
Privacy Sandbox Aggregation
Service and Coordinator

Google
April 2, 2024

©2023 – NCC Group

Prepared by NCC Group Security Services, Inc. for Google LLC. Portions of this document and the
templates used in its production are the property of NCC Group and cannot be copied (in full or in part)
without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the
information contained herein. Use of NCC Group’s services does not guarantee the security of a system,
or that computer intrusions will not occur.

Prepared By
Elena Bakos Lang
Giacomo Pope
Giovanni De Ferrari
Huy Nguyen
Lydia Yao
Thomas Pornin
Tyler Colgan
Viktor Gazdag

Prepared For
Google

1 Executive Summary
Synopsis
During the winter of 2022, NCC Group conducted an in-depth security review of the
Aggregation Service, part of Google’s Privacy Sandbox initiative. Google describes Privacy
Sandbox as follows:

The Privacy Sandbox initiative aims to create technologies that both protect
people’s privacy online and give companies and developers tools to build thriving
digital businesses. The Privacy Sandbox reduces cross-site and cross-app tracking
while helping to keep online content and services free for all. One of the proposed
solutions within the initiative is the Aggregation Service. The goal of this service is
to allow ad tech to generate summary reports, which include aggregated
measurement data on user’s behavior collected by other Privacy Sandbox APIs;
these APIs allow ad techs to collect aggregatable reports from clients. The
aggregation service decrypts and combines the collected data from the
aggregatable reports, adds noise, and returns a summary report. This service runs
in a trusted execution environment (TEE), which is deployed on a cloud service that
supports necessary security measures to protect this data. This approach is
designed to provide a balance between protecting user privacy and meeting the
needs of the advertising industry.

In spring 2023, NCC Group completed a retest on a series of fixes proposed by Google, and
found that they effectively addressed all findings documented in this report.

Scope
NCC Group’s evaluation included:

Web Services Assessment: Dynamic testing and code review of the final design and
deployment of the Privacy Sandbox Aggregation Service from the perspective of an
external attacker.

Architecture Design Review: Review of the final design of the Privacy Sandbox
Aggregation Service.

Cryptographic Design and Implementation Review: Comprehensive review of the
cryptography implementation for the Aggregation Service and split key features.

Holistic Attacker-Modeled Pentest: Holistic review of the final design and
implementation of the Privacy Sandbox Aggregation Service from the perspective of a
malicious ad tech firm.

Limitations
All testing materials needed for the engagement were provided prior to the start of testing.
No testing impediments were experienced during the engagement.

Key Findings
Architecture Design Review
NCC Group did not identify any flaws in the design of Privacy Sandbox Aggregation
Service. It appears to satisfy industry best practices and provide strong protections for the
confidentiality and integrity of data collected from end users. The following principles from
the service’s design documentation were broadly respected:

Uphold The Privacy Sandbox design goals for privacy protections in Attribution
Reporting. Specifically, we intend to provide appropriate infrastructure for noise addition
and aggregation, aligned with the long-term goal of differential privacy.

•

•

•

•

•

2 / 88 – Executive Summary

https://privacysandbox.com/
https://developer.chrome.com/docs/privacy-sandbox/aggregation-service/
https://developer.chrome.com/docs/privacy-sandbox/summary-reports/

Prevent inappropriate access to raw aggregatable reports or other intermediate data
through technical enforcement.

Allow ad techs to retain control over the data they’ve collected and access noisy
aggregated data without sharing their data with any third party.

Support flexible, scalable, and extensible aggregation strategies and on-demand access
to the aggregation infrastructure, so that ad techs can choose when and how often to
generate summary reports.

Provide open and transparent implementations for any infrastructure outside of the client.

Holistic Attacker-Modeled Pentest
There was no significant issue found that could allow an ad tech or any malicious party to
gain access to any complete keys or higher privileges. There are some improvements
suggested for the environment when an ad tech firm implements the demo environment by
running the Terraform scripts. These include:

Disable IMDSv1 to prevent attackers from gaining access tokens via SSRF attacks or
querying IMDS.

Update the enclave image for minimize attack surface.

Cryptography Design and Implementation Review
The overall design of the cryptography components within the Privacy Sandbox Aggregation
Service was found to be suitable for the stated goals. The cryptographic algorithms chosen
have sufficient security level and characteristics (e.g. all symmetric encryption is
authenticated).

Strategic Recommendations
Include a patching policy timeline and process to address enclave image related
vulnerabilities to prevent any vulnerabilities that would allow an attacker either to gain
access to the system and control its runtime.

Ensure that the implementation and documentation match closely. Additionally, document
the requirements for externally chosen cryptographic primitives, such as encryption keys
chosen by the external coordinator, to ensure adequate security of the overall system.

Client Response
For build, base container images and instance images (AMI, GCE Machine Images) Google
will proactively update those before every release1 to stay up-to-date with security and
vulnerability patches. In case of CRITICAL vulnerabilities in the enclave (and patches
available for those) we will provide out-of-release cycle patching with patch releases and
notify ad techs to update the version they are running to the newest patch version.

Both improvements recommended by NCC Group in the Holisitc Attacker-Modeled Pentest
were found in the beta version of the Aggregation Service, and were addressed before
General Availability.

•

•

•

•

•

•

1. https://goo.gle/ps-aggregation-service-release-lifecycle

3 / 88 – Executive Summary

https://gbr01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgoo.gle%2Fps-aggregation-service-release-lifecycle&data=05%7C01%7Cgage.polonsky%40nccgroup.com%7C6f42c9b14faa4d126d6f08dbe0b8675f%7Ca41111be486b45f68bd0ee01a62f368e%7C0%7C0%7C638350854880445591%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=xIulZLOYF%2B0L7ExUPWV%2FP6dXeE%2Bmsn1hs%2F5IZMPyBjA%3D&reserved=0

2 Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the
severity of the risk, application’s exposure and user population, technical difficulty of
exploitation, and other factors.

Title Status ID Risk

Missing Public Key Integrity Check Fixed 97Y High

EC2 Instance Metadata Service Version 1 In Use Fixed 7DQ Low

Lack of Overwrite Controls in S3 Risk Accepted 9HH Low

Lack of VM Image Hardening Fixed JPU Low

Docker Image with Scan Findings Fixed R6C Low

Container Image with Scan Findings Fixed TBC Low

Lambda Function Without Code Signing Risk Accepted A44 Info

IAM Role Assigned with Excessive Permission Risk Accepted HWM Info

Dynamo DB Alerting Not Enabled Fixed HH4 Info

4 / 88 – Table of Findings

3 Dashboard
Target Data Engagement Data
Name Privacy Sandbox

Aggregation Service
Type Web services, host review,

architecture review,
cryptography &
implementation review

Type Web service assessment,
architecture review, host
review, cryptography
review

Method Code-Assisted

Platforms Java, AWS Dates 2022-12-05 to 2023-01-23

Environment Test Consultants 7

Level of Effort 82 person-days

Targets
Privacy Sandbox Aggregation Service Release version v1.0.1

Beta version v0.8.0

Privacy Sandbox Coordinator Release version 1.1.0

Beta version 0.51.11

Finding Breakdown
Critical issues 0

High issues 1

Medium issues 0

Low issues 5

Informational issues 3

Total issues 9

Category Breakdown
Access Controls 2

Auditing and Logging 1

Configuration 4

Cryptography 1

Data Validation 1

5 / 88 – Dashboard

Component Breakdown
API 1

Aggregatable Report Accounting Service 1

Architecture Design Review 1

Holistic Attacker Modeled Pentest 5

Secure Control Plane 1

 Critical High Medium Low Informational

6 / 88 – Dashboard

4 Architecture Review Methodology
The following document describes the methodology adopted by NCC Group to understand
the Privacy Sandbox Aggregation Service architecture and design choices.

Google provided a number of documents covering design, specifications, security, and
deployment scenarios for Privacy Sandbox Aggregation Service, which were reviewed by
NCC Group.

Additionally, where possible, interviews were held with Google personnel in order to
understand Privacy Sandbox Aggregation Service functionality, components, assets, and
security controls.
During the aforementioned calls, questions about diagrams were raised and the expected
outcomes and corner-cases discussed.
To support the question and answer process, a questionnaire was shared with Google in
order to answer to a set of specific questions related to Privacy Sandbox Aggregation
Service components.

After completing the initial interview and discovery phase, the system’s security model was
analyzed to review security assumptions and identify any gaps between them and those
actually provided by the system. This allowed NCC Group to uncover possible weaknesses
in the existing design as a result of misunderstood assumptions; missing security guarantees
in the underlying networks, applications, or operating systems; and insufficient
specifications.
Potential weaknesses that could appear due to changing assumptions or deployment
scenarios were identified and documented.

Additionally, NCC Group reported a set of recommendations that could increase the security
of the system, such as compensating controls that can provide defense in depth.

The complete analysis, observations and findings were provided in this report, supported by
the creation of an architecture diagram for Privacy Sandbox Aggregation Service.

7 / 88 – Architecture Review Methodology

5 Architecture Review
This section evaluates the security decisions made by Google in designing the Privacy
Sandbox Aggregation Service. NCC Group first identified design patterns which are common
among secure networks and environments, then compared the design of the Privacy
Sandbox Aggregation Service against best practices in each of those areas.

The Privacy Sandbox Aggregation Service was designed by Google to provide advertising
services providers (ad techs) with an innovative, secure, and privacy-aware infrastructure
that would allow them to collect users’ individual aggregatable reports from browsers and
devices, summarize them, and generate reports to be used for advertising purposes.

In order to deploy the Privacy Sandbox Aggregation Service, three agents were required, all
independent from each other:

One ad tech that took care of processing the aggregatable reports

Two independent entities (Coordinator 1 and Coordinator 2) that took care of key
management and aggregatable report accounting

Each one of the agents had to set up an AWS account that had to be configured according
to the documentation that Google would provide them.

The aggregatable report data was processed within a Trusted Execution Environment (TEE)
deployed on ad tech’s AWS account that, upon receiving an aggregation request, retrieved a
private key from the coordinators’ AWS accounts, decrypted aggregatable report data,
processed it, and generated summary reports. Once ready, the summary report was
retrieved by the ad tech in order to use it for advertising purposes.

When a summary report was released, the ad tech learned information about users whose
contributions were included in the summary report. A goal for the system was to provide a
framework that supported differential privacy; as such, the Aggregation Service used a set
of tools and mechanisms in order to quantify and limit the amount of information revealed
about any individual user, avoiding any form of fingerprinting.

At the time of writing, the Aggregation Service was designed and built around AWS cloud
infrastructure. Nevertheless, Google aimed to add support for the more cloud platforms
such as Google Cloud in the nearest future.

As stated within the documentation provided by Google, the following principles had to be
guaranteed2:

Uphold The Privacy Sandbox design goals for privacy protections in Attribution
Reporting. Specifically, we intend to provide appropriate infrastructure for noise
addition and aggregation, aligned with the long-term goal of differential privacy.

Prevent inappropriate access to raw attributed aggregatable report data or other
intermediate data through technical enforcement.

Allow ad techs to retain control over the data they’ve collected and access noisy
aggregated data without sharing their data with any third party.

Support flexible, scalable, and extensible aggregation strategies and on-
demand access to the aggregation infrastructure, so that ad techs can choose
when and how often to generate summary reports.

Provide open and transparent implementations for any infrastructure outside of
the client.

•

•

•

•

•

•

•

2. Aggregation Service for the Attribution Reporting API Documentation -https://github.com/WICG/
attribution-reporting-api/blob/main/AGGREGATION_SERVICE_TEE.md#proposed-design-principles

8 / 88 – Architecture Review

https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATION_SERVICE_TEE.md#proposed-design-principles
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATION_SERVICE_TEE.md#proposed-design-principles
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATION_SERVICE_TEE.md#proposed-design-principles

The software architecture, as described in the documentation, seemed to adhere to the
design principles listed above. Few issues were discovered that could potentially undermine
Privacy Sandbox Aggregation Service’s security posture.

9 / 88 – Architecture Review

Architecture
Privacy Sandbox Aggregation Service architecture was composed by a significative number
of linked systems. The whole service design could be split in 3 different parts, with each
part running on a different AWS account.

The following list breaks down the account and trust division:

One AWS account for ad tech

One AWS account for Coordinator 1

One AWS account for Coordinator 2

At the time of writing, the Privacy Sandbox Aggregation Service was designed to run on
Amazon Web Services (AWS) cloud environment as this allowed Google to deploy Nitro
Enclaves, Trusted Execution Environments (TEEs) that guaranteed the complete opacity of
processing within Enclaves to any stakeholder. This concept guaranteed secure processing
and user privacy. In the near future, Google plans to expand this service to other major
cloud providers.

For the architecture in scope, Google took care of provisioning the Trusted Execution
Environment (TEE) software to ad tech and coordinators in the form of Docker images that
would be later deployed within an EC2 Instance. Additionally, all stakeholders involved in the
process would receive from Google all the guidelines and Terraform code needed to set up
the service within their AWS accounts.

After a careful review of the client documentation and clarification from calls, the following
architecture diagram was created, which details the components, trust boundaries and
communication paths that make up the environment. The client software and ad tech
(reporting origin) were independent of the environment and were not in scope.

•

•

•

10 / 88 – Architecture Review

Figure 1: Privacy Sandbox Aggregation Service Data Flow Diagram

A description of each component is listed below:

External Network
Client Software: browser or operating system with the capability to log aggregatable
report data and send it encrypted for later processing. This part of the architecture was
out of scope. At a high level, the client software reached out to Cloudfront in order to
retrieve public keys, encrypted the user aggregatable report data, and sent it to the ad
tech, which would later process it using the Aggregation Service.

Ad Tech (Reporting Origin): the ad tech entity that retrieved the report of the
aggregatable report data from an S3 Bucket within the ad tech AWS account. This
element was not in scope.

Coordinator 1
This was the entity responsible for providing browsers with public keys for aggregatable
reports encryption and for generating the private key, needed from the ad tech to decrypt
and process aggregatable reports within the Nitro Enclave.

Cloudfront: the browser or operating system communicated with this service in order to
retrieve the public key needed to encrypt the aggregation data. Cloudfront checked the
cache and, if the key was present, returned it to the browser. If the key was not present,
or it had expired, it relayed a request through a Route 53 DNS to the HTTP API
responsible for the public key retrieval.

Route 53 (DNS): a domain name system that provided latency-based routing and health
checks for a set of redundant APIs. In case of failure, it redirected traffic to alternative
Availability Zones or Regions to achieve high availability.

•

•

•

•

11 / 88 – Architecture Review

Public Key Retrieval API: API that the Client Software (Browser or Operating System)
used to get public keys for encryption. The API executed the Lambda Key Retriever
function responsible for pulling the public key from the DynamoDB database. The API
was copied in a number of different regions and was relying on Route 53 to allow an
active-active setup and failover.

Lambda Key Retriever: this Lambda function was called either by the Public Key Retrieval
or Private Split Key Retrieval API. It queried the requested key from the KeyStore
(DynamoDB). The key was retrieved from the database and returned to the API which
handed it back to the requestor.

KeyStore DB (DynamoDB): this database stored key-related data that could be
requested by Lambda Key Retriever only. The data stored within the database was
encrypted.

Private Split Key Retrieval API: API used from the ad tech’s Nitro Enclave in order to get
the first part of the split private key. This was necessary to decrypt and process the
aggregation data. As for the Public Key Retrieval API, it was relying on Lambda Key
Retriever function in order to pull the requested key from the KeyStore.

EventBridge (Job Scheduler): a job scheduler which triggered a Lambda function within
the Trusted Execution Environment that would create and rotate the private key.

KMS Aggregation Service: service composed of a set of elements, responsible for public
and private key creation, manipulation and secure storage.

EC2 Instance: had the capability to host the Nitro Enclave on dedicated resources that
were associated with this instance. The main function of the EC2 Instance was to
execute the Nitro Enclave Docker image and proxy the communication from the Enclave
to the services that it needed to access, as the Enclave itself was not allowed to
communicate with anything other than the EC2 Instance over VSOCK.

Nitro Enclave (Key Rotation Service, Key Creation, Key Splitting): a Trusted Execution
Environment (TEE) that offered an isolated compute environment to protect and securely
process highly sensitive data with no computation at runtime observable by any party.
This served the purpose of creating a private key, splitting it in half, and securing it by
using the KMS service. Additionally, the Enclave was responsible for exchanging and
verifying the second half of the key with Coordinator 2. This Trusted Execution
Environment was not exposed externally; every communication was performed with the
EC2 Instance through the VSOCK protocol. The EC2 Instance was then responsible for
communicating with any of the involved services. More details about the Nitro Enclave
could be found in the Nitro Enclave section below.

Key Management Service (KMS): this resource helped with the encryption of Private Key
split part shared with Coordinator 2. Additionally, it helped for data decryption within ad
tech Enclave.

