, summing the polynomials 3 + 2x+ x2 and 1 + (p− 1)x2 (using the function
add() provided below for reference) represented by the vectors [3, 2, 1] and [1, 0, p
- 1] will result in the vector [4, 2, 0], namely the trailing position is equal to zero.

fn add(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
if self.is_zero() {

other.clone()
} else if other.is_zero() {

self.clone()
} else {

if self.degree() >= other.degree() {
let mut result = self.clone();
for (a, b) in result.coeffs.iter_mut().zip(&other.coeffs) {

*a += b
}
result

} else {
let mut result = other.clone();
for (a, b) in result.coeffs.iter_mut().zip(&self.coeffs) {

*a += b
}
// If the leading coefficient ends up being zero, pop it off.
while result.coeffs.last().unwrap().is_zero() {

result.coeffs.pop();
}
result

}
}

}
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Interestingly, note that the else-clause in the add() function above does perform this trim-
ming.

While this failure to trim leading zero coefficients is technically not inconsistent with the cur-
rent polynomial representation (and should not lead to incorrect results), the implementation
assumes that all trailing zeros have been trimmed from polynomials.

As a result, functions like degree() (provided below) will panic on unexpected inputs.

/// Returns the degree of the polynomial.
pub fn degree(&self) -> usize {

if self.is_zero() {
0

} else {
assert!(self.coeffs.last().map_or(false, |coeff| !coeff.is_zero()));
self.coeffs.len() - 1

}
}

This oversight with regards to the trimming of zero coefficients applies to function add_assi
gn(), sub() and sub_assign().

Recommendation Consider performing the “trimming” step of removing trailing zero coefficients from polyno-
mials in all cases after arithmetic operations. Additionally, consider writing unit tests to catch
such potential edge cases.

Retest Results Pull Request 112 introduced a function named truncate_leading_zeros() which removes
the leading zero coefficients of a polynomial. This function is now called prior to returning
the result of the arithmetic operations add(), add_assign(), sub(), and sub_assign(). As
such, this finding has been marked as “Fixed”.
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Finding Batch Proof Verification Bypass

Risk High Impact: High, Exploitability: Medium

Identifier NCC-E001741-016

Status Fixed

Category Cryptography

Component ginger-lib

Location proof-systems/src/darlin/proof_aggregator.rs

Impact A maliciously crafted set of proofs or tampered verification keys may pass the batch (and
aggregated) verification procedure. This might allow attackers to tamper with proofs without
legitimate users noticing, potentially impacting the trust in the zero-knowledge proof system.

Description The function batch_verify_proofs() in proof-systems/src/darlin/proof_aggregato
r.rs performs batch verification of Proof Carrying Data (PCD) structures consisting of either
FinalDarlin or SimpleMarlin PCDs. To this end, it performs the succinct verification of the
PCDs using the verification keys and get their accumulators as a result of a call to get_accum
ulators(), as can be seen in the code excerpt below.

Subsequently, the batch_verify_proofs() function checks whether the returned accumu-
lator accs_g1 (respectively accs_g2 further below) is empty, in which case it sets the return
value result_g1(respectively result_g2) to true.

pub fn batch_verify_proofs<G1, G2, D: Digest, R: RngCore>(
pcds: &[GeneralPCD<G1, G2, D>],
vks: &[MarlinVerifierKey<G1::ScalarField,

InnerProductArgPC<G1, D>>],
g1_vk: &DLogVerifierKey<G1>,
g2_vk: &DLogVerifierKey<G2>,
rng: &mut R

) -> Result<bool, Option<usize>>
// ...

// Do the succinct verification of the PCDs and get their accumulators
let (accs_g1, accs_g2) = get_accumulators::<G1, G2, D>(pcds, vks, g1_vk,

g2_vk)
.map_err(|e| {

end_timer!(verification_time);
e

})?;

// Verify accumulators (hard part)
let result_g1 = if accs_g1.is_empty() {

true
} else {

DLogItemAccumulator::<G1, D>::check_items::<R>(
g1_vk, &accs_g1, rng

).map_err(|_| {
end_timer!(verification_time);
None

})?
};
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let result_g2 = if accs_g2.is_empty() {
true

} else {

// ...

Ok(result_g1 && result_g2)
}

The combination of this default “success” return value, together with the vector operations
performed in the get_accumulators() function, may allow attackers to bypass verification,
thereby forging batch or aggregated proofs.

More specifically, the get_accumulators() function iterates over its pcds and vks argu-
ments and performs computations on their respective elements by calling the zip() iterator,
highlighted in the code excerpt below.

pub(crate) fn get_accumulators<G1, G2, D: Digest>(
pcds: &[GeneralPCD<G1, G2, D>],
vks: &[MarlinVerifierKey<G1::ScalarField, InnerProductArgPC<G1, D>>],
g1_ck: &DLogCommitterKey<G1>,
g2_ck: &DLogCommitterKey<G2>,

) -> Result<(Vec<DLogItem<G1>>, Vec<DLogItem<G2>>), Option<usize>>
// ...

let accs = pcds
.into_par_iter()
.zip(vks)
.enumerate()
.map(|(i, (pcd, vk))|

{
// ...
pcd.succinct_verify(&vk).map_err(|_| Some(i))

}
).collect::<Result<Vec<_>, _>>().map_err(|e| {

end_timer!(accumulators_time);
e

})?;

let accs_g1 = accs.iter().flat_map(|acc| acc.0.clone()).collect::<Vec<_>>();
let accs_g2 = accs.into_iter().flat_map(|acc| acc.1).collect::<Vec<_>>();

end_timer!(accumulators_time);

Ok((accs_g1, accs_g2))
}

As such, the iteration over the pcds and vks vectors will stop as soon as one of these vectors
is exhausted. Since neither the get_accumulators() function, nor the calling batch_ver
ify_proofs() function performs any consistency check on the respective lengths of these
arrays, a few cases may result in unexpected behavior or potential forgeries.

1. Submitting an empty verification key array (vks) to the batch_verify_proofs() function
successfully returns, regardless of the content of the other parameters, such as the pcds
array.

2. Submitting an empty proof carrying data array (pcds) to the batch_verify_proofs()
function successfully returns, regardless of the content of the other parameters, such as
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the vks array.
3. Submitting arrays of different lengths for pcds and vks to the batch_verify_proofs()

function returns successfully, provided that the pcds and vks elements are correct up to
the size of the smallest of the two arrays. This might allow an attacker to forge proofs by
arbitrarily inflating a valid pcds array with invalid proofs.

Note that these comments also apply (to some extent) to the function verify_aggregated
_proofs(), which also calls the function get_accumulators() under the hood, and has a
similar default “success” return value.

Recommendation Perform strict input validation of all parameters supplied to the functions, in particular when
said functions may handle maliciously crafted input. Ensure the lengths of the different vec-
tors are consistent with each other and non-zero.

Additionally, consider revisiting the default assignment of successful return values in the bat
ch_verify_proofs() and verify_aggregated_proofs() functions.

Retest Results Pull Request 112 introduced a validation step in the function get_accumulators(), whereby
the respective lengths of pcds and vks are checked to be equal and non-zero, as follows:

if pcds.len() == 0 || vks.len() == 0 || pcds.len() != vks.len() {
return Err(None);

}

This prevents the verification bypass described above. As such, this finding has been marked
as “Fixed”.
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Finding Incorrect Random Polynomial Generation

Risk High Impact: High, Exploitability: Medium

Identifier NCC-E001741-017

Status Fixed

Category Cryptography

Component marlin

Location • marlin/src/ahp/prover.rs
• ginger-lib/proof-systems/src/darlin/data_structures.rs
• ginger-lib/proof-systems/src/darlin/pcd/mod.rs

Impact The generation of masking polynomials with inadequate random coefficients may invalidate
the security proofs and breach the zero-knowledge property.

Description As part of the proving procedure performed by Marlin, the function prover_first_round()
in marlin/src/ahp/prover.rs has the ability to mask the polynomials w_poly, z_a_poly
and z_b_poly by sampling a random “mask” polynomial in order to achieve zero-knowledge.

Specifically, this function generates a random polynomial from a vector of random elements,
conditional on the value of the “zero-knowledge” (zk) flag. The first of the three instances is
shown in the excerpt below.

299 // Degree of w_poly before dividing by v_X equals max(|H| - 1 , (zk_bound -
1) + |H|) = (zk_bound - 1) + |H|

300 let w_poly = {
301 let w = EvaluationsOnDomain::from_vec_and_domain(w_poly_evals,

domain_h.clone())
302 .interpolate();
303 if zk {
304 &w + &(&Polynomial::from_coefficients_slice(&vec![F::rand(rng);

zk_bound] ) * &v_H)
305 } else {
306 w
307 }
308 };

However, instead of sampling a random vector of zk_bound elements, this construction effec-
tively samples a single randomelement and duplicates it zk_bound times. The sameoperation
is also performed for the polynomials z_a_poly and z_b_poly.

As a result, the masking polynomials are not random and their efficacy in providing zero-
knowledge might be diminished.