Aggregatable Report Accounting Service: a distributed service that tracked the number
of times certain aggregatable report data had been used to generate aggregated reports,
informing the ad tech if this number exceeded a certain threshold. The service used
atomic distributed transactions between the Aggregatable Report Accounting Services
running on each Coordinator’s instances to keep report accounting data state in sync and
to detect any form of data tampering. The Aggregatable Report Accounting Service
instance was controlled by the Aggregatable Report Accounting Manager hosted in ad
tech AWS account. Additionally, the Aggregatable Report Accounting Service was relying
on an Aggregatable Report Accounting database that was being used to store report
accounting related data.

•

•

•

•

•

•

•

•

•

•

12 / 88 – Architecture Review

Aggregatable Report Accounting DB (DynamoDB): database that stored report
accounting related data. This database was replicated exactly on each of the involved
Coordinators’ instances. The database consistency was guaranteed by the Aggregatable
Report Accounting Service that kept the data always synced between all the replicated
storage instances. The data stored within the database was encrypted.

Coordinator 2
This entity’s architecture was simpler than Coordinator 1 as it was composed of fewer
services. It was responsible for storing the second part of the split private key generated by
Coordinator 1.

Lambda Key Retriever: this Lambda was called by the Private Split Key Retrieval API for
querying the requested key from KeyStore (DynamoDB). The key was retrieved from the
database and returned to the API which handed it back to the requestor.

KeyStore DB (DynamoDB): this database stored key-related data that could be
requested by Lambda Key Retriever only. The data stored within the database was
encrypted.

Private Split Key Retrieval API: This API was being used to serve two main purposes. The
first was to exchange with Coordinator 1’s Enclave the KMS symmetric key that was being
used to share the second part of the split private key. The second purpose was to hand
to ad tech Enclave the second part of the split key needed to decrypt and process the
aggregation data. This API relied on a Lambda Key Retriever function in order to pull the
requested key from the KeyStore.

KMS Aggregation Service: service composed by a set of elements responsible for the
manipulation and secure storage of the second part of the split private key.

Key Management Service (KMS): this resource helped with encryption and decryption of
the second part of the split private key data sent by Coordinator 2. Additionally, it was
used to generate the symmetric key that was shared between Coordinator 1 and
Coordinator 2 in order to encrypt and exchange private key split parts.

Aggregatable Report Accounting Service: a distributed service that tracked the number
of times certain aggregatable report data had been used to generate aggregated reports,
informing the ad tech if this number exceeded a certain threshold. The service used
atomic distributed transactions between the Aggregatable Report Accounting Services
running on each Coordinator’s instances to keep report accounting data state in sync,
and to detect any form of data tampering. The Aggregatable Report Accounting Service
instance was controlled by the Aggregatable Report Accounting Manager hosted in ad
tech AWS account. Additionally, the Aggregatable Report Accounting Service was relying
on an Aggregatable Report Accounting database that was being used to store report
accounting related data.

Aggregatable Report Accounting DB (DynamoDB): database that stored report
accounting related data. This database was replicated exactly on each of the involved
Coordinators’ instances. The database consistency was guaranteed by the Aggregatable
Report Accounting Service that kept the data always synced between all the replicated
storage instances. The data stored within the database was encrypted.

Ad Tech
It hosted the Nitro Enclave that would process aggregatable report data and create an
output report.

API Gateway: this API gateway received the batch of aggregatable report data that was
batched by ad tech. The data received was forwarded to the Lambda Queuing function in

•

•

•

•

•

•

•

•

•

13 / 88 – Architecture Review

order to be aggregated afterwards. Additionally, this API was used by ad tech to request
aggregation processes and to query for the current status of ongoing jobs.

Lambda Queuing: Lambda function that was responsible for queuing batched
aggregatable report data into SQS Queue to be processed later within the Nitro Enclave.
Additionally, this function stored request status information related to each aggregation
request into a DynamoDB Metadata Database.

Metadata Database (DynamoDB): stored encrypted metadata associated to each
aggregation requests such as the current status of processing. This was periodically
updated by the Nitro Enclave based on the state of jobs execution. Metadata storage
served the function of preventing requests from having duplicate job request keys, which
was a requirement of the aggregation service. The data stored within the database was
encrypted.

SQS Job Queue: batched aggregation requests of aggregatable report data were queued
here in order to be processed afterwards within the Nitro Enclave. The queue policy in
place was first in, first out (FIFO).

S3 Bucket (Batching/Results Storage): the designed location for storing plain-text
aggregated reports with added noise, in order to grant stronger privacy of data.

EC2 Instance: had the capability to host the Nitro Enclave on dedicated resources that
were associated with this instance. The main function of the EC2 Instance was to
execute the Nitro Enclave and proxy the communication from the Enclave to the services
that it needed to access, as the Enclave itself was not allowed to communicate with
anything other than the EC2 Instance over VSOCK.

Nitro Enclave: this Enclave was a Trusted Execution Environment, where confidential and
sensitive data could be processed securely. This Enclave processed the aggregatable
reports by polling for jobs from the SQS Job Queue. In order to do so, the Enclave
retrieved the encrypted split parts of the Private Key from both coordinators and, with
the help of coordinators’ KMSs, retrieved the information to decryption key’s split parts.
Once retrieved, private key splits were combined in order to obtain the key needed to
decrypt aggregatable report data. Afterwards, the Enclave processed requests
aggregating data using differential privacy. This led to the production of a final report
that was then stored with added noise within the S3 Bucket. More details about the Nitro
Enclave can be found in the Nitro Enclave section below.

Aggregatable Report Accounting Manager: the Aggregatable Report Accounting
Service’s client that was responsible for executing report’s accounting consumption
operations and propagating them to all Coordinators’ Aggregatable Report Accounting
Service. It coordinated all the Aggregatable Report Accounting operations through the
distributed Aggregatable Report Accounting Service instances.

Nitro Enclave
Privacy Sandbox Aggregation Service’s key component was the Nitro Enclave. This was an
Amazon Web Services hardened virtual machine that allowed users to create an isolated,
trusted and confidential computing environment, which granted high-level security
processing and protection for highly sensitive data. This technology used a special Nitro
Hypervisor that took care of the execution of the code running within the Enclave, making
its run-time totally opaque to any user, administrators included. The Enclave was provided
by Google as a Docker image that had to be deployed on a hardened EC2 Instance.

•

•

•

•

•

•

•

14 / 88 – Architecture Review

According to the publicly-available AWS documentation3, Nitro Enclaves were providing the
following properties which NCC Group assumed to be true for the purposes of this
assessment:

An independent kernel, CPU and memory environment separated from the EC2 Instance
hosting the Trusted Execution Environment.

No direct interactive access from outside the Enclave, even for profiles with full IAM
permissions. Additionally, all communications were encrypted and performed with the
EC2 Instance through VSOCK.

KMS integration to enable the decryption of secrets within the Enclave.

Cryptographic attestation of Nitro Enclaves to verify the identity of the instances.

At the time of writing, Google was responsible for building and providing Nitro Enclave
images that would be deployed within stakeholders’ EC2 Instances as containerized.
Nevertheless, the ad techs were given the option to autonomously build the Aggregation
Service from the open source code that was publicly available on Google’s GitHub
repository4.

Upon building them, a cryptographic hash was created, the Platform Configuration Registers
(PCR); this hash could be used by any of the stakeholders in order to verify the integrity of
the Enclave images against a published codebase. Additionally, any of the parties could
audit the full codebase of the Nitro images in use.

IAM’s policies for KMS were meant to allow only authorized Enclaves with specific PCRs to
execute actions such as decryption of secrets, as the attestation document sent along with
the request would contain only authorized PCRs values.5

None of the Nitro Enclave image code could be modified and tampered with without
prejudicing the functioning of the Enclaves as, upon any image alteration, the PCRs would
change, invalidating any eventual IAM policy. This prevented any altered Enclave Image from
accessing private key related information required to decrypt the aggregatable report data,
that would be later aggregated within the trusted execution environment. The
aforementioned PCR checks, along with the unobservability property of the Nitro Enclave,
ensured the confidentiality and integrity of the data to be processed.

As a result of the above features and configuration, the chances for a malicious ad tech or
Coordinator to be able to compromise the Nitro Enclave and spoof aggregation requests
processing were negligible. Nevertheless, for the test environment in scope, NCC Group
identified two issues affecting the Nitro Enclave instance:

As reported in finding "Lack of VM Image Hardening", the EC2 Instance hosting the Nitro
Enclave appeared to lack the hardening requisites that were documented for the service.
The EC2 Linux image was observed to contain unnecessary utilities that could potentially
allow a malicious user to compromise the EC2 Instance and, eventually, the Nitro
Enclave. Additionally, the secure boot option for the Linux image was not set. This made
impossible to guarantee that the state of the machine at boot time was indeed safe.

Another risk was represented by the Nitro Enclave Docker image itself. As reported in
finding "Docker Image with Scan Findings", by using commonly-available scanning tools,
it was possible to observe that the container image provided by Google was vulnerable

•

•

•

•

•

•

3. AWS Nitro Enclaves Features - https://aws.amazon.com/ec2/nitro/nitro-enclaves/features/
4. Building Aggregation Service Artifacts - https://github.com/privacysandbox/aggregation-service/
blob/main/build-scripts/aws/README.md
5. Cryptographic Attestation- https://docs.aws.amazon.com/enclaves/latest/user/set-up-
attestation.html

15 / 88 – Architecture Review

https://aws.amazon.com/ec2/nitro/nitro-enclaves/features/
https://github.com/privacysandbox/aggregation-service/blob/main/build-scripts/aws/README.md
https://github.com/privacysandbox/aggregation-service/blob/main/build-scripts/aws/README.md
https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html
https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html

to a number of Common Vulnerabilities and Exposures (CVEs) which risk rating was
placed between medium and high risk. Providing the ad techs with a vulnerable Docker
image could cause Nitro Enclaves to be accessed by malicious agents.

Recommendations
Any EC2 Instance that is meant to host the Nitro Enclave should be hardened according
to the documentation. Superfluous utilities should be removed and the secure boot
option should be enforced.

All Docker images provided by Google should use distroless images and be checked
properly to uncover common vulnerabilities.

Retest Results
Google’s implementation of the recommendations is discussed in the retest sections of
NCC-E004186-JPU, NCC-E004186-R6C, and NCC-E004186-JPU.

Aggregatable Report Accounting Service
One of the components involved in the processing of aggregation requests was the
Aggregatable Report Accounting Service. This was a service designed by Google whose
purpose was to track the number of aggregation requests performed from ad techs. It
allowed aggregatable report data retrieval while limiting the amount of user-related
information that could be retrieved by ad techs, avoiding any form of fingerprinting and
granting user privacy.

Ad techs were assigned an equal number of tokens (Report Accounting) that represented
the value of the information that could be collected from the user. For each aggregation
request, a number of tokens were consumed according to the estimated value of the data
collected. Once all the Aggregatable Report Accounting tokens were consumed, ad techs
could not collect and process additional aggregatable report data.

The Aggregatable Report Accounting Service was implemented as a distributed service that
used atomic transactions which were shared and synchronized among Coordinators.
Additionally, Aggregatable Report Accounting Service instances, through the Aggregatable
Report Accounting Manager, were responsible for constantly updating and maintaining the
consistency of Aggregatable Report Accounting data within each instance’s Report
Accounting Database. This prevented any form of tampering as any malicious attempt to
modify accounting data would cause inconsistency between the distributed transactions
and trigger a roll back of any token consumption.

Aggregatable Report Accounting Service data could not be accessed by the ad tech and the
Coordinators, only the Aggregatable Report Accounting Service itself could access and
manipulate report accounting data.

The Aggregatable Report Accounting key (ARAK) was one of the critical components of the
Aggregatable Report Accounting Service. The ARAK was a hashed string created within the
Aggregation worker hosted in ad tech Enclave. This was created combining a set of values
generated from the client device such as API endpoint, version, reporting origin (ad tech
identity), destination (advertiser domain) and source registration time. Once the hash was
created, the ad tech enclave sent it to the Aggregatable Report Accounting Manager. This
checked the hash value as a security countermeasure preventing malicious actors from
spoofing the aggregation request to impersonate and re-query the data in the name of a
different ad tech.

•

•

16 / 88 – Architecture Review

Environment
The totality of the documentation provided by Google was written for AWS resources that,
as aforementioned, allowed Google to deploy Nitro Enclaves that granted protection and
privacy for users’ data.

As stated within the design documents provided, AWS was implicitly trusted given the
strong incentives it had to guarantee its terms of service. Scenarios in which the cloud
provider could abuse its privileged position in order to compromise or exfiltrate data were
considered, but their mitigations were out of scope as the probability was negligible.

Communication
Through the documentation reviewed and interviews held with Google, it was observed that
all the communication between the Privacy Sandbox Aggregation Service was performed
using HTTPS. The communication between the EC2 Instance and Nitro Enclaves used
VSOCK.

Due to the security measure and communication protocols in place, no practical vectors
were indentified that would allow a malicious actor to be able to perform a man-in-the-
middle attack.

Service Segmentation
When designing infrastructure, careful consideration should be put into how services can be
separated in order to achieve the following goals:

Preventing single points of failure from causing system outages.

Ensuring that sensitive data is stored in the most secure, heavily audited systems.

Placing boundaries between unrelated systems to prevent attackers from easily pivoting
across networks.

Limiting the effect of compromise to only the data stored in a single system.

At the time of writing, it was observed that Privacy Sandbox Aggregation Service
infrastructure was split between three different AWS accounts: ad tech, Coordinator 1 and
Coordinator 2.

The ad tech account hosted the main infrastructure that was responsible for the
aggregation process. This was being executed within the Nitro Enclave, a Trusted Execution
Environment that made totally opaque any type of data computation to any agent, even to
administrators of the ad tech AWS account.

The Coordinator 1 account was responsible for the creation, rotation and key splitting of the
Private key needed to decrypt the aggregation requests being processed in the ad tech
Trusted Execution Environment. This party was relying on a Nitro Enclave for all the
operations involving the Private Key, thus ensuring that nobody could actually observe or
retrieve its value in clear-text.

The Coordinator 2 account hosted resources responsible for the storage and exchange of
the second part of the encrypted Private Key. This key split may be retrieved by the ad tech
account and combined with the first part of the Private key, held by Coordinator 1, in order
to decrypt aggregatable report data and process it.

The above segmentation was tactically chosen by Google in order to grant a state-of-the-
art level of confidentiality for the user data collected in aggregatable reports. None of the
involved parties, even administrators of the respective AWS accounts, were able to retrieve
clear-text aggregatable report data.

•

•

•

•

17 / 88 – Architecture Review

Logging and Auditing
CloudTrail was enabled for the Public Key Retrieval and Private Split Key Retrieval API while
CloudWatch was integrated with the remaining services such as Private Key generation or
Aggregatable Report Accounting. This allowed Google to constantly monitor services health
though the Privacy Sandbox Aggregation Service.

One of the most critical logs was the Aggregatable Report Accounting Service
implementation log. As the report accounting information was directly linked with the
amount of data collectable from an ad tech, any event that would change the status of
report accounting data would be logged before the action was executed. This log collection
allowed the complete recovery of the report accounting data in case of corruption. However,
it was observed that no alerting policies were in place for the Aggregatable Report
Accounting DB and, in general, for DynamoDB databases. As these were storing critical
data, such as public and private key data and Aggregatable Report Accounting entries, the
lack of any alert configuration would cause Google to be unaware of situations that could
impact on databases’ performances and availability. This issue is documented in finding
"Dynamo DB Alerting Not Enabled".

Recommendations
CloudWatch alarms should be configured for all integrated DynamoDB instances, as
described in the DynamoDB documentation.6

Retest Results
The recommendations has been addressed in the retest section of NCC-E004186-HH4.

Confidentiality
The biggest claim for the Privacy Sandbox Aggregation Service was that end user data,
collected in aggregatabe reports, was protected with strong encryption mechanisms and
could not be read by any of the involved ad techs or Coordinators. This granted that identity
of individual users was protected. To achieve this objective, a consistent number of security
measures were adopted by Google in the service’s design.

The content of the aggregation request sent from a generic browser was encrypted with a
public key provided by a Coordinator before being sent to the ad tech for processing. This
approach prevented ad techs from reading any of the content of the aggregatable report
data, granting end-user privacy and data confidentiality. Additionally, the aggregation
process of the data was performed from the ad tech within the Nitro Enclave.

This component was responsible for fetching the private key split parts needed to decrypt
the content of the aggregation request’s payload. The key was split in two encrypted parts
that were fetched from two different Coordinators. This key division prevented Coordinators
and ad tech from accessing the full private key. Additionally, none of the computation
performed by the Nitro Enclave at runtime was observable by any party, administrators
included, making the aggregation process completely opaque to everyone.

Only the final report of the aggregation process was stored in clear-text on an S3 Bucket,
accessible directly from the correspondent ad tech. Before storing the report, the Nitro
Enclave added noise to grant an additional privacy protection layer, as part of the differential
privacy framework.