On a related note, similar operations are also performed in some ginger-lib test code. For
example, the generation of random xis in ginger-lib/proof-systems/src/darlin/data
_structures.rs also generates a single random element and repeats it log_key_len_g1
times instead of generating that many random numbers.

let random_xi_s_g1 = SuccinctCheckPolynomial::<G1::ScalarField>(vec![u128::rand(
rng).into(); log_key_len_g1 as usize] );

Similarly, in ginger-lib/proof-systems/src/darlin/pcd/mod.rs, the simple_marlin.
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usr_ins and final_darlin.usr_ins vectors will be composed of the same random G1
element ins_len times.

match self {
Self::SimpleMarlin(simple_marlin) => {

// No sys ins (for now) for SimpleMarlin, so modify the usr_ins inste
ad

let ins_len = simple_marlin.usr_ins.len();
simple_marlin.usr_ins = vec![G1::ScalarField::rand(rng); ins_len];

},
Self::FinalDarlin(final_darlin) => {

let ins_len = final_darlin.usr_ins.len();
final_darlin.usr_ins = vec![G1::ScalarField::rand(rng); ins_len];

}
}

Recommendation Update the random vector generation procedures to produce vectors of distinct random
elements, for example by using the map() and collect() operators on a range, akin to the
construction provided below as example.

let random_vector: Vec<F> = (0..zk_bound).map(|_| F::rand(rng)).collect();

Retest Results Pull Request 112 for ginger-lib and Pull Request 19 for marlin introduced changes to the
different random polynomial generations, following the recommended approach. For exam-
ple in ginger-lib/proof-systems/src/darlin/data_structures.rs, the generation of
the random_xi_s_g1 variable is performed as follows:

let random_xi_s_g1 = SuccinctCheckPolynomial::<G1::ScalarField>(
(0..log_key_len_g1 as usize).map(|_| u128::rand(rng).into()).collect()

);

As such, this finding has been marked as “Fixed”.
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Finding Missing Length Check in Canonical Deserialization

Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-E001741-001

Status False Positive

Category Data Validation

Component ginger-lib

Location algebra/src/fields/macros.rs

Impact Different serialized field elements may be deserialized to the same value, resulting in poten-
tially adverse and unexpected consequences, including breach of consensus.

Description The function deserialize_with_flags() (and the related deserialize()) in macros.rs
deserializes bytes provided as an argument via an implementation of a Rust Read trait, as
can be seen in the code excerpt below. To read a field element, the deserialize_with_f
lags() function calculates the number of bytes required to represent a field element, and
subsequently populates an output buffer by reading exactly that many bytes, highlighted in
the code below.

impl<P: $params> CanonicalDeserializeWithFlags for $field<P> {
fn deserialize_with_flags<R: Read, F: Flags>(

mut reader: R,
) -> Result<(Self, F), SerializationError> {

// All reasonable `Flags` should be less than 8 bits in size
// (256 values are enough for anyone!)
if F::BIT_SIZE > 8 {

return Err(SerializationError::NotEnoughSpace);
}
// Calculate the number of bytes required to represent a field element
// serialized with `flags`. If `F::BIT_SIZE < 8`,
// this is at most `$byte_size + 1`
let output_byte_size = buffer_byte_size(P::MODULUS_BITS as usize + F::

BIT_SIZE);

let mut masked_bytes = [0; $byte_size + 1];
reader.read_exact(&mut masked_bytes[..output_byte_size])?;

let flags = F::from_u8_remove_flags(&mut masked_bytes[output_byte_size -
1])
.ok_or(SerializationError::UnexpectedFlags)?;

Ok((Self::read(&masked_bytes[..])?, flags))
}

}

impl<P: $params> CanonicalDeserialize for $field<P> {
fn deserialize<R: Read>(reader: R) -> Result<Self, SerializationError> {

Self::deserialize_with_flags::<R, EmptyFlags>(reader).map(|(r, _)| r)
}

}

However, due to the nature of the Rust Read trait used, this function allows two different
inputs to be deserialized to the same field element. Indeed, the function never checks that
the totality of the input has been consumed, and byte arrays larger than the expected size are
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handled without raising any concerns. For example, appending an arbitrary number of bytes
after a correctly serialized element produces an equivalent field element upon deserialization.
This behavior may lead to unexpected consequences.

Recommendation Consider updating the deserialize_with_flags() function to return an error if there are
more bytes to be read after an element and its flags have been deserialized.

Retest Results The client response provided below discusses how the proposed remediation to this finding
should be implemented at the application level, since the ability to deserialize data streams
of lengths different than that of a field element is leveraged within ginger-lib. As such, this
finding has been marked as “False Positive”.

Client Response The customer provided the following response:

“It’s true indeed that, if we want to deserialize a single field element and pass an
arbitrary length array, only the first n bytes will be taken into account and the
deserialization will be successful; for the same reason, it is also true that we can
pass two arbitrary arrays of arbitrary length and, as long as their first n bytes are
the same, they will both deserialize successfully to the same field element. How-
ever, the proposed solution is not exploitable, as the Field element deserialization
function is called by the deserialization function of more complex structs that have
many field elements inside. Let’s consider the case of a GroupAffine struct (elliptic
curve point in affine coordinates): they have two field elements corresponding to
the x and y coordinates, and these field elements should be deserialized using the
same Read object. While deserializing the x coordinate we cannot enforce that
the Read object length is exactly field_element_bytes as this is not true and it’s not
supposed to be true, since the Read object is used to read an elliptic curve point
made out of 2 field elements. The proposed solution should be implemented at
application level (mc-cryptolib and sc-cryptolib), where we know the concrete types
and their size, and we can check for the overall Read object size.

Inmc-cryptolib: The Rust-C++ FFI is such that we pass to Rust, pointers to data and
how many bytes the data are made up of. Of course, the caller can pass a pointer
to arbitrary data of arbitrary length, but this can’t be really checked Rust-size: we
can only check that the declared data length is equal to the expected one (for fixed
size types).

zend_oo controls however that the data size is the expected one.

In sc-cryptolib: JNI classes always checks that byte buffer sizes are equal to the
expected size of the element to be deserialized before deserializing, so it should
be fine.”
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Finding No Domain Separation in Merkle Tree Implementation

Risk Medium Impact: High, Exploitability: Medium

Identifier NCC-E001741-010

Status Risk Accepted

Category Cryptography

Component ginger-lib

Location primitives/src/merkle_tree

Impact An attacker may be able to produce a series of leaves which allows them to forge an inclusion
proof in the Merkle tree.

Description The current Merkle tree implementation in ginger-lib does not intrinsically differentiate
between internal nodes and leaf nodes when hashing them. A well-known property of Merkle
trees which do not differentiate between internal and leaf nodes is that they lack second-
preimage resistance: given a root R and tree T , it is possible to compute a tree T ′ that also
produces R.1

A trivial demonstration of this weakness is showcased in the two Figures below. Consider the
Merkle tree built with the four leaves L1, L2, L3, L4, where the values of the internal node
N1 is N1 = H(L1, L2) and N2 = H(L3, L4) and the resulting root R is R = H(N1, N2), as
depicted in Figure 1.

Figure 1: Merkle Tree with four leaves

It is easy to see that a tree created with the two values N1 and N2 as leaves will result in the
same root value, as depicted in Figure 2.
1https://flawed.net.nz/2018/02/21/attacking-merkle-trees-with-a-second-preimage-attack/
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Figure 2: Merkle Tree with two leaves, resulting in the same root

While slightly contrived, this example shows that second-preimage resistance is not fulfilled
when trees do not differentiate between leaves and internal nodes for hashing. A more
concrete attack was described for Bitcoin, in which an attacker could perform a series of
brute-force attacks in order to craft a 64-byte transaction that is submitted to the Bitcoin
blockchain, and this transaction would allow them to prove inclusion of a rogue transaction
which was never included in the Bitcoin blockchain. A blog post by Sergio Damian Lerner2
explores this attack in detail: the cost is that of brute-forcing a relatively large search space
(between 69 and 73 bits).

In the current Merkle tree implementations, hashing leaves and internal nodes are not being
differentiated. For example, consider the functions hash_inner_node() and hash_leaf()
provided below for reference, which both end up with a call to H::evaluate(parameters,
&buffer[..]), regardless of whether the buffer contains a leaf or two nodes.

pub(crate) fn hash_inner_node<H: FixedLengthCRH>(
parameters: &H::Parameters,
left: &H::Output,
right: &H::Output,
buffer: &mut [u8],

) -> Result<H::Output, Error> {
use std::io::Cursor;
let mut writer = Cursor::new(buffer);
// Construct left input.
left.write(&mut writer)?;

// Construct right input.
right.write(&mut writer)?;

let buffer = writer.into_inner();
H::evaluate(parameters, &buffer[..])

}

/// Returns the hash of a leaf.
pub(crate) fn hash_leaf<H: FixedLengthCRH, L: ToBytes>(

parameters: &H::Parameters,
leaf: &L,
buffer: &mut [u8],

) -> Result<H::Output, Error> {
use std::io::Cursor;
let mut writer = Cursor::new(buffer);
leaf.write(&mut writer)?;

2https://bitslog.com/2018/06/09/leaf-node-weakness-in-bitcoin-merkle-tree-design/
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let buffer = writer.into_inner();
H::evaluate(parameters, &buffer[..])

}

Note that this issue might be partially mitigated in this code base by the fact that trees have a
fixed height, and that some leaf and node values have fixed (and possibly different) lengths.

Recommendation Consider adding a different domain separator in the hash function call when hashing leaves
and internal nodes, in order to prevent the kind of second-preimage attack described above.

Retest Results With Pull Request 112, the following disclaimer was added to the different Merkle tree im-
plementations (namely, merkle_tree/field_based_mht/naive/mod.rs, merkle_tree/fi
eld_based_mht/optimized/mod.rs and merkle_tree/mod.rs) to warn library users about
missing domain separation:

/// WARNING. This Merkle Tree implementation:
/// 1) Stores all the nodes in memory, so please retain from using it if
/// the available amount of memory is limited compared to the number
/// of leaves to be stored;
/// 2) Leaves and nodes are hashed without using any kind of domain separation:
/// while this is ok for use cases where the Merkle Trees have always the
/// same height, it's not for all the others.

Additionally, an issue on the ginger-lib GitHub repository (see Issue 110) was created to
track and eventually fix the lack of domain separation. This seems to indicate that the finding
will be fixed eventually. As a result, this finding was marked as “Risk Accepted”.
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Finding Merkle Leaf Nodes Not Zeroed on Reset

Risk Medium Impact: High, Exploitability: Low

Identifier NCC-E001741-015

Status Fixed

Category Other

Component ginger-lib

Location primitives/src/merkle_tree/field_based_mht/optimized/mod.rs

Impact Incorrect values may be computed for root nodes, subtree nodes, and tree paths. Computed
values may not be reproducible between users or between consecutive program executions.

Description The trait FieldBasedMerkleTree specifies a number of methods, including reset(). This
method is intended to “reset the internal state of the tree, bringing it back to the initial one.”
The implementation of this method for FieldBasedOptimizedMHT is as follows:

fn reset(&mut self) -> &mut Self {
for i in 0..self.new_elem_pos.len() {

self.new_elem_pos[i] = self.initial_pos[i];
self.processed_pos[i] = self.initial_pos[i];

}
self.finalized = false;

self
}

In this excerpt’s main loop, reset() resets the indices at which new leaves should be inserted
to the tree, effectively ensuring that new leaf values will overwrite old ones; however, it does
not perform any leaf zeroing. Under certain conditions, this opens up the possibility for pre-
reset leaf values to sneak into post-reset tree evaluations.

If the post-reset tree is not fully saturated, some pre-reset values will be retained in memory,
albeit at locations “ahead” of the current insertion index. This becomes problematic when the
tree is finalized through finalize() or finalize_in_place(), as both of these methods
begin by moving the leaf insertion index new_elem_pos[0] past the end of the leaf buffer.
Once this happens, pre-reset leaves are indistinguishable from post-reset leaves, and both
will be included in the forthcoming evaluation of the tree.

This will produce incorrect results for nodes at all levels, up to and including the root, as well
as for paths through these nodes. This may also have the potential to leak information about
the tree’s prior contents.

Recommendation Set all leaf nodes to <T::Data as Field>::zero() on reset.

Retest Results Pull Request 112 introduced a “zeroization” step in the function reset(), whereby every node
is overwritten with the zero element, as follows:

// Reset all nodes values
self.array_nodes.iter_mut().for_each(|leaf| *leaf = <T::Data as

Field>::zero());

This addresses the issue described above. As such, this finding has been marked as “Fixed”.
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Finding Incorrect Hiding Bound in Labeled Polynomial Commitment

Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-E001741-022

Status Fixed

Category Data Exposure

Component poly-commit

Location src/ipa_pc/mod.rs

Impact An incorrect hiding bound in the labeled polynomial to which a commitment is created may
result in incorrect computation results, information leakage and loss of zero-knowledge.

Description In the function batch_open_individual_opening_challenges(), the call to the function
commit() to generate a polynomial commitment fails to specify a hiding bound for the Labe
ledPolynomial to which it commits.

Specifically, the function specifies None for the hiding bound regardless of whether or not the
has_hiding variable was set, as can be seen in the code excerpt below.

let (h_commitments, h_randomnesses) = Self::commit(
&ck,
vec![&LabeledPolynomial::new(format!("h_poly"), h_polynomial.clone(),

None, None)],
if has_hiding {

if rng.is_none() {
Err(Error::Other("Rng not set".to_owned()))?

}
Some(rng.as_mut().unwrap())

} else {
None

}
)?;

In comparison, the creation of such a polynomial is performed correctly a few lines below
(starting on line 1393), as can be seen in the following code excerpt.

let labeled_batch_polynomial = LabeledPolynomial::new(
format!("LC"),
lc_polynomial,
None,
if has_hiding { Some(1) } else { None }

);

Recommendation Specify the correct value for the hiding_bound parameter. For example, by creating the
labeled polynomial using the following approach.

vec![&LabeledPolynomial::new(format!("h_poly"), h_polynomial.clone(), None,
if hiding_bound { Some(1) } else { None })],

Retest Results In a recent commit (Fix missing hiding bound on h_poly commitment), the solution recom-
mended above was implemented. As such, this finding has been marked as “Fixed”.
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Finding Secure Rust Best Practices Not Always Followed

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-E001741-002

Status Partially Fixed

Category Other

Component ginger-lib

Location Systemic

Impact Good programming practices ensure that bugs and vulnerabilities are less likely to be intro-
duced in the code base and easier to identify when they occur, and also help code maintain-
ability. For example, exceptional conditions which cause an unhandled panic may present a
denial of service vector.

Description While overall good programming practices were observed throughout the different code
bases, the NCC Group team observed a few instances of less-than-ideal Rust programming
practices, mostly around error handling.

The Rust programming language provides specific constructions representing return values,
in the form of the Option and the Result enums. These values provide the ability to both
represent a successful result and the possibility of an empty return value (or an error, respec-
tively). In order to access the underlying result, the function unwrap() may be used. This
function returns the result of the function, but panics if there was an error. Its use can be
justified in some cases, but blindly using the unwrap() function as a shortcut way to obtain
the result can lead to issues up the calling stack, and obscure the underlying problems. The
NCC Group team noted that the use of unwrap() was widespread throughout the code base.

Another example of a typical pattern that may lead to denial of service conditions is the usage
of the assert!()macro, which also results in panics if not fulfilled.

Generally speaking, explicit error handling should be preferred instead of calling functions
that might result in panics, such as unwrap() or expect(). The Secure Rust Guidelines
provide some helpful pointers to that effect.

Finally, another helpful tool to assess the adherence of a code base to best practices is the
cargo clippy utility. Running that tool on the various code repositories showed a number
of constructions that could be improved upon. As an example, running cargo clippy on the
current ginger-lib repository results in more than 800 emitted warnings.

Recommendation Consider performing a pass throughout all code bases and converting unwrap() and asser
t!() calls to more explicit error handling.

Add a gating milestone to the development process that involves running cargo clippy and
fixing the emitted warnings.

Retest Results In a series of five Pull Requests (one for each library in scope, see below) the Horizen Labs
team made a concentrated effort at better following Rust secure programming practices.

• ginger-lib: PR 118
• marlin: PR 24
• poly-commit: PR 26
• zendoo-cctp-lib: PR 23
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• zendoo-mc-cryptolib: PR 48

More specifically, a large number of unwrap() calls were removed and panic-inducing con-
struction were converted to safer code by making use of the Rust Result and Option types.
A number of assert() calls were also removed and comments were added whenever the use
of unwrap() was safe.

The team also indicated that the introduction of the tools cargo clippy and cargo fmt
was going to be introduced to the development process at a later stage. Given the fact
that following best programming practices is an ongoing effort, this finding was marked as
“Partially Fixed”.
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Finding Misleading Modular Reduction Function

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-E001741-004

Status Fixed

Category Cryptography

Component ginger-lib

Location algebra/src/fields/macros.rs

Impact APImisuse due tomisleading function namingmay result in incorrect and unexpected results.

Description The file algebra/src/fields/macros.rs implements a number of operations on arbitrary
finite field elements. Among these operations, the reduce() function is used to compute
z mod n, namely to reduce an element modulo the field order n (P::MODULUS in the code
excerpt below).

fn reduce(&mut self) {
if !self.is_valid() {

self.0.sub_noborrow(&P::MODULUS);
}

}

The reduce() function is not complete when reducing elements. Namely, if the element is
invalid (i.e., larger that themodulus) it only subtracts the fieldmodulus from the element once,
and assumes the element to be reduced after that. As such, values larger than (or equal to)
2n will not be correctly reduced.

Luckily, this seems inconsequential since reduce() currently appears to be called to reduce
elements that cannot be larger that twice the modulus, by design. For example, the functions
double_in_place() and add_assign() in algebra/src/fields/macros.rs both call red
uce() with valid values.

Nevertheless, this may pose a risk to developers and future unsuspecting users of this library.

Recommendation Consider implementing a more complete modular reduction routine, such as Barrett3 or
Montgomery4 reduction.

At the very least, consider adding code comments clearly outlining the limitations of this func-
tion, in order to prevent developers from calling it when expecting a full modular reduction.

Retest Results With Pull Request 112, a comment was added to the reduce() function indicating that its
behavior is correct if and only if the value to reduce is smaller or equal than twice the field
modulus. This is in linewith the second recommendation provided above. As such, this finding
has been marked as “Fixed”.

3https://en.wikipedia.org/wiki/Barrett_reduction
4https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
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Finding Potential Panic with Zero-Division

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-E001741-005

Status Fixed

Category Data Validation

Component ginger-lib

Location algebra/src/fields/macros.rs

Impact Missing validation checks that result in a panic may present a denial of service attack vector.

Description The div() function located in the file macros.rs implements the field division operation. To
do so, it computes the inverse of the divisor passed in as argument (the other variable in the
code excerpt below) and multiplies the dividend by the result of this field inversion.

#[inline]
fn div(self, other: &Self) -> Self {

let mut result = self.clone();
result.mul_assign(&other.inverse().unwrap());
result

}

However, the div() function does not check that the other parameter is non-zero. As such,
trying to divide by zero will result in a panic. Indeed, the function inverse() returns a Rust
Option type. When trying to compute the inverse of the zero-element, inverse() returns
None, which will panic when unwrap-ed.