In order to compromise the confidentiality of the Privacy Sandbox Aggregation Service, both
Coordinators and the ad tech would have to collude to exchange private key data and

•

•

6. Creating CloudWatch alarms to monitor DynamoDB - https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/creating-alarms.html

18 / 88 – Architecture Review

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/creating-alarms.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/creating-alarms.html

decrypt the aggregatable reports being sent to be processed within the Nitro Enclave.
Nevertheless, this scenario has been deemed highly unlikely.

Integrity
From the documentation, the Privacy Sandbox Aggregation Service was observed to
implement a number of controls that preserved and validated the integrity of the data the
service was holding.

As the aggregatable report data sent from the browser was natively encrypted, none of the
parties could be able to modify it. The only instance that could decrypt and manipulate the
aggregation data would be the Nitro Enclave.

In order to prevent unsupported aggregation jobs from reaching the SQS Queue, a number
of fields from the aggregation request payload, such as the reporting origin, were checked.
Additionally, the Aggregatable Report Accounting Service was responsible for checking the
hash value of the Aggregatable Report Accounting Key, generated within the Enclave, in
order to validate the legitimacy of the request.

It should be noted that all of the DynamoDB databases within Privacy Sandbox Aggregation
Service were adopting a point-in-time recovery strategy in order to help ensure the
consistency of data and avoid any type of discrepancy or, more in general, data loss.

Availability
Privacy Sandbox Aggregation Service was designed around a large number of different
components. AWS provided scalability and availability assurances for some managed
components such as Lambda, DynamoDB, and S3. However, while the underlying services
could have availability assurances, the data within them could not: operator errors or
malicious tampering may destroy that data or disrupt access to it and the service had no
provisions to fail over to other instances. Additionally, no provision for availability was made
for other components such as the EC2 Instances and Nitro Enclaves; any failure in these
components would render the application unusable.

As Coordinators were responsible for providing Private Keys, a failure in the Coordinators
would result in the impossibility for the ad tech to retrieve the private key, hence avoiding
the decryption and processing of aggregation requests. Nevertheless, a number of failure
modes would still allow the ad tech to continue accepting aggregation requests that would
be kept in the processing SQS queue until the recovery of the failing Coordinator normal
status.

As few provisions to ensure availability were made, a failure in Coordinator was considered
to be a possible scenario within the current architecture.

Access Control
Google’s design documentation for the Privacy Sandbox Aggregation Service showed
concern for proper authentication and access control policies.

All application components were hosted within AWS. This allowed them to use various AWS
mechanisms to manage access, including IAM Policies and VPC Security Groups. The
application design showed that fine-grained controls were in place and that best practices
for credential management were being followed.

Data aggregation was processed in Nitro Enclaves within the ad tech AWS account. Due to
the nature of these Enclaves, no party could access or spoof the computation of
aggregatable report data within the trusted execution environment, even account
administrators. ad techs were only able to access final summary reports which contained
aggregated data with added noise, according to the differential privacy framework.

19 / 88 – Architecture Review

The application also employed cryptographic protection to ensure that only authorized
parties could make requests to the system or access data. The private key used to decrypt
and process aggregation data within the ad tech enclave was generated within another
Nitro Enclave in the Coordinator 1 AWS account before being split in two parts and stored in
KMS in two separate Coordinator accounts. The secrecy of the key split values exchanged
by the Coordinators was there assured by the same Trusted Execution Environment and
attestation mechanism used for aggregation calculation in the ad tech enclave, ensuring
that no party could access the private key or decrypt data.

Any Coordinator member willing to access the AWS console and modify any service
participating in the Privacy Sandbox Aggregation Service required the approval of another
team member. This prevented any authorized internal users to actually conduct malicious
modification to Privacy Sandbox Aggregation Service’s components hosted in Coordinators’
AWS accounts.

As reported in the Nitro Enclave section above, KMS access to the trusted execution
environment was implemented with IAM policies that, by using cryptographic attestation,
granted that only a set of authorized Enclaves could be authorized to access key values that
would be used for the decryption and processing of highly sensible data within the Enclave.

It should be noted that Google provided the ad techs with the proper Terraform and
cloudformation templates in order to deploy securely the aggregation service within their
AWS account. Nitro Enclave images were already provided as secured to stakeholders.
Nevertheless, additional access control configurations for services outside the trusted
execution environment such as S3 Bucket, SQS Queue and APIs’ access permissions, were
up to ad techs’ discretion.

20 / 88 – Architecture Review

6 Holistic Attacker-Modeled Pentest
Intro
This section documents the holistic attacker-modeled penetration testing of the final design
and implementation of the Privacy Sandbox Aggregation Service. It is performed from the
perspective of a malicious ad tech client attempting to willfully subvert its security features
and design goals. NCC Group tested based on the architecture models from phases one and
two of the assessment. After the architecture and the AWS services configurations reviews,
NCC Group attempted dynamic testing to identify privilege escalation attacks, data access,
data leakage and access controls misconfigurations.

NCC Group assumed the perspective of a malicious ad tech client attempting to manipulate
the system and the AWS cloud environment. The consultants tried to bypass the security
policies and gaining access to protected data either directly or indirectly. These activities
included verifying security boundaries, authentication, access controls, and settings in
Amazon EC2, S3, DynamoDB, SQS, Nitro enclave and other related services. The focus was
on identifying potential ways to undermine the service in several high level areas described
in the following sections.

Authentication, Authorization and Network Security
Identity and Access Management (IAM) settings and policies were reviewed to look for
privilege escalation paths and overly permissive policies. The virtual machine hosting the
Nitro enclave had no external IP address and was well protected by its network security
groups, so it was not reachable from external and internal network locations. Both the
Amazon machine image (AMI) used by the virtual machine and the Docker image used by
the Nitro enclave were scanned and assessed for vulnerabilities and unhardened
configurations. Two improvements were suggested in finding "Lack of VM Image Hardening"
and in finding "Docker Image with Scan Findings". However, NCC Group notes that choosing
and running the AMI is ad tech’s responsibility.

Both in-transit and at-rest encryption were found to be applied on all services. Accessing
and querying the DynamoDB database and the S3 bucket were impossible without
authentication. The IAM policies enforced access controls and blocked all public access.
The roles attached to the Lambda functions and the VM showed no possible privilege
escalation, but one role is able to list more parameters than required (finding "IAM Role
Assigned with Excessive Permission"). NCC Group observed that the Lambda function did
not have code signing enabled (finding "Lambda Function Without Code Signing"), which is
also ad tech’s responsibility.

Credentials and Key Protection
The consultants interacted with the API endpoints as authenticated and unauthenticated
users to retrieve encryption keys, access keys and tokens. The endpoints were well
protected and could not be accessed without appropriate permission. In addition, the KMS
keys had no default policies and API gateway access required authentication.

While NCC Group gained access to an access token for an IAM role via Instance Metadata
Service (IMDS) v1 by simulating a server-side request forgery attack, it was not possible to
gain access to any encryption or decryption keys. The role had permissions only to a limited
set of resources and is discussed in more details in finding "EC2 Instance Metadata Service
Version 1 In Use".

Denial of Service Attacks
Stopping the enclave without root access was attempted but found to be impossible. If the
enclave stopped, the SQS service would queue all existing jobs and trigger a CloudWatch
alarm with an SNS action then the enclave continue processing them after a restart. The API

21 / 88 – Holistic Attacker-Modeled Pentest

endpoints did not process any other data structures or malformed requests and always
returned “Not Found” messages.

The API gateway and Lambda functions had active rate limiting enabled and configured.
Submitting a large number of requests in a short time did not affect application performance
because the SQS service queued the incoming requests and rate limiting prevented
overloading the services.

Side Channel Attacks
Requests towards API endpoints available for ad tech were measured for time differences,
but results were inconclusive.

Enclave and Environment Protection
Attempts were made to access enclave via the console and searching the output for any
sensitive information, but no sensitive information was leaked or logged. NCC Group was
additionally unable to find sensitive information in process memory dumps. The vsock
configuration file was reviewed and vsock traffic was analyzed for any unencrypted
communication, but only encrypted communication was configured.

NCC Group created and ran enclave images that used the running enclave image as a base
image, but could not gain access to any keys or data, as a result of the KMS key policy
condition (kms:RecipientAttestation:PCR0) and the absence of hard-coded credentials. The
review of the enclave image build process and the vulnerability scans showed some results
as discussed in finding "Docker Image with Scan Findings".

Sensitive Data Logging Features Review
Reviewing and searching the enclave logs (/var/log/nitro_enclaves/), enclave console logs
(nitro-cli console) and CloudTrail logs including nitro attestation (key access activities)
revealed no sensitive information or any trace of sensitive information logging.

22 / 88 – Holistic Attacker-Modeled Pentest

7 Web Service Review
This section documents the web services that NCC Group has reviewed for this assessment.
NCC Group followed a general testing methodology for all features, which included a static
code review and assessing relevant code differences for changes to features from phase
one of the assessment.. Dynamic testing was also employed to identify issues that might
lead to privilege escalation, data leakage, or bypass of designed access controls.

Overview
The Cloud Secure Control Plane provides the frontend service to create jobs, which are then
processed asynchronously by the Data Processing Service, also known as the Aggregation
Service. The frontend service offers the createJob API which allow operators to create a job
for the Aggregation Service. When the createJob API is called, it retrieves aggregatable
reports from a file storage in AWS S3 then stores the job details in a database, and adds a
message to a queue. The Aggregation Service then listens for these messages and
proceeds to process the job to generate a summary report. The GetJob API allows the
operator to retrieve the status of the job. Below is the workflow diagram provided from SCP
Frontend Service documentation.

Figure 2: Web Service Workflow

Web Service Testing
The consultants performed dynamic testing of all APIs in scope to ensure that the API
correctly handles any malformed inputs including unexpected string encodings, integer
boundary conditions, excessively large inputs, empty fields, missing fields, and
unexpectedly typed fields. Each API was tested to verify that they correctly implement the
expected authorization behavior and reject all unauthenticated requests. This was
accomplished by a series of positive and negative validation test cases for authorization.
Furthermore, during the assessment, the consultants tested for vulnerabilities that
commonly affect APIs such as injection flaws, privilege escalation flaws across instances of
the Aggregation Service and other logic flaws. From the series of test cases, the consultants
concluded that the in-scope APIs have a strong security posture and that the appropriate
protections are in place to defend against common threats against APIs.

23 / 88 – Web Service Review

CreateJob API
The API endpoint for creating a job, located at https://<api-gateway>/stage/v1alpha/
createJob , accepts JSON data in the request body and starts a job based on the provided
parameters. The API is not publicly available and uses AWS API Gateway to manage
authorization, validation, and routing of requests. During the assessment, the consultants
examined the potential risks of the API and found that any attempts at exploitation would
likely only result in self-inflicted damage, as the API can only be accessed by authorized
users or services. This is based on the assumption that these authorized operators have not
been compromised. However, there were a few unlikely attack vectors that an attacker could
potentially abuse. An authenticated attacker can manipulate the “write location” parameter
(output_data_blob_prefix) to overwrite existing data. The application does not change the
specified file name, allowing the attacker to potentially overwrite previous output files or
even encrypted source data. More information about this finding could be found in finding
"Lack of Overwrite Controls in S3".

Ingested files for CreateJob API
The aggregatable reports is formatted as an .arvo file which was provided within an S3
bucket during testing. The consultant examined the series of batch.arvo files to ensure that
there were no sensitive information being leaked. Upon inspection of the batch.arvo file
using AvroViewer , the data is presented in JSON format. The “payload” is a key-value pair
which contains a base64 encoded Concise Binary Object Representation (CBOR) payload
and the other key value pair such as key_id and shared_info contains no sensitive
information. The summary reports generated by the CreateJob API outputted similar results.
The consultants attempted to create a malicious .arvo file and invoked the CreateJob API to
determine if they could elicit an error message or gain insight into potential ways to exploit
the Aggregation Service. However, the service effectively identified and rejected the
unfamiliar .arvo files, indicating that robust security measures are in place.

24 / 88 – Web Service Review

8 Source Code Review
Overview
The Privacy Sandbox Aggregation Service consists of two components: the Secure Control
Plane (SCP) and the Data Plane (DP). The SCP provides a secure execution environment and
manages the DP at scale, hosting the Aggregatable Report Accounting Service (ARAS) as
well. The SCP execution system enables the service to be utilized on any supported cloud
provider without modification to the DP, and it communicates with the DP through the
Control Plane Input/Output (CPIO). The DP, implemented as a Docker container, handles
business logic for specific computations, such as managing cryptographic keys, buffering
requests, tracking the aggregatable report accounting, accessing storage, and more. It also
hosts the CPIO. The CPIO acts as a pass through channel when communicating with
coordinators. While data transmitted between clients and the DP passes through the SCP,
the data remains encrypted and the SCP does not have access to the decryption keys.

NCC Group performed a source code assisted security assessment, focused on the SCP and
DP. This review was performed by two (2) consultants between the days of December 5th
and January 16th, 2023, focused on the following aspects of the applications:

Authentication and Authorization

Input Validation Mechanisms

Privacy Implementation

Split Key Retrieval Implementation

Decryption Implementation

Aggregatable Report Accounting Service

Front-end API Gateway
Front-end Authorization
The front end services rely on AWS API Gateway (APIGW) to perform authorization checks.
Before dispatching API calls to their respective handlers, the front-end AWS API Gateway
(APIGW) verifies request authentication and authorization using the ApiGatewayHandler
class”. The ApiGatewayHandler class doesn’t provide specific implementation for
authorization, but it provides a method named authorizeRequest that can be overridden by
subclasses.

In this example, the authorization mechanism for createJob is actually being handled within
the CreateJobApiGatewayHandler . The CreateJobApiGatewayHandler class acts as a handler for
incoming API Gateway requests in AWS Lambda. The code snippet below demonstrates,
when the function is triggered by an API Gateway request, the handleRequest method is
called, which first calls toRequest to convert the API Gateway request into a specific
request object that the service recognizes. The method then calls authorizeRequest to

•

•

•

•

•

•

/**

* Authorizes the request. Simply returns void if the request authorization passes. Throws a

ServiceException if an error occurs. Unless overridden this does nothing, meaning that

unless a subclass implements this then authorization is disabled. This should be

overridden in subclasses that need authorization.

*/

protected void authorizeRequest(

Request request, APIGatewayProxyRequestEvent apiGatewayProxyRequestEvent)

throws ServiceException {}

25 / 88 – Source Code Review

authorize the request, and finally processRequest to handle the request and return a
response.

CreateJobApiGatewayHandler
The CreateJobApiGatewayHandler class is used to handle requests to create a new job. It
does this by converting the incoming API Gateway request into a CreateJobRequest object,
which it then passes to the front-end services to create the job. The response from the
front-end services is then converted into an API Gateway response and returned to the
client. The class also has a method to validate the properties of the CreateJobRequest object
to ensure that all required fields are present before processing the request.

GetJobApiGatewayHandler
The GetJobApiGatewayHandler class is used to handle GET requests to the API Gateway. It
receives a job_request_id parameter and retrieves information about the job specified by
that user input identifier. The class takes the job request ID from the query parameters of
the request and creates a GetJobRequest object with it. It then uses the front-end service
object’s getJob method to retrieve the job with the specified ID.

Web Services Input Validation Mechanisms
After conducting a thorough review and analysis of the input validation mechanisms in place
for the web services, NCC Group did not identify any significant issues. The Lambda
functions appear to be properly implemented and secure. The consultants did not identify
any vulnerabilities or weaknesses that would compromise the integrity of the input validation
process.

In particular, NCC Group reviewed both the GetJobApiGatewayHandler and
CreateJobAPIGatewayHandler classes, which handle job retrieval and creation respectively.
These classes implement methods to convert incoming requests, process them, and convert
the response. Additionally, the classes validate the properties of the GetJobRequest and
CreateJobRequest objects, respectively, and throw a ServiceException in case any
properties are missing or invalid.

Furthermore, the consultants validated the inputs for the createJob and getJob APIs against
the requirements listed below in the Aggregation Service API Documentation and did not
identify any discrepancies or issues.

/** Handles incoming request. */

@Override

public APIGatewayProxyResponseEvent handleRequest(

APIGatewayProxyRequestEvent apiGatewayProxyRequestEvent, Context context) {

try {

Request request = toRequest(apiGatewayProxyRequestEvent, context);

authorizeRequest(request, apiGatewayProxyRequestEvent);

{

// Unique identifier. Length must be 128 characters or less.