Recommendation Gracefully handle division by zero so as not to panic upon unexpected inputs. Consider
updating the div() function to return a Rust Result or Option type, similar to the inverse()
function.

Retest Results In the same series of Pull Requests (one for each library in scope, see below) addressing find-
ing NCC-E001741-002 on page 20, the Horizen Labs team made a concentrated effort to
prevent potential instances of divisions by zero earlier in the call hierarchy, in the different
callers of the div() and div_assign() functions.

• ginger-lib: PR 118
• marlin: PR 24
• poly-commit: PR 26
• zendoo-cctp-lib: PR 23
• zendoo-mc-cryptolib: PR 48

As a result, this finding was marked as “Fixed”.
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Finding Outdated and Vulnerable Rust Dependencies

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-E001741-006

Status Fixed

Category Patching

Component ginger-lib

Location ginger-lib

Impact An attacker may attempt to identify and utilize vulnerabilities in outdated dependencies to
exploit the application.

Description Using outdated dependencies with discovered vulnerabilities is one of the most common and
serious routes of application exploitation. Many of themost severe breaches have relied upon
exploiting known vulnerabilities in dependencies.5

Some convenient tools exist to assess the health of the dependencies of Rust code bases. The
utility cargo-audit6 audits Cargo.lock files for crates with security vulnerabilities reported to
the RustSec Advisory Database.

Running the tool cargo audit on the ginger-lib directory shows that one vulnerability
exists in the blake2 crate, and also highlights some warnings related to unmaintained and
potentially vulnerable dependencies. An excerpt of its output is provided below for reference.

$ cargo audit

error: Vulnerable crates found!

ID: RUSTSEC-2019-0019
Crate: blake2
Version: 0.7.1
Date: 2019-08-25
URL: https://rustsec.org/advisories/RUSTSEC-2019-0019
Title: HMAC-BLAKE2 algorithms compute incorrect results
Solution: upgrade to >= 0.8.1
Dependency tree:
blake2 0.7.1

warning: 2 warnings found

Crate: dirs
Title: dirs is unmaintained, use dirs-next instead
Date: 2020-10-16
URL: https://rustsec.org/advisories/RUSTSEC-2020-0053
Dependency tree:
dirs 1.0.5
└── term 0.5.2

└── clippy 0.0.302
└── algebra 0.1.0

5https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-t
wo-month-old-bug/
6https://github.com/RustSec/cargo-audit
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Crate: term
Title: term is looking for a new maintainer
Date: 2018-11-19
URL: https://rustsec.org/advisories/RUSTSEC-2018-0015
Dependency tree:
term 0.5.2
└── clippy 0.0.302

└── algebra 0.1.0

Crate: marlin
Version: 0.1.0
Warning: package has been yanked!
Dependency tree:
marlin 0.1.0
└── proof-systems 0.1.0

└── r1cs-crypto 0.1.0
├── r1cs-crypto 0.1.0
└── proof-systems 0.1.0

error: 1 vulnerability found!
warning: 2 warnings found!

Another interesting tool is the cargo-outdated7 utility, which is a cargo subcommand for
displaying when Rust dependencies are out of date. An excerpt of the output of running the
cargo outdated subcommand on the ginger-lib repository is provided below. A number
of dependencies are outdated.

algebra
================
Name Project Compat Latest Kind Platform
---- ------- ------ ------ ---- --------
blake2 0.7.1 --- 0.9.1 Development ---
byte-tools 0.2.0 --- Removed Normal ---
cfg-if 1.0.0 --- Removed Normal ---
colored 1.9.3 --- 2.0.0 Normal ---
constant_time_eq 0.1.5 --- Removed Normal ---
crypto-mac 0.5.2 --- 0.8.0 Normal ---
digest 0.7.6 --- 0.9.0 Normal ---
generic-array 0.9.1 --- 0.14.4 Normal ---
getrandom 0.1.16 --- 0.2.3 Normal ---
getrandom 0.1.16 --- Removed Normal ---
itertools 0.10.0 0.10.1 0.10.1 Normal ---
libc 0.2.95 0.2.97 0.2.97 Normal ---
libc 0.2.95 0.2.97 0.2.97 Normal cfg(unix)
libc 0.2.95 0.2.97 Removed Normal cfg(unix)
rand 0.7.3 --- 0.8.4 Normal ---

// ...

Recommendation Update all dependencies and tools to the latest versions recommended for production de-
ployment. Add a gating milestone to the development process that involves reviewing all
dependencies for outdated or vulnerable versions.

Retest Results In a series of five Pull Requests (one for each library in scope, see below) the Horizen Labs
team updated all outdated dependencies to their latest compatible versions.
7https://github.com/kbknapp/cargo-outdated
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• ginger-lib: PR 112
• marlin: PR 21
• poly-commit: PR 20
• zendoo-cctp-lib: PR 21
• zendoo-mc-cryptolib: PR 45

Additionally, cargo-audit was added to the continuous integration development process. As
a result, this finding was marked as “Fixed”.
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Finding Insufficient Parameter Checks in Multi-Scalar Multiplication

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-E001741-008

Status Fixed

Category Data Validation

Component ginger-lib

Location algebra/src/msm/variable_base.rs

Impact Insufficient parameter validation is one of themost common cause of software vulnerabilities,
which can lead to undesired and unexpected behavior, or system crashes in some cases.

Description Given the group elements G1, . . . , Gn of a cyclic group and the integers a1, . . . , an between
0 and the group order, multi-scalar multiplication is known as the problem of computing the
group element a1G1 + . . .+ anGn.

The ginger-lib repository provides different naive and efficient implementations of multi-
scalar multiplication in its algebra/src/msm subdirectory. The NCC Group team observed a
few instanceswithin this directorywheremissing parameter validation could lead to undesired
and unexpected behavior.

Specifically, the functions multi_scalar_mul_affine_c() and msm_inner_c() (see the sig-
nature of the former below and note that the latter has the same signature) do not perform
any validation of their parameters.

8 pub fn multi_scalar_mul_affine_c<G: AffineCurve>(
9 bases: &[G],

10 scalars: &[<G::ScalarField as PrimeField>::BigInt],
11 c: usize
12 ) -> G::Projective
13

14 let cc = 1 << c;
15

16 let num_bits =
17 <G::ScalarField as PrimeField>::Params::MODULUS_BITS as usize;
18 let fr_one = G::ScalarField::one().into_repr();
19

20 let zero = G::zero().into_projective();
21 let window_starts: Vec<_> = (0..num_bits).step_by(c).collect();

This may result in several unexpected issues.

First, passing a value of 0 for the parameter c (the window size) to either of these functions
will result in a Rust panic. This is due to the call to step_by() on line 21 highlighted above,
which panics on a failed assertion that the step is non-zero (panicked at 'assertion fai
led: step != 0').

Second, there is no upper-bound check on this variable c. This may lead to large amounts of
memory being allocated, since both functions declare a buckets vector of size approximately
2c, as can be seen on line 107 of the msm_inner_c() function:

let mut buckets = vec![zero; (1 << c) - 1];
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An attacker may be able to impede the normal behavior of processes if they were able to
influence the value of that variable.

Third, the functions do not perform any validation on the respective lengths of the bases and
scalars parameters. More specifically, the computation still succeeds with different lengths
for the scalars and base points vectors, simply discarding the superfluous elements. This may
lead to potential message malleability issues. For example, consider a legitimate multi-scalar
multiplication with scalars a1, a2 and group elements G1, G2 resulting in the group element
G. An attacker submitting an inflated scalar list consisting of a1, a2, a3 (but with the same
group elementsG1, G2) will obtain the same final group elementG as the original list above.

Recommendation Consider performing stricter parameter validation in allmulti-scalarmultiplication-related func-
tions. The examples listed above should not be considered exhaustive and other instances
where insufficient parameter validation leads to errors might exist within the repository.

Additionally, since the function msm_inner_c() seems to be exclusively called by its wrap-
per msm_inner() which computes an optimal window size, consider changing its visibility8
(currently pub) so that it cannot be called from outside of the crate.

Retest Results Pull Request 112 introduced sanitation checks in the form of assertions on the variable c and
on the lengths of the scalars and bases arrays, for the two functions multi_scalar_mul_af
fine_c() and msm_inner_c(), as follows:

// Sanity checks
assert!(c != 0, "Invalid window size value: 0");
assert!(c <= 25, "Invalid window size value: {}. It must be smaller than 25",

c);
assert!(

scalars.len() <= bases.len(),
"Invalid MSM length. Scalars len: {}, Bases len: {}", scalars.len(),

bases.len()
);

Since the fact that scalars.len()may be shorter than bases.len() in some concrete cases,
a disclaimer was added, calling out the malleability issue specifically:

/// WARNING: This function allows scalars and bases to have different length
/// (as long as scalars.len() <= bases.len()): internally, bases are trimmed
/// to have the same length of the scalars; this may lead to potential messag

e
/// malleability issue: e.g. MSM([s1, s2], [b1, b2]) == MSM([s1, s2], [b1, b2

, b3]),
/// so use this function carefully.

This is in line with the recommendations provided above. As such, this finding has been
marked as “Fixed”.

8https://doc.rust-lang.org/reference/visibility-and-privacy.html
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Finding Insufficient Parameter Validation in Merkle Tree Implementation

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-E001741-011

Status Fixed

Category Data Validation

Component ginger-lib

Location primitives/src/merkle_tree/mod.rs

Impact Insufficient parameter validation is one of themost common cause of software vulnerabilities,
which can lead to undesired and unexpected behavior, or system crashes in some cases.

Description The primitives/src/merkle_tree repository implements different variants ofMerkle trees,
from naive to optimized versions, as well as structures to deal with paths within the trees. The
NCC Group team noticed a few instances where insufficient parameter validation could lead
to unexpected behavior or Rust panics.

• The creation of Merkle trees with a single leaf element leads to panics in some cases.
Specifically, in the generic implementation MerkleHashTree in primitives/src/merkle_
tree/mod.rs, the function new()makes use of the next_power_of_two(), which returns
one when presented with an array of size one. Later in this function, there is an array access
at an index larger than the number of elements in the array tree, which triggers a panic.
Selected portions are highlighted in the code excerpt below.

pub fn new<L: ToBytes>(
parameters: Rc<<P::H as FixedLengthCRH>::Parameters>,
leaves: &[L],

) -> Result<Self, Error> {
let new_time = start_timer!(|| "MerkleTree::New");

let last_level_size = leaves.len().next_power_of_two();
let tree_size = 2 * last_level_size - 1;
let tree_height = tree_height(tree_size);
// ...

// Compute and store the hash values for each leaf.
let last_level_index = level_indices.pop().unwrap();
let mut buffer = vec![0u8; P::H::INPUT_SIZE_BITS/8];
for (i, leaf) in leaves.iter().enumerate() {

tree[last_level_index + i] = hash_leaf::<P::H, _>(&parameters, leaf,
&mut buffer)?;

}

Note that similar behavior related to panics at out-of-bound array accesses is also present
in the append() function in the naive Merkle tree implementation in primitives/src/me
rkle_tree/field_based_mht/naive/mod.rs.

• The function get_merkle_path() in primitives/src/merkle_tree/field_based_mht/
optimized/mod.rs does not check the validity of its leaf_index input parameter. Given
an out-of-bound value, this will eventually trigger a panic on the array access highlighted
in the code excerpt below. This is because the start_position variable is initialized with
a value equal to leaf_index (possibly minus a small integer depending on the arity of the
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tree).

fn get_merkle_path(&self, leaf_index: usize) -> Option<Self::MerklePath> {

// ...

// We must save the siblings of the actual node
for i in start_position..end_position {

if i != node_index {
siblings.push(self.array_nodes[i])

}
}

• Currently, no bounds check is performed on the length of the data present in the leaves. The
validity of the leaves data seems to rely on the assumption that the underlying instantiations
of the macro array_bytes! (in algebra/src/bytes.rs which implement the trait ToBy
tes) are currently only declared up to 32 bytes. As such, only data up to 32 bytes can
be added to a leaf, although instantiations of the array_bytes! macro with larger values
would increase this upper bound. This implicit boundmight lead to issueswhen relied upon,
if the underlying algebra repository were to be modified.

Recommendation Consider performing stricter parameter validation in all Merkle tree-related functions. The
examples listed above should not be considered exhaustive and other instances where insuf-
ficient parameter validation leads to errors might exist within the merkle_tree repository.

Retest Results Pull Request 112, introduced a number of additional validation checks to the different Merkle
tree-related functions. These changes now address the first two points discussed in this
finding (the third item was not deemed to be a significant issue by the Horizen Labs team).
Additionally, extensive unit tests covering edge cases were added as part of the Pull Request.
As such, this finding has been marked as “Fixed”.
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Finding Potential DoS via Memory Exhaustion in Merkle Tree Instantiation

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-E001741-012

Status Risk Accepted

Category Denial of Service

Component ginger-lib

Location primitives/src/merkle_tree/mod.rs

Impact An adversary may trigger the allocation of large amounts of memory, eventually impeding the
normal behavior of processes.

Description The creation of a new Merkle tree may be a potential memory exhaustion vector. Upon
creation of a new tree from a list of leaves, the entire tree (including all intermediate nodes)
is created and stored in memory, as can be seen in the new() function, provided below for
reference.

111 pub fn new<L: ToBytes>(
112 parameters: Rc<<P::H as FixedLengthCRH>::Parameters>,
113 leaves: &[L],
114 ) -> Result<Self, Error> {
115 let new_time = start_timer!(|| "MerkleTree::New");
116

117 let last_level_size = leaves.len().next_power_of_two();
118 let tree_size = 2 * last_level_size - 1;
119 let tree_height = tree_height(tree_size);
120 assert!(tree_height as u8 <= Self::HEIGHT);
121

122 // Initialize the merkle tree.
123 let mut tree = Vec::with_capacity(tree_size);
124 let empty_hash = hash_empty::<P::H>(&parameters)?;
125 for _ in 0..tree_size {
126 tree.push(empty_hash.clone());
127 }
128

129 // ...

As an example, consider the creation of a new tree with a list of 2n+1 leaves. This will result in
the creation of a total of 2n+2 − 1 nodes (see lines 117-118 above). For each of these nodes,
the default empty hash is copied. Assuming a concrete instantiation of hash functions used
with this Merkle tree in which hashes are 64 bytes long, this would result in a total size of 2n+8,
namely a factor of around 28 increase compared to the initial number of leaves.

Depending on the use case and whether this naive tree implementation is publicly exposed,
attackers may have the ability to consume large amounts of memory on a target platform.

Note that this applies to some extent to the Optimized Merkle tree variant (FieldBasedOpti
mizedMHT) defined in primitives/src/merkle_tree/field_based_mht/optimized/mod.
rs, where the init() function populates all the nodes with zero() values upon creation.

// Initialize to zero all tree nodes
let mut array_nodes = Vec::with_capacity(tree_size);
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for _i in 0..tree_size {
array_nodes.push(<T::Data as Field>::zero());

}

Recommendation Consider updating the Merkle tree implementations to use less memory upon creation, for
example by removing the copy of the empty hash to all the nodes in the naive case. Alter-
natively, ensure only small trees may be created by imposing limits on the number of leaves
(which directly correlates to the resulting tree size).

Retest Results With Pull Request 112, the following disclaimer was added to the different Merkle tree im-
plementations (namely, merkle_tree/field_based_mht/naive/mod.rs, merkle_tree/fi
eld_based_mht/optimized/mod.rs and merkle_tree/mod.rs) to warn library users about
potentially large memory usage:

/// WARNING. This Merkle Tree implementation:
/// 1) Stores all the nodes in memory, so please retain from using it if
/// the available amount of memory is limited compared to the number
/// of leaves to be stored;
/// 2) Leaves and nodes are hashed without using any kind of domain separation:
/// while this is ok for use cases where the Merkle Trees have always the
/// same height, it's not for all the others.

Since a denial of service attack via memory exhaustion cannot be completely ruled out (specif-
ically for other users of the ginger-lib library), this finding was marked as “Risk Accepted”.
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Finding Incoherence in Poseidon Round Number Parameters

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-E001741-013

Status False Positive

Category Cryptography

Component ginger-lib

Location • primitives/src/crh/poseidon/parameters/tweedle_dee.rs
• primitives/src/crh/poseidon/parameters/tweedle_dum.rs

Impact Non-conformance to the cryptographic literature may limit interoperability, or in the worst
case, decrease the claimed security guarantee of the primitive.

Description The Poseidon hash function9 is based on a sponge construction, in which the internal permu-
tation is composed of successive calls to the round function.

Each round function of the Poseidon permutation consists of three layers, 1) AddRoundCon
stants, 2) SubWords and 3) MixLayer. While the first and third functions are the same in
each round, the number of S-boxes in the second phase differs; the first and last Rf rounds
have full S-box layers, while the RP intermediate rounds only have partial S-box layers. The
variables depend on the desired security, rate and capacity of the instantiation of Poseidon.

There exists a small discrepancy between the reference paper, the script to generate custom
parameters for specific curves (developed by the authors of the Poseidon proposal), and
the concrete implementation of the Poseidon hash function using the Tweedle curves in the
Horizen codebase. Specifically, the reference paper, in Table 2 on page 8, specifies that the
variable RP (i.e., the number of partial S-box rounds) is 57.

In contrast, the implementation chooses the value 56, see for example in primitives/src/
crh/poseidon/parameters/tweedle_dee.rs:

impl PoseidonParameters for TweedleFrPoseidonParameters {

const T: usize = 3; // Size of the internal state (in field elements)
const R_F: i32 = 4; // Half number of full rounds (the R_f in the paper)
const R_P: i32 = 56; // Number of partial rounds.

The NCC Group team noted that this latter value was actually consistent with the output of the
script used to generate parameters for concrete Poseidon instantiations,10 see the transcript
below.

$ print(calc_final_numbers_fixed(Crypto.Util.number.getPrime(255), 3, 5, 128,
True))

// [8, 56, 80, 20400]

The project team confirmed that this value was still larger than the minimum number of
rounds necessary to protect against the different attacks listed in Section 5 of the reference
paper, even when accounting for the added arbitrary security margin discussed in Section 5.4.
As such, this discrepancy does not seem to pose any concrete security risk with regards to the
9https://eprint.iacr.org/2019/458.pdf

10https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/calc_round_numbers.py
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security of the hash function itself. However, it has the potential to introduce interoperability
issues.

Recommendation Consider clearly documenting the choice for the variableRP , and where this value originates
from, in order to prevent any possible discrepancy between this implementation and concur-
rent instantiations of Poseidon with the Tweedle curves.