// Legal characters are ASCII letters (a-z, A-Z), ASCII

// numbers (0-9), and the following ASCII punctuation

// characters !"#$%&'()*+,-./:;<=>?@[\]^_`{}~

"job_request_id": <string>,

// input file bucket and path in bucket, can be prefix for

// sharded inputs

"input_data_blob_prefix": <string>,

"input_data_bucket_name": <string>,

// output file bucket and path in bucket, can be prefix for sharded outputs

"output_data_blob_prefix": <string>,

26 / 88 – Source Code Review

Aggregation Service
Workflow of Aggregation Service
The ConcurrentAggregationProcessor is a job processor that uses in-memory aggregation. It
starts by reading the job request invoked by the createJob API. The service finds the data
shards of the reports and reads the data from each data shard using the BlobStorageClient
and AvroReportsReaderFactory classes in an asynchronous manner. The processor then
decrypts and validates each report asynchronously using the ReportDecrypterAndValidator
class to ensure the security and integrity of the data.

After that, the processor asynchronously performs the aggregation and noising of the data
using the AggregationEngine and NoisedAggregationRunner , before sending a request to
Aggregatable Report Accounting Service (ARAS) to consume report accounting budget. If
the ARAS returns that the reports were previously fully processed, an exception is thrown.
Any invalid reports that failed to be decrypted and validated are collected for further
investigation. Finally, the aggregation service logs the result and returns it to the client. If
the user requested a debug run, the service also adds debug information to the final result
for analysis. Aggregation service also limits the results to the input domain provided by the
user.

Data Integrity and Confidentiality
To ensure the security of the integrity and confidentiality of the data, the service uses the
ReportDecrypterAndValidator class to decrypt and validate each report, which ensures that
the data is both secure and has not been tampered with. In the Java code snippet below,
the decryptShard method is called with a job context, list of encrypted reports, and shard
index. The method creates a Stopwatch for measuring the elapsed time until the shard is
decrypted. It then maps each report to the result of decrypting and validating the report
using the reportDecrypterAndValidator.decryptAndValidate(report, ctx) method, which
decrypts the report and checks that the report is valid. Finally, the method collects the
results of the decryption and validation into an ImmutableList and returns that list.

// output data bucket

"output_data_bucket_name": <string>,

"job_parameters": {

// location of pre-listed aggregation buckets

"output_domain_blob_prefix": <string>,

"output_domain_bucket_name": <string>,

// reporting URL

"attribution_report_to": <string>,

// [Optional] differential privacy epsilon value to be used for this job. 0.0 <

debug_privacy_epsilon <= 64.0. The value can be varied so that tests with different

epsilon values can be performed during the origin trial.

"debug_privacy_epsilon": <floating point, double>

}

}

private ImmutableList<DecryptionValidationResult> decryptShard(

Job ctx, ImmutableList<EncryptedReport> shard, long shardIndex) {

Stopwatch decryptionStopwatch =

stopwatches.createStopwatch(String.format("shard-decrypt-%d", shardIndex));

decryptionStopwatch.start();

ImmutableList<DecryptionValidationResult> results =

shard.stream()

.map(report -> reportDecrypterAndValidator.decryptAndValidate(report, ctx))

27 / 88 – Source Code Review

Decryption Process
The decryptAndValidate method first decrypts the encrypted report using the
RecordDecrypter ’s decryptSingleReport method, and then performs various validations on
the decrypted report using a set of ReportValidator objects. If the decryption and validation
processes are successful, the decrypted report is returned. Otherwise, a list of errors is
returned, ensuring that only secure and valid reports are processed by the service.

The decryption process happens in the decryptSingleReport method of the
DeserializingReportDecrypter class demonstrated in the code block below. This method
takes an EncryptedReport object as input, then goes through the following steps:

Deserialize the sharedInfo from the EncryptedReport object using the sharedInfoSerdes
object.

The DecryptionCipherFactory Inspects the provided {@code EncryptedReport} for the key
used to decrypt, retrieves the key it needs from the {@code DecryptionKeyService} , and
constructs a decryption cipher using that key. Essentially, the service uses the
HybridDecryptionCipherFactory object to create a DecryptionCipher object for the
EncryptedReport object.

Use the DecryptionCipher object to decrypt the payload of the EncryptedReport object
into plaintext bytes.

Deserialize the plaintext bytes into a Payload object using the payloadSerdes object.

Return a new Report object that contains the deserialized Payload object and
SharedInfo object.

1.

2.

3.

4.

5.

.collect(toImmutableList());

decryptionStopwatch.stop();

return results;

}

@Override

public Report decryptSingleReport(EncryptedReport encryptedReport) throws

DecryptionException {

try {

// Deserialize the sharedInfo

Optional<SharedInfo> sharedInfo = sharedInfoSerdes.convert(encryptedReport.sharedInfo());

if (sharedInfo.isEmpty()) {

throw new DecryptionException(

new IllegalArgumentException(

"Couldn't deserialize shared_info. shared_info was: "

+ encryptedReport.sharedInfo()));

}

// Decrypt the payload to plaintext bytes

DecryptionCipher decryptionCipher =

decryptionCipherFactory.decryptionCipherFor(encryptedReport);

ByteSource decryptedPayload =

decryptionCipher.decrypt(

encryptedReport.payload(), encryptedReport.sharedInfo(),

sharedInfo.get().version());

// Deserialize the payload

Optional<Payload> plaintextPayload = payloadSerdes.convert(decryptedPayload);

if (plaintextPayload.isEmpty()) {

throw new PayloadDecryptionException(

new IllegalArgumentException("Decrypted payload could not be deserialized"));

}

return Report.builder()

28 / 88 – Source Code Review

In the event that the wrong encryption or key is used, or if the report has been tampered
with, the decryptAndValidate method of the ReportDecrypterAndValidator class will fail to
properly decrypt the report. This failure will trigger a DECRYPTION_ERROR , which gets reflected
in the body response of the getJob API specifically the status parameter. This error
indicates that there is a problem with the encryption key or the integrity of the report, and
the data cannot be trusted.

Coordinator Key Retrieval
The Coordinator Key Retrieval used for decryption is accomplished within the
MultiPartyDecryptionKeyServiceImpl class, which is responsible for managing the decryption
keys. The MultiPartyDecryptionKeyServiceImpl class has two EncryptionKeyFetchingService
members, coordinatorAEncryptionKeyFetchingService and coordinatorBEncryptionKeyFetchin
gService , that are responsible for fetching the split key located in the coordinator’s AWS Key
Management System(KMS). The MultiPartyDecryptionKeyServiceImpl class also maintains a
cache of HybridDecrypt objects that it creates, which it uses to return the decrypter for a
given key when getDecrypter is called.

When the getDecrypter method is called, it first checks the cache for the decrypter. If it is
not found in the cache, it calls the createDecrypter method which fetches the primary
encryption key from the KMS using coordinatorAEncryptionKeyFetchingService . There are
two types of keys that can be fetched, single-party or multi-party.

If the key is a single-party key, it uses the coordinatorAAeadService instance to create
the decrypter and returns the key.

If the key is a multi-party key, it fetches the secondary encryption key from the KMS
using coordinatorBEncryptionKeyFetchingService , and uses the coordinatorBAeadService
to create the decrypter and returns the key.

The following code shows the practical implementation of creating a HybridDecrypt
decrypter object from two encryption keys, encryptionKeyA and encryptionKeyB , which are
obtained from Coordinator A and Coordinator B respectively. First, the service retrieves the
encrypted key material from the EncryptionKey objects by calling the getOwnerKeyData()
method. Then, it uses an AEAD (Authenticated Encryption with Associated Data) object,
obtained from the coordinatorAAeadService or coordinatorBAeadService instance , to
decrypt the key material. The decrypted key material is called “ splitA ” and “ splitB ”
respectively.

•

•

.setPayload(plaintextPayload.get())

.setSharedInfo(sharedInfo.get())

.build();

} catch (PayloadDecryptionException | CipherCreationException e) {

throw new DecryptionException(e);

}

}

}

private HybridDecrypt createDecrypterSplitKey(

EncryptionKey encryptionKeyA, EncryptionKey encryptionKeyB)

throws GeneralSecurityException, IOException {

// Split A.

var encryptionKeyAData = getOwnerKeyData(encryptionKeyA);

var aeadA = coordinatorAAeadService.getAead(encryptionKeyAData.getKeyEncryptionKeyUri());

var splitA =

aeadA.decrypt(Base64.getDecoder().decode(encryptionKeyAData.getKeyMaterial()), new

byte[0]);

29 / 88 – Source Code Review

Afterwards, the service uses the KeySplitUtil class to reconstruct the keyset handle by
calling the reconstructXorKeysetHandle method, passing the splits A and B. This combines
the two splits into one keyset handle. Finally, it returns the HybridDecrypt object, a
decrypter class, by calling the getPrimitive method on the keyset handle.

Report Validation
The consultants identified a number of validation checks performed by the service to ensure
the integrity and security of the reports. These checks include:

Verifying that the attribution_report_to job parameter in a job is not empty or blank.

Ensuring that the report’s debug mode is checked.

Confirming that the report’s reporting origin is a valid domain.

Comparing the report’s reporting origin to the attribution report to provided in the
Aggregation Request.

Ensuring that the report’s operation is an accepted value.

Additionally, the service detects and handles errors that may occur while reading the report
using ConcurrentShardReadExceptions and DomainReadExceptions classes. When these errors
occur, the service throws an AggregationJobProcessException and sets the error message to
INPUT_DATA_READ_FAILED , which is returned to the status parameter of the getJob API. This
indicates that there were problems with reading the reports.

Invalid Test Management
Large numbers of invalid reports could potentially lead to inaccurate or biased results in the
final aggregation. Collecting too many invalid reports can also lead to the use of excessive
memory and processing resources, potentially slowing down the overall aggregation
process. To handle this, the service collects invalid reports and limits the number of invalid
reports collected to 1000 reports maximum.

javaprivate static final int MAX_INVALID_REPORTS_COLLECTED = 1000;

Concurrency Management
The service implements concurrency management by using the BlockingThreadPool and Non
BlockingThreadPool to limit the number of threads that can be used at any given time. This
helps to prevent race conditions and other concurrency-related issues while reading and
processing the reports asynchronously.

Communicating With The Aggregatable Report Accounting Service
When the createJob API is invoked, the snippet of code below is responsible for checking if
the job is being run in debug mode using the debugRun variable. If the job is not being run in

•

•

•

•

•

// Split B.

var encryptionKeyBData = getOwnerKeyData(encryptionKeyB);

var aeadB = coordinatorBAeadService.getAead(encryptionKeyBData.getKeyEncryptionKeyUri());

var splitB =

aeadB.decrypt(Base64.getDecoder().decode(encryptionKeyBData.getKeyMaterial()), new

byte[0]);\

// Reconstruct.

var keySetHandle =

KeySplitUtil.reconstructXorKeysetHandle(

ImmutableList.of(ByteString.copyFrom(splitA), ByteString.copyFrom(splitB)));

return keySetHandle.getPrimitive(HybridDecrypt.class);

}

30 / 88 – Source Code Review

debug mode, it proceeds to consume report accounting budget units (budgetsToConsume)
from a Aggregatable Report Accounting Service.

The Aggregatable Report Accounting Service is accessed using the privacyBudgetingService
Bridge object, which implements the PrivacyBudgetingServiceBridge interface. The method
consumePrivacyBudget is called on this object to consume the report accounting budget
units. The parameters passed to the method are the list of report accounting budget units to
consume and the job parameter attributionReportTo .

Additionally, the missingPrivacyBudgetUnits is checked to detect when the budget was not
available for some budget units and if so, a custom exception is thrown with the message PR
IVACY_BUDGET_EXHAUSTED and the error message PRIVACY_BUDGET_EXHAUSTED_ERROR_MESSAGE .

Practical Privacy Implementation
Noised aggregation7 is a technique used to protect the privacy of users while still allowing
for accurate data analysis. In this process, random noise is added to the data before it is
aggregated, making it difficult to determine the exact values of individual data points. This
makes it harder for ad techs to use the data to identify or track specific individuals, while
still allowing meaningful insights to be drawn from the aggregated data.

The NoisedAggregationRunner class is responsible for running this process and adding the
noise to the data before it is aggregated. The Java snippet defines an interface called
NoisedAggregationRunner , to apply “differential private noising” to a list of AggregatedFact
objects. The interface includes a single method called noise() , which takes in three
arguments:

Iterable<AggregatedFact> aggregatedFact : an iterable collection of AggregatedFact
objects, containing the data that will have noise added to them

•

// Do not consume any privacy budget for debug-run jobs.

if (!debugRun) {

try {

// Only send request to PBS if there are units to consume budget for, the list of

units

// can be empty if all reports failed decryption

ImmutableList<PrivacyBudgetUnit> budgetsToConsume =

aggregationEngine.getPrivacyBudgetUnits();

if (!budgetsToConsume.isEmpty()) {

missingPrivacyBudgetUnits =

privacyBudgetingServiceBridge.consumePrivacyBudget(

/* budgetsToConsume= */ budgetsToConsume,

/* attributionReportTo= */ job.requestInfo()

.getJobParameters()

.get(JOB_PARAM_ATTRIBUTION_REPORT_TO));

}

} catch (PrivacyBudgetingServiceBridgeException e) {

throw new AggregationJobProcessException(

PRIVACY_BUDGET_ERROR, "Exception while consuming privacy budget.", e);

}

if (!missingPrivacyBudgetUnits.isEmpty()) {

throw new AggregationJobProcessException(

PRIVACY_BUDGET_EXHAUSTED, PRIVACY_BUDGET_EXHAUSTED_ERROR_MESSAGE);

}

}

7. https://developer.chrome.com/docs/privacy-sandbox/aggregation-service/#noise-scale

31 / 88 – Source Code Review

https://developer.chrome.com/docs/privacy-sandbox/aggregation-service/#noise-scale

boolean doThreshold : a boolean flag indicating whether or not to apply a threshold to the
data

Optional<Double> debugPrivacyEpsilon : an optional value that can be used to set the
level of privacy noise to be added to the data.

The noise() method returns an object of NoisedAggregationResult type, which contains the
resulting list of AggregatedFact objects with the noise applied.

The NoisedAggregationRunner class adds noise to the final aggregated data in order to
protect the privacy of the individual data points that were used to generate the aggregate
data. The noise is added in such a way that the level of privacy protection can be controlled
through the use of a L1 sensitivity and epsilon, which specifies the maximum amount of
privacy loss that is allowed. The noise is added to the aggregate data after it has been
calculated by the AggregationEngine .

The actual implementation of NoisedAggregationRunner class below uses a the NoiseApplier
class to apply noise to the AggregatedFact objects. The DpNoiseApplier class is a
implementation of the NoiseApplier interface that uses Google’s Differential Privacy library8

to add noise to the aggregate data. The noiseMetric() method within the DpNoiseApplier
class is used to add Laplace noise to the aggregate data. The noise is controlled by the
epsilon value, as well as the L1 sensitivity of the data. The DpNoiseParamsFactory class
injected into the DpNoiseApplier class, is responsible for creating the noise parameters for
the Laplace noise distribution.

•

•

/** Interface to apply Differential Private Noising to {@code AggregateFact}. */

public interface NoisedAggregationRunner {

/**

* Applies noise and optional threshold to values on a list of {@code AggregatedFact}.

*

* @return list of new {@code AggregationFact} with noising applied.

*/

NoisedAggregationResult noise(

Iterable<AggregatedFact> aggregatedFact,

boolean doThreshold,

Optional<Double> debugPrivacyEpsilon);

}

/** {@link NoiseApplier} implementation using Google's Differential Privacy library. */

public final class DpNoiseApplier implements NoiseApplier {

private final DpNoiseParamsFactory valueNoiseParams;

@Inject

DpNoiseApplier(@DpValue DpNoiseParamsFactory valueNoiseParams) {

this.valueNoiseParams = valueNoiseParams;

}

@Override

public Long noiseMetric(Long metric) {

return noise(metric, valueNoiseParams);

}

8. https://github.com/google/differential-privacy

32 / 88 – Source Code Review

https://github.com/google/differential-privacy

Aggregatable Report Accounting Service
Design and Implementation
The Aggregatable Report Accounting Service (ARAS) is implemented in C++ starting from
the pbs_server component, which instantiates the PBSInstance class. The PBSInstance
class is subsequently responsible for initializing the major high-level components of the
ARAS. In particular, it uses the FrontEndService class to expose API endpoints and handle
incoming requests, while making use of the AwsAuthorizer class to perform authentication
and authorization flaws. The architecture of the ARAS supports multiple instances of the
ARAS server itself working in tandem. Consequently, incoming requests to the
FrontEndService are expected to come from either the Aggregation Service (see above) or
other instances of the ARAS. Each instance of the ARAS runs in a trusted party external to
the SCP and DP.

The ARAS is designed to perform verbose logging of each state-changing operation, in order
to serve as a sort of journal. In the event of an ARAS failure, the logs are verbose enough
that they may be used to recreate its exact state from before the failure occurred.