Retest Results The same inconsistency was observed by the Horizen Labs team. They later confirmed with
the authors of the Poseidon hash function that the quantity for the number of partial rounds
was adequate. This is detailed in the Client Response below. As such, this finding has been
marked as “False Positive”

Client Response The customer provided the following response:

“After having reached out to the Poseidon authors about the inconsistency between
the script and the paper, it was clarified that the value of the script is correct.”
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Finding RNG Implementation Non-Compliant with Rust Documentation

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-E001741-014

Status Fixed

Category Cryptography

Component poly-commit

Location poly-commit/src/rng.rs

Impact Failure to follow requirements imposed by the underlying Rust traits may result in the gener-
ation of poor random numbers due to API misuse and potential panics.

Description The file poly-commit/src/rng.rs provides custom traits and implementations of a pseudo-
randomnumber generator, (FiatShamirRng and FiatShamirChaChaRng, respectively), which
are used to derive pseudo-random challenges deterministically for the Darlin proof system.

This implementation fails to satisfy some of the requirements imposed by the underlying Rust
RNG traits, such as SeedableRng.11 More specifically, the Rust documentation for the from_s
eed() required method imposes some constraints on the quality of the seed it is instantiated
with. Additionally, it also mandates that implementations of this function should never panic.
These two points are highlighted in the excerpt of the Rust documentation provided below.

/// Create a new PRNG using the given seed.
///
/// PRNG implementations are allowed to assume that bits in the seed are
/// well distributed. That means usually that the number of one and zero
/// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
/// Note that many non-cryptographic PRNGs will show poor quality output
/// if this is not adhered to. If you wish to seed from simple numbers, use
/// `seed_from_u64` instead.
///
/// ...
///
/// PRNG implementations should make sure `from_seed` never panics. In the
/// case that some special values (like an all zero seed) are not viable
/// seeds it is preferable to map these to alternative constant value(s),
/// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
/// seed"). This is assuming only a small number of values must be rejected.
fn from_seed(seed: Self::Seed) -> Self;

The custom Fiat-Shamir RNG implementation fails to comply to these two statements. For
example, the new() function instantiates an RNG using an all-zero seed. Additionally, the
from_seed() function may panic on malformed input.

fn new() -> Self {
let seed = [0u8; 32];
Self::from_seed(&to_bytes![seed].unwrap())

}

// ...

11https://docs.rs/rand/0.6.0/rand/trait.SeedableRng.html
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/// Create a new `Self` by initializing with a fresh seed.
#[inline]
fn from_seed<'a, T: 'a + ToBytes>(seed: &'a T) -> Self {

let mut bytes = Vec::new();
seed.write(&mut bytes).expect("failed to convert to bytes");
let seed = D::digest(&bytes);
let r_seed: [u8; 32] =

FromBytes::read(seed.as_ref()).expect("failed to get [u32; 8]");
let r = ChaChaRng::from_seed(r_seed);
Self {

r,
seed,
digest: PhantomData,

}
}

Recommendation The current code base does not seem to misuse the new() function and directly use the RNG
seeded with all-zero bytes (without reseeding immediately after). However, potential users of
this library might fail to follow the same pattern. Hence, assess whether exposing a new()
function initializing the RNG with an all-zero seed is necessary, and if not, consider removing
it.

Additionally, consider updating the from_seed() implementation to avoid the potential for
panics.

Retest Results In Pull Request 112, the new() function was removed and the from_seed() function was
updated such that it cannot panic. This is in line with the recommendations provided above
and this finding has been marked as “Fixed” as a result.
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Finding Ambiguous Fiat-Shamir Oracle Instantiation and Input Serialization

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-E001741-018

Status Fixed

Category Cryptography

Component Systemic

Location • ginger-lib/proof-systems/src/darlin/accumulators/dlog.rs
• marlin/src/lib.rs
• poly-commit/src/ipa_pc/mod.rs

Impact Oracle input values may be reused with different parameter configurations, leading to the
same output and contradicting the random oracle model on which the security proofs are
built.

Description The Fiat-Shamir Random Number Generator (RNG), defined in the file poly-commit/src/rn
g.rs, is used to derive pseudo-random challenges deterministically, which underly the non-
interactive zero-knowledge proof system implemented in Darlin. The general principle of
this construction goes as follows: it starts by initializing the RNG from a seed (see the first
code excerpt below, from marlin/src/lib.rs), after which it absorbs an arbitrary number
of inputs, and finally, a random element is obtained by calling the squeeze_128_bits_chal
lenge() function (see the second code listing below, excerpted from poly-commit/src/ip
a_pc/mod.rs).

let mut fs_rng = PC::RandomOracle::from_seed(
&to_bytes![&Self::PROTOCOL_NAME, pc_pk.get_hash(), &index_pk.index_vk,

&public_input].unwrap(),
);

// Absorb evaluations
fs_rng.absorb(&values.iter().flat_map(|val|

to_bytes!(val).unwrap()).collect::<Vec<_>>());

// Sample new batching challenge
let random_scalar: G::ScalarField = fs_rng.squeeze_128_bits_challenge();

The NCC Group team noted that the length of the different arrays being absorbed are not
injected into the Fiat-Shamir RNG (either via the from_seed() or the absorb() function) and
there are no extra separators that differentiate the various kinds of elements, whichmay result
in different inputs producing the same hash output.

Conceptually, given the byte array b = [1, 2, 3, 4], the calls absorb(b[0], &b[1..4]),
absorb(&b[0..2], &b[2..4]) and absorb(&[1, 2, 3, 4]) are all equivalent. Thus, the
overall input to the hash function is ambiguous and different instances of the protocol may
use the oracle with the same input string. This implies that the security proofs described in the
different reference papers for each protocol may no longer cover the current implementation.

This remark applies both to the instantiation of the oracle using the from_seed() function as
well as the absorption using the absorb() function.

Note however that the exploitability of this finding is somewhat mitigated by the fact that

37 | Zendoo Proof Verifier Cryptography Review Zen Blockchain Foundation / NCC Group



the absorb function hashes the concatenation of its old seed with its inputs (i.e., seed =

H(seed∥inputs)) and then returns a new RNG instance from the newly computed seed. Nev-
ertheless, the importance of the Fiat-Shamir construction in the different protocols as well as
the ability for attackers to supply inputs to these instances may still result in vulnerabilities.

Recommendation Consider prepending the respective lengths of the array inputs to the oracle calls.

Retest Results Pull Request 27 introduced changes to the Fiat-Shamir RNG in which the length of the input
is prepended to the inputs themselves prior to hashing, which followed the recommended
approach. As a result, this finding was marked as “Fixed”.
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Finding Discrepancy with Reference Paper on Random Challenge Domain

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-E001741-019

Status False Positive

Category Cryptography

Component marlin

Location src/ahp/verifier.rs

Impact Implementation discrepancieswith the academic referencesmay invalidate the security proofs
and breach security guarantees.

Description This finding describes two distinct discrepancies between the current implementation and
the two12, 13 reference papers regarding the sampling domain of some random challenges.

1. The Darlin reference paper imposes specific domain constraints when sampling random
elements, such as on page 6, where the random challenge z is sampled from F \H :

z
$← F \H (…) (The oracle aborts, if z ∈ H .)

and on page 9, where α is also sampled from the same set;

α← $F \H .

However, in the current implementation, there does not seem to be any domain restriction
on the random numbers. Namely, all challenges are obtained from calls to the squeeze_128
_bits_challenge() function defined in poly-commit/src/rng.rs.

2. The Marlin reference paper refers to three random elements, ηA, ηB , ηC , which are used
to bundle three sumcheck into one:

Next, [Verifier] samples random elements α, ηA, ηB, ηC ∈ F and sends them to
[Prover]. The element α is used to reduce lincheck problems to sumcheck, while
the elements ηA, ηB , ηC are used to bundle the three sumcheck problems into one.

However the current implementation sets the vector (ηA, ηB, ηC) to (1, η, η2), as can be seen
in the code excerpt below, from src/ahp/verifier.rs.

let eta: F = fs_rng.squeeze_128_bits_challenge();
let eta_a = F::one();
let eta_b = eta;
let eta_c = eta_b * &eta;

The NCC Group team noted that this choice is actually consistent with the Darlin paper, which
states that

(We notice that using the powers of η slightly differs from choosing arbitrary random
scalars ηA, ηB , ηC as in [CHM+20], but this does not affect security.)

However, the claim that security is not affected is not further substantiated in the paper.
12Darlin: Recursive Proofs using Marlin https://eprint.iacr.org/2021/930
13Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS https://eprint.iacr.org/2019/1047
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Recommendation Consider updating the random challenge generation procedures such that challenges are
sampled from the same, restricted set as in the paper. Additionally, consider providing an
argument as to why security is not affected by the reduced randomness used in the Marlin
reduction.

Retest Results The Horizen Labs team pointed out that the domain constraints were indeed correctly en-
forced when necessary during the sampling of random elements. Confusion arose due to
discrepancies between the reference paper and the implementation in the naming of some
variables, see the Client Response field below.

Additionally, the team indicated that the final version of the reference paper would include a
rigorous security analysis regarding replacing multiple random challenges with powers of a
single one, which is a well-known technique currently widely used in “second-wave” SNARKs.
As a result, this finding was marked as “False Positive”.

Client Response The customer provided the following response:

“In Marlin we already enforce, where necessary, the challenges to be sampled from
the correct FFT subdomain. In some cases, namings from the paper are different
from the ones inside the code, thus generating suchmisunderstanding. Regarding
replacing multiple random challenges with powers of a single one, we followed a
technique also applied in “second wave” SNARKS: for example, Sonic, Halo, or Halo
Infinite and the proofs therein. In any case, a rigorous security analysis will be given
in the full version of the paper.”
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Finding Undefined Behavior in Foreign Function Interface

Risk Low Impact: Undetermined, Exploitability: Low

Identifier NCC-E001741-021

Status Fixed

Category Error Reporting

Component zendoo-mc-cryptolib

Location Throughout lib.rs

Impact Undefined behavior may be triggered in foreign code.

Description The zendoo-mc-cryptolib repository exposes a Foreign Function Interface to ginger-lib
which can be invoked by foreign languages supporting the C ABI. Many of the functions ex-
posed through this interface will panic! if they receive unexpected inputs (e.g. null pointers).

Regarding this situation, Chapter 11 of the Rustonomicon14 reads,

It’s important to be mindful of panic!s when working with FFI. A panic! across
an FFI boundary is undefined behavior. If you’re writing code that may panic, you
should run it in a closure with catch_unwind.

This is, however, not quite a perfect solution, as the documentation for catch_unwind ex-
plains (emphasis in original):

Note that this function may not catch all panics in Rust. A panic in Rust is not
always implemented via unwinding, but can be implemented by aborting the pro-
cess as well. This function only catches unwinding panics, not those that abort the
process.15

The impact of this issue is impossible to determine with certainty, since undefined behavior
is by definition unpredictable; however, it should still be taken seriously. Glancing at the
historical record of undefined-behavior-related bugs, it may be observed that assumptions
about what undefined behavior might (or might not) lead to are almost always mistaken (and
given the degree of transformation performed by modern optimizing compilers, this is truer
now than ever). This exposes calling code to a level of risk that is uncharacteristic for a Rust
library and inappropriate for sensitive applications.

Recommendation Ensure that unwinding panics in the FFI are handled with catch_unwind (or removed), and
functions which would otherwise panic are rewritten to instead return caller-legible error
codes. Ensure that code paths which could trigger aborting panics are avoided altogether.

Retest Results As part of Pull Request 48, the Horizen Labs team made a conscious effort to fix instances of
crash-inducing constructions, for example by convertingmany unwrap() calls tomore explicit
error handling. Additionally, the team added the following directive to the Cargo.toml file:

[profile.release]
panic = 'abort'

The outcome of that change is that program executions will immediately abort upon panics,
14See Rustonomicon Chapter 11, subheading “FFI and panics”
15See the Rust docs for std::panic::catch_unwind
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and as such panics will not cross FFI boundaries. As a result, this findingwasmarked as “Fixed”.

The NCC Group team noted that this change may have unintended consequences, since
processes dying abruptly do not get a chance to clean up anything. Specifically, destructors
of locally allocated objects may not get called, temporary files may not be deleted and data
may be lost (for example if some process had written data to a file but the data was still held
in a buffer in the process address space because the process did not call fflush()).
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Finding Non Constant-Time Modular Exponentiation

Risk Informational Impact: Low, Exploitability: Low

Identifier NCC-E001741-003

Status Risk Accepted

Category Cryptography

Component ginger-lib

Location algebra/src/fields/mod.rs

Impact An adversary may be able to infer the value of the exponent through side-channel leaks. In
case the exponent is secret, this may constitute an important confidentiality breach.

Description Modular exponentiation of field elements is performed by the pow() function located in al
gebra/src/fields/mod.rs, and provided below for reference. This function implements a
simple binary exponentiation algorithm,16 which branches conditionally based on the current
bit value of the exponent being iterated over, as can be seen in the highlighted code portion
below.

fn pow<S: AsRef<[u64]>>(&self, exp: S) -> Self {
let mut res = Self::one();

let mut found_one = false;

for i in BitIterator::new(exp) {
if !found_one {

if i {
found_one = true;

} else {
continue;

}
}

res.square_in_place();

if i {
res *= self;

}
}
res

}

This conditional branch will incur different computational load based on the exponent value.
Under certain conditions, this timing leakmay be observed by an attacker and used to recover
the exponent.

Recommendation Consider writing a constant-time modular exponentiation function, namely, a function that
performs the same amount of computation regardless of its input.

BearSSL17 and the GitHub Cryptocoding18 repository have valuable documentation about
side-channel attacks and how to avoid them.
16https://en.wikipedia.org/wiki/Modular_exponentiation#Right-to-left_binary_method
17https://www.bearssl.org/constanttime.html
18https://github.com/veorq/cryptocoding
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Retest Results With Pull Request 112, the following disclaimer was added to the different mul_assign(),
mul_bits() and pow() functions:

/// WARNING: This implementation doesn't take costant time with respect
/// to the exponent, and therefore is susceptible to side-channel attacks.
/// Be sure to use it in applications where timing (or similar) attacks
/// are not possible.
/// TODO: Add a side-channel secure variant.

This finding was marked as “Risk Accepted” as a result.
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Finding Missing Memory Zeroization

Risk Informational Impact: Low, Exploitability: Low

Identifier NCC-E001741-007

Status Risk Accepted

Category Data Exposure

Component Systemic

Location Systemic

Impact If regions of memory become accessible to an attacker, perhaps via a core dump, attached
debugger or disk swapping, the attacker may be able to extract non-cleared secret values.

Description Typically, all of a function’s local stack variables and heap allocations remain in process mem-
ory after the function goes out of scope, unless they are overwritten by new data. This stale
data is vulnerable to disclosure through means such as core dumps, an attached debugger
and disk swapping. As a result, sensitive data should be cleared from memory once it goes
out of scope.

The different repositories in scope do not exhibit particular care for memory zeroization; in
no instance were they observed to erase sensitive data. For example, no steps are taken
to ensure the random mask polynomials (used to achieve zero-knowledge by masking the
polynomials w_poly, z_a_poly and z_b_poly, and previously discussed in another context
in finding NCC-E001741-017 on page 11), are being correctly zeroized .

As another example, although outside the scope of the review, theNCCGroup teamnoted that
the ginger-lib library was not performing memory zeroization for secret keys, for example
in the Schnorr-based signature SecretKey structure used in primitives/src/signature/
schnorr/field_based_schnorr.rs.

Since the results of memory-clearing functions are not used for functional purposes else-
where, these functions can become the victim of compiler optimizations and be eliminated.
There are a variety of “tricks”19 to attempt to avoid compiler optimizations and ensure that a
clearing routine is performed reliably. The Rust community has largely adopted the approach
provided by the Zeroize20 crate.

Recommendation Utilize the Zeroize crate to derive the zeroize-on-drop trait for all sensitive values.

Ensure the same approach is taken to attach the zeroize-on-drop trait to all secret material
found in the Rust bindings.

Retest Results The Horizen Labs team indicated that this finding would be addressed at a later stage. In the
meantime, an issue was opened on Github to track the status of memory zeroization. As a
result, this finding was marked as “Risk Accepted”.

19https://www.usenix.org/sites/default/files/conference/protected-files/usenixsecurity17_slides_zhaomo_yang.pdf
20https://docs.rs/zeroize/1.1.1/zeroize/
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Finding Potential to Randomly Generate Trivial Random Challenges

Risk Informational Impact: Medium, Exploitability: None

Identifier NCC-E001741-020

Status Fixed

Category Cryptography

Component Systemic

Location • poly-commit/src/ipa_pc/mod.rs
• poly-commit/src/lib.rs
• marlin/src/ahp/verifier.rs
• ginger-lib/proof-systems/src/darlin/accumulators/dlog.rs

Impact Zero field elements may be generated as random challenges, potentially resulting in unex-
pected behavior or Rust panics.

Description While both Darlin21 and Marlin22 make extensive use of random field elements as challenges,
the reference academic papers do not impose restrictions about the fact that they should be
non-zero.

However, the NCC Group team noted that the generation of the zero field element by the
Random Number Generator (RNG) would result in unexpected behavior and panics.

For example, in the function open_check_polys() in src/ipa_pc/mod.rs, the inverse()
function call is performed on the freshly-generated challenge, after which a call to unwrap()
will panic in case the round_challenge is zero (since zero does not admit an inverse in a
finite field). This also happens in the functions open_individual_opening_challenges()
and succinct_check() of the same file.

round_challenge = fs_rng.squeeze_128_bits_challenge();

let round_challenge_inv = round_challenge.inverse().unwrap();

Note that the function squeeze_128_bits_challenge() in poly-commit/src/rng.rs does
not check that the resulting element is non-zero.

/// Squeeze a new random field element
fn squeeze_128_bits_challenge<F: Field>(&mut self) -> F {

u128::rand(self).into()
}

Similarly, in the function succinct_batch_check_individual_opening_challenges() in
src/ipa_pc/mod.rs, the generation of zero for the lambda parameter would lead to cur_ch
allenge being zero. Additionally, if the random challenge pointwas equal to any of the x_i’s
in the code excerpt below, a zero-division would be triggered on the penultimate highlighted
line:

// lambda
let lambda: G::ScalarField = fs_rng.squeeze_128_bits_challenge();
let mut cur_challenge = G::ScalarField::one();

21Darlin: Recursive Proofs using Marlin https://eprint.iacr.org/2021/930
22Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS https://eprint.iacr.org/2019/1047
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// Fresh random challenge x
fs_rng.absorb(&to_bytes![batch_commitment].unwrap());
let point: G::ScalarField = fs_rng.squeeze_128_bits_challenge();

let mut computed_batch_v = G::ScalarField::zero();

for ((&v_i, y_i), x_i) in v_values.iter().zip(y_values).zip(points) {

computed_batch_v = computed_batch_v + &(cur_challenge * &((v_i - &y_i)
/ &(point - x_i)));

cur_challenge = cur_challenge * &lambda;
}

Note that other instances exist throughout the different code bases, where the generation of
the zero field element could result in the zero-knowledge property of some protocols to not
be fulfilled.