The ARAS provides budget resource management functionality using a state machine. Each
instance of budget use is referred to as a “transaction”, and each transaction may be in
multiple states, which are referred to as “phases”. All of the ARAS’s state-changing API calls
involve either creating transactions or changing a transaction phase. The following API calls
are exposed by the ARAS FrontEndService :

BeginTransaction (HTTP POST)

PrepareTransaction (HTTP POST)

CommitTransaction (HTTP POST)

NotifyTransaction (HTTP POST)

AbortTransaction (HTTP POST)

EndTransaction (HTTP POST)

GetTransactionStatus (HTTP GET)

GetServiceStatus (HTTP GET)

All of the POST requests accept a transaction ID (UUID) and transaction secret (string
value), passed via HTTP headers. Together, these two values uniquely identify each
transaction and are required in order to perform any state-changing operation on a
transaction. Note that the transaction ID and secret are both chosen by the caller rather
than by the ARAS itself.

The BeginTransaction call is designed to create a new transaction. It takes as input a JSON
string containing metadata about the new transaction to create. The remaining *Transaction
POST requests are all designed to modify the phase of a pre-existing transaction in the
manner specified by the name of the call.

•

•

•

•

•

•

•

•

private static Long noise(Long rawValue, DpNoiseParamsFactory noiseParams) {

checkArgument(

noiseParams.distribution().equals(Distribution.LAPLACE),

"Only Laplace noising distribution supported. Got: " + noiseParams.distribution());

LaplaceNoiseParams laplaceNoiseParams = noiseParams.laplace();

return laplaceNoiseParams

.noise()

.addNoise(rawValue, laplaceNoiseParams.l1Sensitivity(), laplaceNoiseParams.epsilon());

}

33 / 88 – Source Code Review

The remaining two GET requests are intended to retrieve basic information about the
service. The GetServiceStatus endpoint requires no arguments, and simply returns
information about the state of the service. The GetTransactionStatus endpoint takes a
transaction ID and a transaction secret as arguments in headers, and returns information
about the current state of the specified transaction.

All of the aforementioned FrontEndService API endpoints call into the TransactionManager
component to carry out phase changes or retrieve data. The TransactionManager
subsequently calls into the TransactionEngine component, which provides the bulk of the
low-level internal implementation of each transaction operation.

Testing Methodology
NCC Group’s ARAS testing consisted of a code review of the C++ components located in the
SCP\cc\pbs directory, assisted by design documentation. At a high level, the review
methodology involved analyzing the flow of user input throughout the system to identify
possible undesired behavior throughout the service’s implementation.

The entry points for user input were the 8 API calls exposed by the FrontEndService
identified above. For each parameter which can be specified by the caller (including
message content for each request, HTTP headers for transaction ID and transaction secret,
and JSON data for BeginTransaction), NCC Group followed the parameter’s value in the
code and carefully considered what security-relevant scenarios could be triggered with it.
Specific areas of focus included buffer overflows, memory leaks, concurrency issues,
authentication and authorization flaws, and in-depth logic bugs.

In general, the code uses pre-established libraries, such as nlohmann’s JSON library9, rather
than using implementations written from scratch, significantly the reducing possibility of
error. The code also makes use of C++11 features such as std::atomic 10) to abstract away
lower-level implementation details.

9. https://json.nlohmann.me/
10. https://en.cppreference.com/w/cpp/atomic/atomic

34 / 88 – Source Code Review

https://json.nlohmann.me/
https://en.cppreference.com/w/cpp/atomic/atomic

9 Cryptographic Design and Implementation
Review

In this section, we review the design and implementation of the cryptographic elements of
the Privacy Sandbox Aggregation Service. Cryptography is a security tool whose main
benefit is to concentrate secrecy in a few objects (in particular cryptographic keys), allowing
the abstraction of many elements of the system away from the security analysis, as it
pertains to the protected data. In the Privacy Sandbox Aggregation Service, the goal is to
maintain the privacy of the contents of the events generated in the client browsers. From a
cryptographic point of view, the following elements are relevant:

Events are generated and encrypted in a browser, using a public key, whose
corresponding private key is under exclusive control of the enclave code.

The enclave obtains the private key by recombining the two portions of the split private
key. Each portion is obtained in a symmetrically-encrypted format, with a symmetric
decryption key held inside an AWS Key Management Service (KMS) instance. KMS allows
access to that symmetric key only to the enclave, using remote attestation, which
guarantees that only enclave code with a specific configuration can use the key.

The encrypted events are ultimately delivered in batches to the enclave code, which
proceeds to decrypt them and perform the required computation on them.

Before producing the output report, the enclave code consumes a reporting accounting
budget, which limits the total number of requests that can be performed on some event.
The budget is maintained by the Aggregatable Report Accounting Service, which is run
by the coordinators.

The enclave uses standard TLS-based protocols to contact the coordinator(s) to retrieve
the encrypted private keys, to consume reporting accounting budget, and to push output
reports. Simple TLS (HTTPS) is used throughout, although the design mentions mTLS (i.e.
TLS with mutual certificate-based authentication) can optionally be used for third party
services such as the Aggregatable Report Accounting Service.

How encrypted events are gathered, assembled as batches, and delivered to the enclave is
not relevant to cryptographic security: as long as the clients (browsers) use the right public
key, with a secure encryption algorithm, and the enclave has exclusive access to the
corresponding private key, event privacy will be maintained on that path. We will now study
the cryptographic design of each of the elements listed above.

Public Key Encryption
The design documents for the Privacy Sandbox Aggregation Service only talk about
“encryption” in a generic way. Analysis of the source code shows that the open-source Tink
library11 is used. Tink provides high-level cryptographic functionalities in a cross-platform
and cross-language way; Privacy Sandbox uses mainly authenticated symmetric encryption
(AEAD) and public-key hybrid encryption. In the case of hybrid encryption, public and
private keys are exchanged as structured objects (using protobuf) that contain not only the
key itself, but also the relevant metadata that document the key type and the compatible
low-level cryptographic algorithms. The asymmetric key exchange mechanism, the internal
key derivation function, and the symmetric encryption algorithm are specified in that
metadata. The algorithm chosen for hybrid key encryption in the Privacy Sandbox
Aggregation Service are ECDH (over Curve 25519), HKDF-SHA256, and CHACHA20-

1.

2.

3.

4.

5.

11. https://developers.google.com/tink

35 / 88 – Cryptographic Design and
Implementation Review

https://developers.google.com/tink

Poly1305 for these three primitives, respectively. These algorithms together fulfill the
properties that are expected by the Privacy Sandbox Aggregation Service:

ECDH is a Diffie-Hellman key exchange performed over an elliptic curve. Curve 25519 is
a widely used elliptic curve that offers 128-bit security. Curve 25519 is defined in RFC
774812.

HKDF is a standard and secure key derivation function, adequate for expanding a secret
value obtained from a Diffie-Hellman key exchange into the secrets needed for the
symmetric encryption. HKDF is specified in RFC 586913.

CHACHA20-Poly1305 is an Authenticated Encryption with Additional Data (AEAD)
algorithm, that ensures not only the confidentiality but also the integrity of the conveyed
data. This allows recipients (here, the enclave code) to validate that the events were not
altered in transit. CHACHA20-Poly1305 offers a 256-bit security level, and is defined in
RFC 843914.

The last point requires additional explanation: nothing in the system guarantees, at least
cryptographically, that the source events are genuine; in fact, there is no definition of what
“real” or “fake” data is, at this level. In the broader system, what prevents mass injection of
fake events is a combination of browser-level and server-level mitigations, including the
detection of abnormal patterns. In particular, Privacy Sandbox Aggregation Service clients
are not authenticated in the cryptographic sense of the term. However, the use of an
authenticated encryption algorithm (such as an AEAD) is still important because active
attackers might want to alter encrypted events in an attempt to obtain information on
plaintext through the behavior of the enclave code when processing the modified events (a
chosen ciphertext attack). Use of a proper AEAD mode effectively prevents such attacks:
any alteration of the ciphertext, however small, implies rejection of the whole ciphertext
without revealing any information about its contents.

A crucial part of the public key encryption process is how clients obtain the public key to
use. It is expected that this key will change over time; indeed, regular key rotation is
planned. An active attacker might want to provide a different public key, whose private key
is under the attacker’s control, so that clients encrypt events with the attacker’s key. To
avoid this issue, the public key to use for asymmetric encryption of events is signed by the
coordinators; clients refuse to encrypt events if they have not verified the signatures of both
coordinators. Since public keys use Tink’s format, the signature covers not only the public
key value, but also the metadata, which prevents algorithm confusion attacks, in which an
attacker would try to make clients use the right public key with the wrong algorithm.

Recommendations
In the interest of potential future interoperability, the documentation should specify
explicitly that the encryption uses Tink’s protobuf format, with some specific primitive
algorithms; such a specification would allow compatibility with non-Tink clients under
special circumstances.

Retest Results
Google has addressed this recommendation in the following files:

java/com/google/scp/coordinator/keymanagement/keygeneration/README.md

java/com/google/scp/shared/util/KeyParams.java

•

•

•

•

•

•

12. https://www.rfc-editor.org/rfc/rfc7748.html
13. https://www.rfc-editor.org/rfc/rfc5869.html
14. https://www.rfc-editor.org/rfc/rfc8439.html

36 / 88 – Cryptographic Design and
Implementation Review

https://www.rfc-editor.org/rfc/rfc7748.html
https://www.rfc-editor.org/rfc/rfc5869.html
https://www.rfc-editor.org/rfc/rfc8439.html

Private Key Generation and Key Splitting
Enclaves, by design, do not have any permanent storage ability. The private key for event
decryption is stored externally in encrypted form. This encryption relies on a symmetric key
which is stored in KMS and under exclusive control of the enclave (KMS is a key storage and
management service, and is set-up using the attestation mechanism to ensure that it is
receiving the requests from a specific enclave code).

Attestation details depend on the enclave technology; in the case of AWS Nitro Enclaves15,
cryptographic hashes (“measurements”) are computed over the enclave code and then
certified by the hypervisor that implements the isolation of the enclave from other systems.
Access to a key stored in KMS can be limited to callers that are required to present specific
cryptographic hash values. In the list of measurements offered by Nitro, the PCR0, PCR1 and
PCR2 hashes are the most important here: they cover, respectively, the enclave image file,
the kernel and boot filesystem, and the application; these hash values must be used
conjointly to configure access to the keys. Normally, PCR0 is sufficient, since the image
includes everything in the enclave, including the kernel and the application. PCR1 and PCR2
are obtained at the same time and copying them into the KMS configuration, along with
PCR0, may potentially help with troubleshooting deployment failures; however, this would
also enlarge the policy and possibly run into policy size constraints.

Private Key Generation: In order to prevent a malicious coordinator from keeping a copy of
the private key and using it later to decrypt events outside of the enclave, the Privacy
Sandbox Aggregation Service includes two coordinators, A and B, and the key pair
generation is to be performed by a dedicated enclave. In this system, one coordinator
controls and runs the enclave, which splits the private key into two shares; each of the
coordinators receives a single share. Each share is encrypted using an AEAD cipher before
being transmitted. The transmission of the first encrypted share to coordinator A is direct,
since the coordinator runs the enclave. The second share is encrypted using a symmetric
cipher, with the key taken from a KMS instance provided by Coordinator B. Attestation is
used to guarantee to coordinator B that the private key is generated and split properly; that
even coordinator A, who runs the enclave, cannot obtain the second share; and that the key
split corresponds to the public key sent at the same time. This is done by ensuring the key
provided by Coordinator B is available exclusively to an enclave running the appropriate
image.

The symmetric algorithms used to encrypt the key shares are provided via KMS. None of the
design documents specifies the exact cryptographic algorithms, but any secure AEAD mode
could be used; CHACHA20-Poly1305 or AES/GCM is recommended.

Key Splitting is applied to the private key that the enclave will use to decrypt events. That
private key is a Tink key, i.e. a protobuf-encoded structure that contains the private key
itself (since ECDH is used, the private key is a randomly-chosen integer modulo the curve
order) along with a copy of the corresponding public key and metadata. The key split is
implemented using the following process (which is mathematically equivalent to Shamir’s
secret sharing scheme with only two parties): to split the value p, a sequence of random
bytes m is generated, with the same length as p; the first share is then the bitwise XOR of p
and m, and the second share is m itself. In that simplified scheme, reconstruction of p from
the two shares is done by combining the two shares with a bitwise XOR. This scheme is
secure as long as the mask m is generated from a cryptographically secure random source.
The documentation mentions the possibility of modifying this to use multi-party Shamir
secret sharing instead in the future to provide flexibility if more than two total coordinators
were to be used.

15. https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html

37 / 88 – Cryptographic Design and
Implementation Review

https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html

Recommendations
Ensure that the key generation enclave uses a secure AEAD encryption mode for
symmetric encryption tasks. The exact algorithms should be documented in a design
document.

Retest Results
The key generation enclave uses an AEAD encryption mode explicitly (using the com.google.
crypto.tink.Aead interface); the mode is set when the key itself is created in AWS KMS. The
“Secure Control Plane Split Key Design” document specifies that the ChaCha20+Poly1305
AEAD mechanism is to be used; this mode provides adequate security.

Aggregatable Report Accounting Service
The report accounting budget is a mechanism that limits the number of requests that can be
performed on the collected events. Indeed, if an arbitrary number of requests can be
performed on some events, then that allows reconstruction of the private data through
dichotomic searches; addition of random noise to each result makes such reconstruction
more expensive, but does not ultimately prevent it. To maintain the privacy of the source
data, the report accounting budget is a formal quantity that is depleted whenever some
processing is performed on the corresponding events; the budget is consumed by some
amount that depends on the type of processing performed. No processing may be
performed when the budget is insufficient. The budget can never be replenished.

The enclave code must enforce the budget-limited restrictions (i.e. refuse to return the
requested aggregate information if there is no available budget). However, the enclave does
not have any local storage capabilities as enclaves are stateless. Therefore the budget is
tracked in a dedicated Aggregatable Report Accounting Service (ARAS), maintained
externally to the enclave and run by the coordinators. A few salient points on this
mechanism are the following:

Report accounting budget enforcement is crucial for the overall property of event
privacy; without it, an unbounded number of requests can always be performed by the
entity that runs the enclave, which can leverage that ability to recover most of the private
data.

The enclave can make sure that the budget was consumed only if it could validate that it
talked to the real ARAS. This property is normally ensured by the employed transport
mechanism, as long as it offers authentication of the service by the enclave. A normal
HTTPS call is sufficient. It is not strictly necessary that the authentication be mutual (i.e.
that the ARAS authenticates the enclave) though it may help defeat denial-of-service
attacks in which a fake enclave disrupts the service by consuming the budget.

The ARAS is run as a distributed service, with both coordinators maintaining an instance
of the ARAS service. The ARAS client then reaches out to both ARAS instances in
parallel, and waits for acknowledgement from both before proceeding. This is done in
order to preserve the atomicity of transactions, and is detailed in the “Distributed Privacy
Budget Service” document, along with a description of the process used to re-
synchronize the two ARAS services if they get out of sync.

For budget usage to be properly enforced, the enclave code must ensure that the budget
consumption was acknowledged by the ARAS before returning the computed aggregate
results; otherwise, the enclave host could stop the enclave after production of the result
but before budget depletion, thereby avoiding budget consumption. The aggregation
process is implemented in ConcurrentAggregationProcessor.java; in this file, the call to
the ARAS (via the function consumePrivacyBudget) indeed occurs before scheduling the

•

•

•

•

•

38 / 88 – Cryptographic Design and
Implementation Review

https://github.com/privacysandbox/aggregation-service/blob/v0.5.0/java/com/google/aggregate/adtech/worker/aggregation/concurrent/ConcurrentAggregationProcessor.java#L325
https://github.com/privacysandbox/aggregation-service/blob/v0.5.0/java/com/google/aggregate/adtech/worker/aggregation/concurrent/ConcurrentAggregationProcessor.java#L325

return of the result. There are a couple of small documentation mismatches regarding
this point:

In the “ADMC Multi-Cloud Secure Control Plane” document, the following description
of the privacy budgeting flow is present:

Figure 3: Privacy Budgeting Flow - ADMC Multi-Cloud Secure Control Plane

However, the aggregation process only calls the ARAS service after processing the
request.

In the file PrivacyBudgetingServiceBridge.java, the following comment is used to
describe the behaviour of the consumePrivacyBudget function:

This is not entirely correct: if any budgets cannot be consumed, the transaction is
aborted and no budgets are consumed.

The distributed ARAS computation occurs as a series of Begin - Prepare - Commit -
Notify phases in order to preserve atomicity of transactions and ensure that the two
ARAS instances remain in sync, as documented in the “Distributed Privacy Budget
Service” document. During the Notify phase, the transaction can no longer be aborted
and the phase will repeat until both ARAS instances have successfully processed the
transaction. This computation occurs in the executeDistributedPhase function in Transact
ionEngineImpl.java, which will be called repeatedly until the Notify phase is complete:

However, note that the ARAS client will wait until both ARAS implementations
simultaneously report the transaction as “successfully” completed. Thus, if one of the
ARAS implementations were to report the transaction completed successfully and then
stop responding while the other ARAS implementation did not at first respond, but then
report a success, this may not be recorded properly at first, and delay finalizing the
aggregation computation.

◦

◦

•

/**

* Consumes the privacy budget for the given IDs and returns the budgets which cannot be

consumed.

*

* <p>If the method returns an empty list, that means the budgets were successfully

consumed,

* otherwise, the first few units for which the budget could not be consumed is returned.

*

* @return First few privacy budgeting units for which budget consumption failed.

*/

for (PrivacyBudgetClient privacyBudgetClient : this.privacyBudgetClients) {

ExecutionResult executionResult =

dispatchDistributedCommand(privacyBudgetClient, transaction);

if (executionResult.executionStatus() != ExecutionStatus.SUCCESS) {

// Only change if the current status was false.

if (!transaction.isCurrentPhaseFailed()) {

transaction.setCurrentPhaseFailed(true);

transaction.setCurrentPhaseExecutionResult(executionResult);

}

}

}

39 / 88 – Cryptographic Design and
Implementation Review

https://github.com/privacysandbox/aggregation-service/blob/v0.5.0/java/com/google/aggregate/adtech/worker/aggregation/privacy/PrivacyBudgetingServiceBridge.java#L26
https://github.com/privacysandbox/aggregation-service/blob/v0.5.0/java/com/google/aggregate/adtech/worker/aggregation/privacy/PrivacyBudgetingServiceBridge.java#L26
https://adm-cloud-sandbox.googlesource.com/ncc/scp/+/refs/heads/main/java/com/google/scp/operator/cpio/distributedprivacybudgetclient/TransactionEngineImpl.java#106
https://adm-cloud-sandbox.googlesource.com/ncc/scp/+/refs/heads/main/java/com/google/scp/operator/cpio/distributedprivacybudgetclient/TransactionEngineImpl.java#106
https://adm-cloud-sandbox.googlesource.com/ncc/scp/+/refs/heads/main/java/com/google/scp/operator/cpio/distributedprivacybudgetclient/TransactionEngineImpl.java#106
https://adm-cloud-sandbox.googlesource.com/ncc/scp/+/refs/heads/main/java/com/google/scp/operator/cpio/distributedprivacybudgetclient/TransactionEngineImpl.java#106

Recommendations
Ensure that the documentation regarding the Aggregatable Report Accounting Service is
complete and consistent.

Retest Results
Google updated the internal design document for the ‘ADMC Multi-Cloud Secure Control
Plane’ to ensure its accuracy. In addition, Google has updated the incorrect
documentation for ‘consumePrivacyBudget’ in the ‘java/com/google/aggregate/privacy/
budgeting/bridge/PrivacyBudgetingServiceBridge.java’ file.

Google augmented the loop in the executeDistributedPhase function to remember the
last success status from a given ARAS, which avoids the stuck ARAS client situation
described above.

Side-Channel Attacks
Side-channel attacks try to extract information about secret data from the observable
behavior of the system that processes the data, beyond the abstract model of the
computation: even if an enclave returns only an aggregate result (with added random noise),
it may leak partial information about the plaintext events through various physical channels.
Since AWS Nitro enclaves run in hardware hosted by AWS, it is assumed that potential
attackers do not have physical access to the machines, which limits potential side channels
to what can be detected and measured from the host system itself, or over a network,
without any special apparatus. In practice, this means that attackers with control of the host
are limited to timing measurements.

Attackers may observe not only the total time taken to process a batch, but may also gain
insight about the successive steps by analyzing the memory access pattern of the enclave:
indeed, every memory access, whether for fetching instructions to execute, or for reading or
writing data, exercises the various caches that sit in the CPU between the execution units
and the physical RAM. Cache misses incur extra delays (up to several hundreds of cycles),
that can be detected externally. Moreover, Nitro instances have dedicated CPU cores but
separate cores within the same physical CPU still share some of the cache (especially
level-3 cache), so that the memory access pattern of the enclave code will impact cache
layout. In particular, the enclave code might evict from cache some memory lines belonging
to other (non-enclave) VMs running on the same host, and the latter VMs could detect
which of their cache lines were so impacted through timing measurements when accessing
them again. Such cache attacks leak information about the addresses at which the enclave
code performs accesses, even if the byte values read from or written to these addresses do
not leak.

Cryptographic implementations in modern libraries (such as Tink) are implemented in ways
that avoid such information leakage, through various techniques that ensure that the
memory access pattern is independent of secret data (such implementations are colloquially
known as “constant-time”, though this nomenclature is slightly inadequate). This
characteristic should prevent any timing attack from revealing the contents of cryptographic
keys or the plaintext data while they are processed by cryptographic algorithms. However,
any processing performed on the plaintext events after decryption may conceptually leak
information about the event data, if the code performs conditional jumps that depend on the
event contents or accesses memory at addresses indexed by the event value bytes. In
particular, Base64 decoding and JSON parsing will almost certainly induce that kind of side
channel. This implies that, from a theoretical point of view, timing attacks are possible.

•

•

•

40 / 88 – Cryptographic Design and
Implementation Review

Practical timing attacks on the Privacy Sandbox Aggregation Service enclave are unlikely for
several reasons:

The attacker needs to have control of a virtual machine co-hosted on the same physical
hardware as the target enclave so that cache-based attacks may be set up (timing
attacks over a network have been demonstrated in ideal lab conditions, but are more
difficult because they require indirect cache setup and because network latencies add
noise to timing measurements). AWS allocation of virtual CPUs to physical hardware is
often opaque and hard to predict or assess.

Nitro enclaves are isolated from other VMs (and from each other) through a custom
hypervisor that is not documented. This hypervisor is not under control of the attacker.
Any attacker would have to perform substantial reverse engineering of the behavior of
the hypervisor, in particular, with regard to memory allocation, to work out where the
target data would be stored in physical RAM. Moreover, it is likely that the custom
hypervisor includes some mitigations against timing attacks, e.g. memory layout
randomization. Its implementation may also be changed by AWS at any time, without
notice.

Side-channel attacks are statistical in nature, often requiring many measurements to
extract the information signal. Such repeated executions may be externally detectable.

It may be argued that side-channel attacks are not a problem for Nitro-based enclaves.
Other enclave technologies might be more susceptible; in particular, enclave mechanisms
that are for application code only, with the (assumed potentially hostile) host running all
hypervisor tasks, allow attackers to have a very precise and accurate notion of what the
enclave code is currently doing, monitoring memory accesses on an almost cycle-by-cycle
basis. In contrast, AWS Nitro makes the hypervisor inaccessible to attackers and should be
expected to provide better isolation in the intended context.

If extra protection against side-channel attacks is desired, then one method would be to add
a network call from the enclave to the coordinator(s) before processing the incoming batch
(in particular, before even trying to decrypt the events). An attacker trying to leverage a
timing attack through multiple measurements would need to send a new batch request each
time (the enclave can be restarted at will, but not brought back directly to a previous
snapshot without cooperation from the hypervisor); if every attempt triggers a call to the
coordinators, while not being followed by the normal calls to the ARAS for report accounting
budget consumption, then such attacks will be more likely to be detected. This mitigation
does not prevent information leak but raises the difficulty of a timing attack at a moderate
extra cost (since, in the normal course of events, a network call to the coordinator-hosted
ARAS already happens).

Recommendation:

Consider adding an initial pre-decryption call to the coordinators, so that attempts at
repeated side-channel measurements on an enclave may be detected by the
coordinators.

Client Response
We decided not to implement the recommendation at this stage. Timing attacks on the
Privacy Sandbox Aggregation Service enclave are currently thought to be impractical and
there are various protections in place to prevent secret data leakage. Specifically, the
isolation provided by the Nitro-enclaves, use of cryptographic implementations and the
execution time variance added by the system components makes timing attacks to gain
timing information unlikely. Lastly, we believe that adding initial pre-decryption calls to the

•

•

•

•

41 / 88 – Cryptographic Design and
Implementation Review

coordinators provides limited security value. Going forward, we’ll continue to assess the
importance of this and other mitigations against side channel attacks.

42 / 88 – Cryptographic Design and
Implementation Review

10 Finding Details

Missing Public Key Integrity Check
Overall Risk High

Impact High

Exploitability Low

Finding ID NCC-E004186-97Y

Component Secure Control Plane

Category Cryptography

Status Fixed

CVSS 8.2 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:N)

Impact
The omission of the public key from the associated data during the encryption of
Coordinator B’s key split may lead to lack of integrity of the public key p_public , and enable
a replay attack.

Description
During the setup of the Privacy Sandbox Aggregation Service, the public key p_public and
corresponding private key p_private used for event encryption and decryption are
generated within a TEE run by Coordinator A. The private key p_private is then split into
two portions p_1 and p_2 , which are stored by Coordinator A and Coordinator B
respectively. After being generated, the key split portion p_2 is encrypted within the TEE
using the key k_b provided by Coordinator B. The encrypted key split Ek_b(p_2) and
p_public are then sent to Coordinator B. This is documented in the “Secure Control Plane
Split Key Design” document:

In particular, the documentation notes that the public key p_public should be included in
the associated data during encryption, in order to maintain integrity and prevent replay
attacks.

The split key functionality is implemented in the createSplitKeyBase() function in CreateSpli
tKeyTaskBase.java:

High

KeysetHandle privateKeysetHandle = KeysetHandle.generateNew(keyTemplate);

KeysetHandle publicKeysetHandle = privateKeysetHandle.getPublicKeysetHandle();

ImmutableList<ByteString> keySplits = KeySplitUtil.xorSplit(privateKeysetHandle, 2);

EncryptionKey key =

buildEncryptionKey(

creationTime,

validityInDays,

43 / 88 – Finding Details

Note that the encryption does not include the public key as part of the associated data
when encrypting Coordinator B’s key share. Thus, the code diverges from the design
document.

Recommendation
Modify the encryption call within the createSplitKeyBase() function to include the
publicKeysetHandle as part of the associated data.

Location
https://adm-cloud-sandbox.googlesource.com/ncc/scp/+/refs/heads/main/java/com/google/
scp/coordinator/keymanagement/keygeneration/tasks/common/CreateSplitKeyTaskBase.java
#128

Retest Results
2023-04-03 – Fixed
The issue has been resolved by ensuring that the public key is used during the encryption
process. The fix can be traced through the following code snippets:

In CreateSplitKeyTaskBase.java (line 161), the encryptedKeySplitB value is created by
calling the encryptPeerCoordinatorSplit() function and passing the public key material
as a third parameter.

The call then goes to AwsCreateSplitKeyTask.java (line 69), where the Base64-encoded
encrypted key split and public key are passed to the encryptWithDataKey() function.

Finally, in DataKeyEncryptionUtil.java (line 52), the public key material is converted to
bytes and used as additional data for AEAD encryption, which is in line with the
specifications.

1.

2.

3.

ttlInDays,

publicKeysetHandle,

keyEncryptionKeyUri,

signatureKey);

unsignedCoordinatorAKey =

createCoordinatorAKey(keySplits.get(0), key, keyEncryptionKeyAead, keyEncryptionKeyUri);

unsignedCoordinatorBKey = createCoordinatorBKey(key);

encryptedKeySplitB = encryptPeerCoordinatorSplit(keySplits.get(1), dataKey);

44 / 88 – Finding Details

https://adm-cloud-sandbox.googlesource.com/ncc/scp/+/refs/heads/main/java/com/google/scp/coordinator/keymanagement/keygeneration/tasks/common/CreateSplitKeyTaskBase.java#128
https://adm-cloud-sandbox.googlesource.com/ncc/scp/+/refs/heads/main/java/com/google/scp/coordinator/keymanagement/keygeneration/tasks/common/CreateSplitKeyTaskBase.java#128
https://adm-cloud-sandbox.googlesource.com/ncc/scp/+/refs/heads/main/java/com/google/scp/coordinator/keymanagement/keygeneration/tasks/common/CreateSplitKeyTaskBase.java#128
https://adm-cloud-sandbox.googlesource.com/ncc/scp/+/refs/heads/main/java/com/google/scp/coordinator/keymanagement/keygeneration/tasks/common/CreateSplitKeyTaskBase.java#128

EC2 Instance Metadata Service Version 1 In
Use
Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E004186-7DQ

Component Holistic Attacker Modeled
Pentest

Category Configuration

Status Fixed

CVSS 3.3 (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N)

Impact
The virtual machine uses IMDS v1 which has no security features to mitigate server-side
request forgery attack. An attacker could gain access to the operator-demo-env01-
AggregationServiceWorkerRole role via IMDS v1. Limited S3, DynamoDB, CloudWatch, SSM,
AutoScale, and SQS permissions were assigned to this role and the attacker could use them
with the access token from IMDS v1.

Description
One EC2 instance was found to have the AWS Instance Metadata Service (IMDS) Version 1
enabled. Although this version is not inherently insecure, it has been leveraged as part of a
number of high profile breaches, leading to the release of Version 2, which contains
additional security features targeted to mitigate the risk from potential exploitation vectors.

The Instance Metadata Service is an API used by instances to retrieve data about
themselves. In Version 1, a simple request/response model is used to communicate with this
API. Version 2 mitigates attacks such as server-side request forgery by implementing a
session-oriented model in which requests to obtain metadata must carry a session token in
a custom HTTP header. The session token can only be obtained through HTTP PUT requests
that do not contain X-Forward-For headers.

For example, the following command was executed to retrieve the metadata configuration
for the aggregation-service-operator-demo-env01 (i-07c95fd65f7db8721) instance:

The "HttpEndpoint": "enabled" value indicated that instance metadata was enabled for this
instance; while "HttpTokens": "optional" indicated that IMDSv2 was not enforced. If
IMDSv2 were enabled, the HttpTokens parameter would be set to required .

Low

$ aws ec2 describe-instances --instance-ids i-07c95fd65f7db8721 --query

"Reservations[].Instances[].

{HttpEndpoint:MetadataOptions.HttpEndpoint,HttpTokens:MetadataOptions.HttpTokens}"

[

{

"HttpEndpoint": "enabled",

"HttpTokens": "optional"

}

]

45 / 88 – Finding Details

By querying the IMDS service, it was possible to retrieve role credentials with limited S3,
DynamoDB, CloudWatch, SSM, AutoScale, and SQS permissions:

Recommendation
The following are recommended to ensure all instances use the latest version of the IMDS:16

17 18 19

Update SDKs, CLIs and other software using the Instance Metadata Service to IMDSv2-
compatible versions

For existing instances, it is possible to require IMDSv2 using the modify-instance-
metadata-options command for a specific instance

For new instances, the use of IMDSv2 can be specified using the run-instances
command

Location
AccountID 435145098221

EC2 VM i-07c95fd65f7db8721

Retest Results
2023-03-31 – Fixed
The issue has been address by updating the file operator/terraform/aws/modules/worker/
main.tf to set metadata_options . Enabling metadata_options in Terraform helps prevent
SSRF attacks by restricting access to the instance metadata service from within the EC2
instance. Dynamic testing of the EC2 instance confirms that the ssm-user and root user is
unable to retrieve metadata by curling http://169.254.169.254/latest/meta-data/ .

•

•

•

•

•

curl http://169.254.169.254/latest/meta-data/iam/security-credentials/operator-demo-env01-

AggregationServiceWorkerRole

{ "Code" : "Success",

"LastUpdated" : "2023-01-19T14:30:23Z",

"Type" : "AWS-HMAC",

"AccessKeyId" : "ASIAWKUFLIPWSBOMBC4R",

"SecretAccessKey" : "T3c84oo0u3Nah1NP8SOG04+{REMOVED DATA}",

"Token" : "{REMOVED DATA}",

"Expiration" : "2023-01-19T20:42:27Z"}

16. AWS EC2: https://aws.amazon.com/ec2/
17. AWS Documentation – Configuring Instance Metadata Service: https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
18. AWS Documentation – modify-instance-metadata-options command: https://
docs.aws.amazon.com/cli/latest/reference/ec2/modify-instance-metadata-options.html
19. AWS Blog – Add defense in depth against open firewalls, reverse proxies, and SSRF vulnerabilities
with enhancements to the EC2 Instance Metadata Service: https://aws.amazon.com/blogs/security/
defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/

46 / 88 – Finding Details

https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/modify-instance-metadata-options.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/modify-instance-metadata-options.html
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/

Lack of Overwrite Controls in S3
Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E004186-9HH

Component API

Category Access Controls

Status Risk Accepted

CVSS 4.8 (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:L)

Impact
An authenticated attacker can overwrite data stored inside the S3 bucket where aggregated
reports and outputted summary report are stored.