However, in the absence of other implementation issues, and provided that the underlying
RNG is secure, the probability of generating the zero field element at random is negligible.

Recommendation Consider going through the code base to identify areas where the generation of the zero
element would result in insecure computations or panics. Pay particular attention to areas
where possible adversarial input is used together with randomly generated elements (for
example in potential zero-division cases, as described above), since adversaries may be able
to trigger unexpected edge cases.

Additionally, consider updating the reference papers and implementations to sample the
random challenges from F∗ (and not from F) where appropriate.

Retest Results With Pull Request 20, the squeeze_128_bits_challenge() function was updated to prevent
sampling zero, as follows:

self.gen_range(1u128..u128::MAX).into()

This addresses the issue outlined above and this finding has been marked as “Fixed” as a
result. Note however that the range defined above excludes the upper bound. In order to
define an inclusive range, the following line could be used:

self.gen_range(1u128..=u128::MAX).into()
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Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.
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Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.
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Appendix B: Engagement Notes
This informational section highlights a number of observations that do not warrant security-related findings on their
own.

ginger-lib
• The following Montgomery reduction routine in algebra/src/fields/arithmetic.rs is repeated at the end of
three macro implementations, namely in mul_assign(), into_repr() and square_in_place().

// Montgomery reduction
let mut _carry2 = 0;
for i in 0..$limbs {

let k = r[i].wrapping_mul(P::INV);
let mut carry = 0;
fa::mac_with_carry(r[i], k, P::MODULUS.0[0], &mut carry);
for j in 1..$limbs {

r[j + i] = fa::mac_with_carry(r[j + i], k, P::MODULUS.0[j], &mut carry);
}
r[$limbs + i] = fa::adc(r[$limbs + i], _carry2, &mut carry);
_carry2 = carry;

}
(self.0).0.copy_from_slice(&r[$limbs..]);
self.reduce();

Consider moving this code into its own function.

• The legendre() function in algebra/src/fields/macros.rs could be slightly optimized to not perform the pow
if self was zero.

fn legendre(&self) -> LegendreSymbol {
use crate::fields::LegendreSymbol::*;

// s = self^((MODULUS - 1) // 2)
let s = self.pow(P::MODULUS_MINUS_ONE_DIV_TWO);
if s.is_zero() {

Zero
} else if s.is_one() {

QuadraticResidue
} else {

QuadraticNonResidue
}

}

• Some comments in the Tweedle Curve parameters source files (algebra/src/curves/tweedle/dee.rs and alge
bra/src/curves/tweedle/dum.rs) are slightly misleading. Specifically, the comments describe the values of some
constants in their “normal” forms, while their actual values are in Montgomery representation.

/// COEFF_B = 5
const COEFF_B: Fq = field_new!(

Fq,
BigInteger256([

0x30aef343ffffffed,
0xbcb60a132dafff0b,
0xffffffffffffffff,
0x3fffffffffffffff

])
);
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/// COFACTOR = 1
const COFACTOR: &'static [u64] = &[0x1];

/// COFACTOR_INV = 1
const COFACTOR_INV: Fr = field_new!(

Fr,
BigInteger256([

0x1c3ed159fffffffd,
0xf5601c89bb41f2d3,
0xffffffffffffffff,
0x3fffffffffffffff

])
);

• The declaration of the buckets vector for multi-scalar multiplication in the file algebra/src/msm/variable_base
.rs initializes the size of buckets to bases.len()/cc * 2. Is this size optimal?

let mut buckets = vec![Vec::with_capacity(bases.len()/cc * 2); cc];

• The function reindex_by_subdomain() in algebra/src/fft/domain/mod.rs does not seem to be used any-
where. It presents a few opportunities for panics, like in the division highlighted below. Consider performing stricter
parameter validation and removing all unused functions.

/// Given an index which assumes the first elements of this domain are the elements of
/// another (sub)domain with size size_s, this returns the actual index into this domain.
fn reindex_by_subdomain(&self, other_size: usize, index: usize) -> usize {

assert!(self.size() >= other_size);
// Let this subgroup be G, and the subgroup we're re-indexing by be S.
// Since its a subgroup, the 0th element of S is at index 0 in G, the first element of S is at
// index |G|/|S|, the second at 2*|G|/|S|, etc.
// Thus for an index i that corresponds to S, the index in G is i*|G|/|S|
let period = self.size() / other_size;
if index < other_size {

index * period
} else {

// ...
}

• Some functions in algebra/src/fft/polynomial/dense.rs seem to have copy-pasted comments that do not
apply, such as in the mul_by_vanishing_poly() function where a comment describes a division operation.

/// Multiply `self` by the vanishing polynomial for the domain `domain`.
/// Returns the quotient and remainder of the division.
pub fn mul_by_vanishing_poly(&self, domain_size: usize) -> DensePolynomial<F> {

• There are outdated comments in algebra/src/fft/polynomial/sparse.rs. Since these functionalities are now
implemented, they should probably be deleted.

// unimplemented!("current implementation does not produce evals in correct order")

• In primitives/src/merkle_tree/mod.rs, the highlighted code block below seems superfluous, since an error is
triggered a few lines above if the path length is not equal to P::HEIGHT.
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if self.path.len() != P::HEIGHT as usize {
return Err(MerkleTreeError::IncorrectPathLength(self.path.len(), P::HEIGHT as usize))?

}
// Check that the given leaf matches the leaf in the membership proof.
let mut buffer = vec![0u8; P::H::INPUT_SIZE_BITS/8];

if !self.path.is_empty() {
// ...

• In primitives/src/merkle_tree/mod.rs, it is unclear why the functions hash_leaf() and hash_inner_node()
take a buffer as argument. Consider the function hash_leaf() provided below for reference. The buffer is only
used temporarily to write the content of the leaf.

/// Returns the hash of a leaf.
pub(crate) fn hash_leaf<H: FixedLengthCRH, L: ToBytes>(

parameters: &H::Parameters,
leaf: &L,
buffer: &mut [u8],

) -> Result<H::Output, Error> {
use std::io::Cursor;
let mut writer = Cursor::new(buffer);
leaf.write(&mut writer)?;

let buffer = writer.into_inner();
H::evaluate(parameters, &buffer[..])

}

In comparison, the function hash_empty() in the same file only declares a local buffer and passes it to the H::eva
luate call.

pub(crate) fn hash_empty<H: FixedLengthCRH>(
parameters: &H::Parameters,

) -> Result<H::Output, Error> {
let empty_buffer = vec![0u8; H::INPUT_SIZE_BITS / 8];
H::evaluate(parameters, &empty_buffer)

}

• The file primitives/src/crh/poseidon/parameters/tweedle_dee.rs has a number ofmisleading and outdated
comments that should be deleted.

// Number of partial rounds
const R: usize = 2; // The rate of the hash function

// ...

// For rounds 4 + 56 + 4 = 65

• In the same file, it is slightly confusing that the tweedle::Fq field is being renamed to Fr: use algebra::fields:
:tweedle::Fq as Fr;. Specifically, the Tweedle Dee and Dum Poseidon instances seem to be using the same base
field, while they’re actually only using the same notation but for different prime fields.

• In the file primitives/src/merkle_tree/field_based_mht/optimized/mod.rs, the init() function initializes
an optimized Merkle Tree. It populates some vectors of indices, but in the highlighted code it should probably be
T::MERKLE_ARITY instead of rate (though an assertion currently ensures they are the same).
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// Compute indexes
while size >= 1 {

initial_pos.push(initial_idx);
final_pos.push(final_idx);
processed_pos.push(initial_idx);
new_elem_pos.push(initial_idx);

initial_idx += size;
size /= rate;
final_idx = initial_idx + size;

}

Marlin
• In the file src/ahp/verifier.rs, the function verifier_first_round() performs a polynomial evaluation at a
random point as part of the verification procedure, and triggers a panic if the result is zero.

let alpha: F = fs_rng.squeeze_128_bits_challenge();
assert!(!domain_h.evaluate_vanishing_polynomial(alpha).is_zero());

The function verifier_second_round() in the same file performs a similar computation.

let beta: F = fs_rng.squeeze_128_bits_challenge();
assert!(!state.domain_h.evaluate_vanishing_polynomial(beta).is_zero());

Consider returning a verification error instead of triggering a panic if the polynomials evaluate to 0.

zendoo-cctp-lib
• In src/proving_system/mod.rs the serialization identifiers for Marlin and Darlin are hardcoded and repeated, for
example in serialize()

match self {
ProvingSystem::Undefined => CanonicalSerialize::serialize(&0u8, writer),
ProvingSystem::Darlin => CanonicalSerialize::serialize(&1u8, writer),
ProvingSystem::CoboundaryMarlin => CanonicalSerialize::serialize(&2u8, writer)

}

and in deserialize()

0u8 => Ok(ProvingSystem::Undefined),
1u8 => Ok(ProvingSystem::Darlin),
2u8 => Ok(ProvingSystem::CoboundaryMarlin),

among others. Consider defining and using symbolic constants for these values.

zendoo-mc-cryptolib
• There are a few commented println statements in src/macros.rs

if buffer.is_null() {
//println!("===> ERR CODE {:?}", CctpErrorCode::NullPtr);
return (false, CctpErrorCode::NullPtr)

}

• In src/type_mapping.rs, consider setting UINT_160_SIZE to 20 explicitly, since this value is constant, while MC_P
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K_SIZEmight not be.

pub const UINT_160_SIZE: usize = MC_PK_SIZE; //in bytes
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