Description
The createAsJob API provides a way for operators to initiate jobs by parsing JSON data from
the request body. This endpoint then initiates a job according to the parameters provided
and stores the job details in a database. Additionally, it adds a message to a queue. A
separate Data Processing service listens for these messages and handles the job
asynchronously. The issue here is that the write location (output_data_blob_prefix) has the
ability to overwrite existing data stored in the S3 bucket. This opens up the opportunity for
an attacker that has access to the API to overwrite previous output files or even encrypted
source data. Additionally, an attacker may be able to overwrite the .tfstate file stored in
the S3 bucket. If an attacker overwrites the .tfstate file and the local .tfstate is lost, the
user may be at risk of losing sensitive data stored in the .tfstate file.

The Aggregation Service set-up instructions do prompt the user to “Consider enabling
versioning to preserve, retrieve, and restore previous versions and set appropriate policies
for this bucket to prevent accidental changes and deletion.” However, relying on users to
turn on this security control can be risky as it relies on the assumption that users will
remember to enable it.

Given the limited usefulness of this vector from an attacker perspective and the need to
know the target file name, the resulting risk rating for this finding is low.

The parameters of the createJob API are shown in the following JSON snippet. The output_d
ata_blob_prefix parameter can be used to overwrite files if an existing file name is chosen.

Recommendation
The service could automatically assign the output file name with a randomly generated
string, such as a universally unique identifier (UUID) or pseudo string. This would make it
difficult for an attacker to predict output file names.

Low

•

{

"input_data_blob_prefix":"reports.avro2",

"input_data_bucket_name":"pentesting-demo",

"output_data_blob_prefix": "<output name here>",

"output_data_bucket_name":"pentesting-demo",

"postback_url": "http://postback.com",

"job_parameters": {

"attribution_report_to": "foo.com"

},

"job_request_id":"AAAAA5"

}

47 / 88 – Finding Details

If the user requires the ability to assign the output file name, the service should have a
check whether that output file name already exists within storage before processing the
job.

Reproduction Steps
Generate a clean set of aggregated date via the POST /createJob endpoint

Note the output_data_blob_prefix name field

Generate a new job via POST to /createJob endpoint. Maintain the same
output_data_blob_prefix name field but change the job_request_id field.

Note the new timestamp of the replaced file.

Location
https://api-gateway/stage/v1alpha/createJob

Retest Results
2023-03-31 – Not Fixed
According to Google’s documentation, it’s recommended to enable versioning on the bucket
to preserve and restore previous versions, and set appropriate policies to prevent accidental
changes and deletions.

Client Response
Ad tech is responsible for enabling versioning on the S3 bucket

•

1.

2.

3.

4.

48 / 88 – Finding Details

Lack of VM Image Hardening
Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E004186-JPU

Component Holistic Attacker Modeled
Pentest

Category Configuration

Status Fixed

CVSS 4.5 (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:L)

Impact
An attacker could easily connect to other virtual machines or databases within the network,
gather information about other resources and copy data out from the cloud environment
without raising any alerts. Furthermore, it is possible to interact with the IMDS and gain
access to a role associated with the virtual machine. Interacting with the nitro enclave is
also possible.

Description
The EC2 virtual machine (VM) that was running the Nitro enclave had no hardened AMI
image.20 21 Without hardening, the virtual machine uses default configurations that prioritize
general usage instead of maximum security. The developer tool python can be used for
executing DNS tunneling tools and data exfiltration. The networking tools tcpdump , curl and
wget can be used for querying IMDS v1 and gaining access to the operator-demo-env01-
AggregationServiceWorkerRole . The Package manager yum could be used to install tools for
further attacks and to list outdated and vulnerable packages. SSH was also installed on the
VM, which can be used for lateral movement within the VPC. It is worth noting that the VM
had no public IP address assigned and had no EC2 key-pairs associated for SSH connection.

In addition, it was running without UEFI secure boot.22 23 This meant that it was not possibly
to provide verification about the state of the boot chain or to ensure that only
cryptographically verified UEFI binaries were executed after the self-initialization of the
firmware.

Recommendation
Create and enable UEFI secure boot for the Linux AMI image. Consider choosing a minimal
image with only the necessary packages or removing any packages and binaries (including
compilers, network utilities, postfix , ssh , package managers, etc) from the current image
that are not necessary for running the enclave. In addition, apply kernel hardening via sysctl
settings and file system restriction. 24

Location
EC2 VM i-07c95fd65f7db8721

Low

•

20. Container-Optimized OS Overview: https://cloud.google.com/container-optimized-os/docs/
concepts/features-and-benefits
21. Security Overview: https://cloud.google.com/container-optimized-os/docs/concepts/security
22. How UEFI Secure Boot works: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-uefi-
secure-boot-works.html
23. Amazon EC2 Now Supports NitroTPM and UEFI Secure Boot: https://aws.amazon.com/blogs/aws/
amazon-ec2-now-supports-nitrotpm-and-uefi-secure-boot/
24. Kernel Hardening Via Systctl: https://obscurix.github.io/security/kernel-hardening.html

49 / 88 – Finding Details

https://cloud.google.com/container-optimized-os/docs/concepts/features-and-benefits
https://cloud.google.com/container-optimized-os/docs/concepts/features-and-benefits
https://cloud.google.com/container-optimized-os/docs/concepts/security
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-uefi-secure-boot-works.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-uefi-secure-boot-works.html
https://aws.amazon.com/blogs/aws/amazon-ec2-now-supports-nitrotpm-and-uefi-secure-boot/
https://aws.amazon.com/blogs/aws/amazon-ec2-now-supports-nitrotpm-and-uefi-secure-boot/
https://obscurix.github.io/security/kernel-hardening.html

Retest Results
2023-03-31 – Fixed
Google has migrated from the default Amazon Linux image to the minimal version of Amazon
Linux image 2023, resulting in a significant reduction in unnecessary packages that are not
required to run the Aggregation Service.

The findings suggest that certain developer tools could pose a potential security threat.
However, it should be noted that these tools also have legitimate use cases for the
Aggregation Service to operate effectively. For instance, py3 (pyyaml) is used in the Nitro
Enclave Allocator, curl is used in the script for managing enclaves, and yum/dnf package
manager is used in creating the Amazon Machine Image (AMI).

At the time of writing, Amazon Web Services (AWS) does not support UEFI secure boot in
their Amazon Linux Image 2022 and 2023. The only distribution that AWS currently offers
support for UEFI is Ubuntu Linux. Google has reported that they will offer UEFI secure boot
once it is supported by AWS.

Client Response
Vulnerabilities in the host would not lead to any impact on processing within the enclave, i.e.
all promises made by the design are maintained. In addition, ad techs can build the code
and use their own AMI; we supply an AMI only for convenience.

50 / 88 – Finding Details

Docker Image with Scan Findings
Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E004186-R6C

Component Holistic Attacker Modeled
Pentest

Category Configuration

Status Fixed

CVSS 5.2 (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:H/A:L)

Impact
Vulnerable components may allow an attacker to gain access to the VM in case of
successful exploitation of these additional attack vectors.

Description
The EC2 VM (i-07c95fd65f7db8721) hosted the Nitro enclave service which runs the
aggregation service workers. The image (gcr.io/distroless/
java@sha256:1606422cc472612cb5bcd885684b4bf87b3813246c266df473357dce5a0fb4b4) used for
Nitro enclave had vulnerabilities identified by the Grype and Trivy SAST scanning tools.
Image scanning helps in identifying software vulnerabilities in container images. They use
the Common Vulnerabilities and Exposures (CVEs) database and provides with a list of scan
findings. Users can review the scan findings for information about the security of the
container images that are being deployed.

The following Grype command was executed to retrieve the latest scan findings for the
image:

The following Trivy command was executed to retrieve the latest scan findings for the
image:

Low

grype gcr.io/distroless/

java@sha256:1606422cc472612cb5bcd885684b4bf87b3813246c266df473357dce5a0fb4b4

 1 ⨯
✔ Vulnerability DB [no update available]

✔ Pulled image

✔ Loaded image

✔ Parsed image

✔ Cataloged packages [21 packages]

✔ Scanned image [123 vulnerabilities]

root@ip-10-0-100-19 tmp]# /usr/local/bin/trivy image gcr.io/distroless/

java@sha256:1606422cc472612cb5bcd885684b4bf87b3813246c266df473357dce5a0fb4b4

2023-01-18T18:29:36.612Z INFO Need to update DB

2023-01-18T18:29:36.612Z INFO DB Repository: ghcr.io/aquasecurity/trivy-db

2023-01-18T18:29:36.612Z INFO Downloading DB...

36.07 MiB / 36.07 MiB

[--

---] 100.00% 11.51 MiB p/s 3.3s

2023-01-18T18:29:40.633Z INFO Vulnerability scanning is enabled

2023-01-18T18:29:40.633Z INFO Secret scanning is enabled

2023-01-18T18:29:40.633Z INFO If your scanning is slow, please try '--security-

checks vuln' to disable secret scanning

51 / 88 – Finding Details

As can be seen in the above output, the scanning tools identified more than 100
vulnerabilities, including 20 critical and 29 high risk findings, for this image. It was not
possible to identify if any of the vulnerable packages or libraries were used by the
application. Overall Risk has been set to Low rather than High, because access to the
running system by the enclave was very limited. The output of the scanners can be found in
the Supplemental Data - Docker Image Scan Results section.

Recommendation
Update the image and packages if any of the vulnerabilities affect the application or
services. 252627

Location
GCP Docker registry gcr.io/distroless/java@sha256:1606422cc472612cb5bcd885684b4b
f87b3813246c266df473357dce5a0fb4b4

File location aggregation-service-0.5.0/terraform/aws/control-plane-shared-libraries/
WORKSPACE

Retest Results
2023-04-03 – Partially Fixed
The Google team has provided the latest Java base image, whose hash can be found below.
At the time of this writing, the new image has not yet been incorporated into the build
scripts. It will be available in the next release.

As of the scan conducted using Grype, all reported vulnerabilities for the new java base
image are either negligible or have been marked as ‘won’t fix’ by the package maintainers.

In addition, Google has reported that they will be implementing a patching policy to ensure
that the Java base image is continuously updated, in order to mitigate any potential
vulnerabilities in the image.

•

•

2023-01-18T18:29:40.633Z INFO Please see also https://aquasecurity.github.io/trivy/

v0.36/docs/secret/scanning/#recommendation for faster secret detection

2023-01-18T18:29:41.349Z INFO Detected OS: debian

2023-01-18T18:29:41.349Z INFO Detecting Debian vulnerabilities...

2023-01-18T18:29:41.355Z INFO Number of language-specific files: 0

gcr.io/distroless/java@sha256:1606422cc472612cb5bcd885684b4bf87b3813246c266df473357dce5a0fb4b4

(debian 10.9)

Total: 128 (UNKNOWN: 3, LOW: 32, MEDIUM: 44, HIGH: 29, CRITICAL: 20)

Distroless image for running Java.

container_pull(

name = "java_base",

Using SHA-256 for reproducibility.

digest = "sha256:f88c393a67fff3f9b599eca0e90350ee27e96d3803cbc7742ec23de6a9d6dd7d",

registry = "gcr.io",

repository = "distroless/java11-debian11",

)

25. ECR Image scanning - https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-
scanning.html
26. Troubleshooting Image Scanning Issues - https://docs.aws.amazon.com/AmazonECR/latest/
userguide/image-scanning-troubleshooting.html
27. Top 20 Dockerfile best practices - https://sysdig.com/blog/dockerfile-best-practices/

52 / 88 – Finding Details

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning-troubleshooting.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning-troubleshooting.html
https://sysdig.com/blog/dockerfile-best-practices/

2023-08-03 – Fixed
At the time of writing, this finding has been successfully addressed. Google has provided an
environment with a new base image that exhibits minor issues. These issues, identified
through the same scanning tool, Grype, have been classified as negligible or have been
tagged as ‘won’t fix’ by the package maintainers.

In an effort to maintain the most updated secure images, Google has implemented a patch
policy. This policy outlines strategies for implementing patches, taking into consideration
factors such as the release type, release schedule, and deprecation schedule.

Distroless image for running Java.

container_pull(

name = "java_base",

Using SHA-256 for reproducibility. The tag is latest-amd64. Latest as of 2023-07-10.

digest = "sha256:052076466984fd56979c15a9c3b7433262b0ad9aae55bc0c53d1da8ffdd829c3",

registry = "gcr.io",

repository = "distroless/java17-debian11",

)

53 / 88 – Finding Details

Container Image with Scan Findings
Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E004186-TBC

Component Aggregatable Report
Accounting Service

Category Configuration

Status Fixed

CVSS 5.2 (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:H/A:L)

Impact
Vulnerable components may allow an attacker to gain access to the VM in case of
successful exploitation of these additional attack vectors.

Description
The container image (gcr.io/distroless/
cc@sha256:5149ac109a77868790638769902c9b088b429a82c2241a0e88547074be01713a) used to host
the Aggregatable Report Accounting Service service had vulnerabilities identified by the
Grype and Trivy SAST scanning tools. Image scanning helps in identifying software
vulnerabilities in container images. They use the Common Vulnerabilities and Exposures
(CVEs) database and provides with a list of scan findings. Users can review the scan
findings for information about the security of the container images that are being deployed.

The following Grype command was executed to retrieve the latest scan findings for the
image:

Low

grype gcr.io/distroless/

cc:latest

 1 ⨯
✔ Vulnerability DB [no update available]

✔ Pulled image

✔ Loaded image

✔ Parsed image

✔ Cataloged packages [9 packages]

✔ Scanned image [13 vulnerabilities]

NAME INSTALLED FIXED-IN TYPE VULNERABILITY SEVERITY

libc6 2.31-13+deb11u5 deb CVE-2010-4756 Negligible

libc6 2.31-13+deb11u5 deb CVE-2018-20796 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-1010022 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-1010023 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-1010024 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-1010025 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-9192 Negligible

libssl1.1 1.1.1n-0+deb11u3 deb CVE-2007-6755 Negligible

libssl1.1 1.1.1n-0+deb11u3 deb CVE-2010-0928 Negligible

libssl1.1 1.1.1n-0+deb11u3 (won't fix) deb CVE-2022-2097 Medium

openssl 1.1.1n-0+deb11u3 deb CVE-2007-6755 Negligible

openssl 1.1.1n-0+deb11u3 deb CVE-2010-0928 Negligible

openssl 1.1.1n-0+deb11u3 (won't fix) deb CVE-2022-2097 Medium

54 / 88 – Finding Details

The following Trivy command was executed to retrieve the latest scan findings for the
image:

As can be seen in the above output, the scanning tools identified 13 vulnerabilities, including
11 low and 2 medium risk findings, for this image. It was not possible to identify if any of the
vulnerable packages or libraries were used by the application. Overall Risk has been set to
Low rather than High, because access to the running system is very limited. The output of
the scanners can be found in the Supplemental Data - Container Image Scan Results
section.

Recommendation
Update the image and packages if any of the vulnerabilities affect the application or
services.

Location
GCP Docker registry gcr.io/distroless/java@sha256:1606422cc472612cb5bcd885684b4b
f87b3813246c266df473357dce5a0fb4b4

File location SCP/WORKSPACE

Retest Results
2023-04-03 – Partially Fixed
The Google team has provided the latest Java base image, whose hash can be found below.
At the time of this writing, the new image has not yet been incorporated into the build
scripts. It will be available in the next release.

As of the scan conducted using Grype, all reported vulnerabilities for the new java base
image are either negligible or have been marked as ‘won’t fix’ by the package maintainers.

•

•

/usr/local/bin/trivy image gcr.io/distroless/cc:latest

2023-01-25T19:10:15.513Z INFO Need to update DB

2023-01-25T19:10:15.513Z INFO DB Repository: ghcr.io/aquasecurity/trivy-db

2023-01-25T19:10:15.513Z INFO Downloading DB...

36.21 MiB / 36.21 MiB

[--

---] 100.00% 30.47 MiB p/s 1.4s

2023-01-25T19:10:17.335Z INFO Vulnerability scanning is enabled

2023-01-25T19:10:17.335Z INFO Secret scanning is enabled

2023-01-25T19:10:17.335Z INFO If your scanning is slow, please try '--security-

checks vuln' to disable secret scanning

2023-01-25T19:10:17.335Z INFO Please see also https://aquasecurity.github.io/trivy/

v0.36/docs/secret/scanning/#recommendation for faster secret detection

2023-01-25T19:10:18.625Z INFO Detected OS: debian

2023-01-25T19:10:18.625Z INFO Detecting Debian vulnerabilities...

2023-01-25T19:10:18.628Z INFO Number of language-specific files: 0

gcr.io/distroless/cc:latest (debian 11.6)

Total: 13 (UNKNOWN: 0, LOW: 11, MEDIUM: 2, HIGH: 0, CRITICAL: 0)

55 / 88 – Finding Details

In addition, Google has reported that they will be implementing a patching policy to ensure
that the Java base image is continuously updated, in order to mitigate any potential
vulnerabilities in the image.

2023-08-03 – Fixed
At the time of writing, this finding has been successfully addressed. Google has provided an
environment with a new base image that exhibits minor issues, which have been classified
as negligible or have been tagged as ‘won’t fix’ by the package maintainers.

In an effort to maintain the most updated secure images, Google has implemented a patch
policy. This policy outlines strategies for implementing patches, taking into consideration
factors such as the release type, release schedule, and deprecation schedule.

Distroless image for running Java.

container_pull(

name = "java_base",

Using SHA-256 for reproducibility.

digest = "sha256:f88c393a67fff3f9b599eca0e90350ee27e96d3803cbc7742ec23de6a9d6dd7d",

registry = "gcr.io",

repository = "distroless/java11-debian11",

)

56 / 88 – Finding Details

Lambda Function Without Code Signing
Overall Risk Informational

Impact Low

Exploitability Low

Finding ID NCC-E004186-A44

Component Holistic Attacker Modeled
Pentest

Category Data Validation

Status Risk Accepted

CVSS 4.1 (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:H/A:N)

Impact
Untrusted or unknown code can be deployed without any notification.

Description
Code signing for the Lambda Functions was not enabled and configured. When code signing
is enabled, every code deployment is checked and verified to ensure that it has been signed
by a trusted source. This could prevent an attacker or malicious insider from deploying
unauthorized, unknown, or modified Lambda code.

Code signing events such as successful and blocked deployment can be logged with
CloudTrail. If a trail is configured for these events, the administrator or security team can be
notified for ongoing suspicious Lambda code deployment activities.

The following screenshot shows an example Lambda Function without code signing:

Figure 4: Code signing configuration setting

Recommendation
Configure code signing and enable logging in CloudTrail. 28

Location
AccountID 435145098221

Retest Results
2023-03-31 – Not Fixed

Client Response
Enabling and configuring code signing is the responsibility of ad tech.

Info

•

28. Configuring code signing for AWS Lambda: https://docs.aws.amazon.com/lambda/latest/dg/
configuration-codesigning.html?icmpid=docs_lambda_help

57 / 88 – Finding Details

https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_help
https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_help

IAM Role Assigned with Excessive Permission
Overall Risk Informational

Impact Low

Exploitability Low

Finding ID NCC-E004186-HWM

Component Holistic Attacker Modeled
Pentest

Category Access Controls

Status Risk Accepted

CVSS 2.7 (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:N)

Impact
An attacker that compromises the EC2 instance or operator-demo-env01-
AggregationServiceWorkerRole role could list to more than just the Aggregation Service and/
or control plane parameters.

Description
The role operator-demo-env01-AggregationServiceWorkerRole assigned to the running EC2
instance appears to have excessive permissions. Specifically, it has permission to list all
SSM parameters in the AWS environment.

The operator-demo-env01-AggregationServiceWorkerRole role had the terraform-202301050000
40279800000015 permission which contained the following:

This mean that any user with command line access to the machine above would be able to
get information about a parameter or secret parameter from the parameter store. One way
to gain access to the role is discussed in the finding "EC2 Instance Metadata Service
Version 1 In Use".

Recommendation
Create security policies which follow the principle of least privilege. In this case, limit the
resources that can be read from the parameter store. These policies should then be
attached to the roles in use.29

In particular, the role could be limited to accessing SSM parameters matching the following
name patterns:

aggregate-service

scp-operator

Location
AccountID 435145098221

IAM Role operator-demo-env01-AggregationServiceWorkerRole

Info

•

•

•

•

"Sid": "AllowSsmGetParameters",

"Effect": "Allow",

"Action": "ssm:GetParameters",

"Resource": "arn:aws:ssm:::parameter/*"

29. Restricting access to Systems Manager parameters using IAM policies https://
docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-access.html

58 / 88 – Finding Details

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-access.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-access.html

Retest Results
2023-03-31 – Not Fixed

Client Response
The permission was intentionally left open to allow operators to use the parameter client to
get any parameter they created themselves.

59 / 88 – Finding Details

Dynamo DB Alerting Not Enabled
Overall Risk Informational

Impact Low

Exploitability Low

Finding ID NCC-E004186-HH4

Component Architecture Design Review

Category Auditing and Logging

Status Fixed

CVSS 3.3 (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:L)

Impact
In the event of Dynamo database critical load, operators will not be notified before seeing
impact on service performance.

Description
The Dynamo DB instances within Privacy Sandbox Aggregation Service were observed to
push all logs to CloudWatch. However, no alerting policy was set.

As Cloudwatch did not have an Alert policy configured, Google would not be notified in the
event of an attack or database storage saturation. This would make it difficult for Google to
take remedial action before database performance began to be impacted.

Recommendation
NCC Group recommends that CloudWatch alarms should be configured for all integrated
Dynamo DB instances as described in the Dynamo documentation30.

Location
Privacy Sandbox Aggregation Service

Retest Results
2023-03-31 – Fixed
The Google team resolved this issue by adding alarms within the Terraform configuration
script for the Privacy Sandbox Aggregation Service and the Aggregatable Report Accounting
Service to monitor potential issues. The alarms cover log thresholds, ELB error indicators,
and DynamoDB table capacity alarms. When any of these alarms are triggered, notifications
will be sent to the specified SNS topic.

Info

•

30. Creating CloudWatch alarms to monitor DynamoDB - https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/creating-alarms.html

60 / 88 – Finding Details

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/creating-alarms.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/creating-alarms.html

11 Contact Info
The team from NCC Group has the following primary members:

Elena Bakos Lang – Consultant

Gage Polonsky – Project Manager

Giacomo Pope – Consultant

Giovanni De Ferrari – Consultant

Huy Nguyen– Consultant

Lydia Yao– Consultant

Thomas Pornin – Consultant

Tyler Colgan– Consultant

Viktor Gazdag – Consultant

The team from Google Inc has the following primary members:

Chanda Patel
chandapatel@google.com

Renan Feldman
renanf@google.com

Robert Kubis
robertkubis@google.com

Ruchi Lohani
rlohani@google.com

Google welcomes additional feedback at the Aggregation Service GitHub repository.

•

•

•

•

•

•

•

•

•

•

•

•

•

61 / 88 – Contact Info

mailto:chandapatel@google.com
mailto:renanf@google.com
mailto:robertkubis@google.com
mailto:rlohani@google.com
https://github.com/privacysandbox/aggregation-service

12 Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group
identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,
application’s exposure and user population, technical difficulty of exploitation, and other
factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.
Every organization has a different risk sensitivity, so to some extent these recommendations
are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target
system or systems. It takes into account the impact of the finding, the difficulty of
exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily
accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a
small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for
application improvement, functional issues with the application, or
conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or
systems. It takes into account potential losses of confidentiality, integrity and availability, as
well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on
the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny
access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly
degrade system performance. May have a negative public perception of
security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into
account the level of access required, availability of exploitation information, requirements
relating to social engineering, race conditions, brute forcing, etc, and other impediments to
exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or
significant roadblocks.

62 / 88 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,
exploit a race condition, already have privileged access, or otherwise
overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,
guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.
This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or
software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

63 / 88 – Finding Field Definitions

13 Supplemental Data - Docker Image Scan
Results

Grype image scan result:

rype gcr.io/distroless/

java@sha256:1606422cc472612cb5bcd885684b4bf87b3813246c266df473357dce5a0fb4b4

 1 ⨯
✔ Vulnerability DB [no update available]

✔ Pulled image

✔ Loaded image

✔ Parsed image

✔ Cataloged packages [21 packages]

✔ Scanned image [123 vulnerabilities]

NAME INSTALLED FIXED-IN TYPE

VULNERABILITY SEVERITY

libc6 2.28-10 deb

CVE-2010-4756 Negligible

libc6 2.28-10 deb

CVE-2018-20796 Negligible

libc6 2.28-10 deb

CVE-2019-1010022 Negligible

libc6 2.28-10 deb

CVE-2019-1010023 Negligible

libc6 2.28-10 deb

CVE-2019-1010024 Negligible

libc6 2.28-10 deb

CVE-2019-1010025 Negligible

libc6 2.28-10 deb

CVE-2019-9192 Negligible

libc6 2.28-10 (won't fix) deb

CVE-2020-1751 High

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2016-10228 Medium

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2019-19126 Low

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2019-25013 Medium

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2020-10029 Medium

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2020-1752 High

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2020-27618 Medium

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2020-6096 High

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2021-27645 Low

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2021-3326 High

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2021-33574 Critical

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2021-35942 Critical

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2021-3999 High

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2022-23218 Critical

64 / 88 – Supplemental Data - Docker Image
Scan Results

libc6 2.28-10 2.28-10+deb10u2 deb

CVE-2022-23219 Critical

libexpat1 2.2.6-2+deb10u1 deb

CVE-2013-0340 Negligible

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2021-45960 High

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2021-46143 High

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2022-22822 Critical

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2022-22823 Critical

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2022-22824 Critical

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2022-22825 High

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2022-22826 High

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2022-22827 High

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2022-23852 Critical

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u2 deb

CVE-2022-23990 High

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u3 deb

CVE-2022-25235 Critical

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u3 deb

CVE-2022-25236 Critical

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u3 deb

CVE-2022-25313 Medium

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u3 deb

CVE-2022-25314 High

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u3 deb

CVE-2022-25315 Critical

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u5 deb

CVE-2022-40674 Critical

libexpat1 2.2.6-2+deb10u1 2.2.6-2+deb10u6 deb

CVE-2022-43680 High

libfreetype6 2.9.1-3+deb10u2 deb

CVE-2022-31782 Negligible

libfreetype6 2.9.1-3+deb10u2 2.9.1-3+deb10u3 deb

CVE-2022-27404 Critical

libfreetype6 2.9.1-3+deb10u2 2.9.1-3+deb10u3 deb

CVE-2022-27405 High

libfreetype6 2.9.1-3+deb10u2 2.9.1-3+deb10u3 deb

CVE-2022-27406 High

libgcc1 1:8.3.0-6 (won't fix) deb

CVE-2018-12886 High

libgcc1 1:8.3.0-6 (won't fix) deb

CVE-2019-15847 High

libgomp1 8.3.0-6 (won't fix) deb

CVE-2018-12886 High

libgomp1 8.3.0-6 (won't fix) deb

CVE-2019-15847 High

libjpeg62-turbo 1:1.5.2-2+deb10u1 deb

CVE-2017-15232 Negligible

libjpeg62-turbo 1:1.5.2-2+deb10u1 deb

CVE-2018-11813 Negligible

65 / 88 – Supplemental Data - Docker Image
Scan Results

libjpeg62-turbo 1:1.5.2-2+deb10u1 deb

CVE-2020-17541 Negligible

libjpeg62-turbo 1:1.5.2-2+deb10u1 (won't fix) deb

CVE-2020-35538 Medium

libjpeg62-turbo 1:1.5.2-2+deb10u1 (won't fix) deb

CVE-2021-46822 Medium

libpng16-16 1.6.36-6 deb

CVE-2018-14048 Negligible

libpng16-16 1.6.36-6 deb

CVE-2018-14550 Negligible

libpng16-16 1.6.36-6 deb

CVE-2019-6129 Negligible

libpng16-16 1.6.36-6 deb

CVE-2021-4214 Negligible

libssl1.1 1.1.1d-0+deb10u6 deb

CVE-2007-6755 Negligible

libssl1.1 1.1.1d-0+deb10u6 deb

CVE-2010-0928 Negligible

libssl1.1 1.1.1d-0+deb10u6 (won't fix) deb

CVE-2022-2097 Medium

libssl1.1 1.1.1d-0+deb10u6 1.1.1d-0+deb10u7 deb

CVE-2021-3711 Critical

libssl1.1 1.1.1d-0+deb10u6 1.1.1d-0+deb10u7 deb

CVE-2021-3712 High

libssl1.1 1.1.1d-0+deb10u6 1.1.1d-0+deb10u8 deb

CVE-2021-4160 Medium

libssl1.1 1.1.1d-0+deb10u6 1.1.1d-0+deb10u8 deb

CVE-2022-0778 High

libssl1.1 1.1.1d-0+deb10u6 1.1.1n-0+deb10u2 deb

CVE-2022-1292 Critical

libssl1.1 1.1.1d-0+deb10u6 1.1.1n-0+deb10u3 deb

CVE-2022-2068 Critical

libstdc++6 8.3.0-6 (won't fix) deb

CVE-2018-12886 High

libstdc++6 8.3.0-6 (won't fix) deb

CVE-2019-15847 High

libuuid1 2.33.1-0.1 deb

CVE-2022-0563 Negligible

libuuid1 2.33.1-0.1 (won't fix) deb

CVE-2021-37600 Low

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 (won't fix) deb

CVE-2022-21619 Low

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 (won't fix) deb

CVE-2022-21624 Low

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 (won't fix) deb

CVE-2022-21626 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 (won't fix) deb

CVE-2022-21628 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 (won't fix) deb

CVE-2022-39399 Low

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.11+9-1~deb10u1 deb

CVE-2021-2163 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.12+7-2~deb10u1 deb

CVE-2021-2341 Low

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.12+7-2~deb10u1 deb

CVE-2021-2369 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.12+7-2~deb10u1 deb

CVE-2021-2388 High

66 / 88 – Supplemental Data - Docker Image
Scan Results

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35550 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35556 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35559 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35561 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35564 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35565 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35567 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35578 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35586 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.13+8-1~deb10u1 deb

CVE-2021-35603 Low

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21248 Low

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21277 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21282 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21283 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21291 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21293 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21294 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21296 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21299 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21305 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21340 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21341 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21360 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21365 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.14+9-1~deb10u1 deb

CVE-2022-21366 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.15+10-1~deb10u1 deb

CVE-2022-21426 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.15+10-1~deb10u1 deb

CVE-2022-21434 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.15+10-1~deb10u1 deb

CVE-2022-21443 Low

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.15+10-1~deb10u1 deb

CVE-2022-21476 High

67 / 88 – Supplemental Data - Docker Image
Scan Results

Trivy image scan result:

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.15+10-1~deb10u1 deb

CVE-2022-21496 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.16+8-1~deb10u1 deb

CVE-2022-21540 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.16+8-1~deb10u1 deb

CVE-2022-21541 Medium

openjdk-11-jre-headless 11.0.9.1+1-1~deb10u2 11.0.16+8-1~deb10u1 deb

CVE-2022-34169 High

openssl 1.1.1d-0+deb10u6 deb

CVE-2007-6755 Negligible

openssl 1.1.1d-0+deb10u6 deb

CVE-2010-0928 Negligible

openssl 1.1.1d-0+deb10u6 (won't fix) deb

CVE-2022-2097 Medium

openssl 1.1.1d-0+deb10u6 1.1.1d-0+deb10u7 deb

CVE-2021-3711 Critical

openssl 1.1.1d-0+deb10u6 1.1.1d-0+deb10u7 deb

CVE-2021-3712 High

openssl 1.1.1d-0+deb10u6 1.1.1d-0+deb10u8 deb

CVE-2021-4160 Medium

openssl 1.1.1d-0+deb10u6 1.1.1d-0+deb10u8 deb

CVE-2022-0778 High

openssl 1.1.1d-0+deb10u6 1.1.1n-0+deb10u2 deb

CVE-2022-1292 Critical

openssl 1.1.1d-0+deb10u6 1.1.1n-0+deb10u3 deb

CVE-2022-2068 Critical

zlib1g 1:1.2.11.dfsg-1 1:1.2.11.dfsg-1+deb10u1 deb

CVE-2018-25032 High

zlib1g 1:1.2.11.dfsg-1 1:1.2.11.dfsg-1+deb10u2 deb

CVE-2022-37434 Critical

/usr/local/bin/trivy image gcr.io/distroless/

java@sha256:1606422cc472612cb5bcd885684b4bf87b3813246c266df473357dce5a0fb4b4

2023-01-18T18:29:36.612Z INFO Need to update DB

2023-01-18T18:29:36.612Z INFO DB Repository: ghcr.io/aquasecurity/trivy-db

2023-01-18T18:29:36.612Z INFO Downloading DB...

36.07 MiB / 36.07 MiB

[--

---] 100.00% 11.51 MiB p/s 3.3s

2023-01-18T18:29:40.633Z INFO Vulnerability scanning is enabled

2023-01-18T18:29:40.633Z INFO Secret scanning is enabled

2023-01-18T18:29:40.633Z INFO If your scanning is slow, please try '--security-

checks vuln' to disable secret scanning

2023-01-18T18:29:40.633Z INFO Please see also https://aquasecurity.github.io/trivy/

v0.36/docs/secret/scanning/#recommendation for faster secret detection

2023-01-18T18:29:41.349Z INFO Detected OS: debian

2023-01-18T18:29:41.349Z INFO Detecting Debian vulnerabilities...

2023-01-18T18:29:41.355Z INFO Number of language-specific files: 0

gcr.io/distroless/java@sha256:1606422cc472612cb5bcd885684b4bf87b3813246c266df473357dce5a0fb4b4

(debian 10.9)

Total: 128 (UNKNOWN: 3, LOW: 32, MEDIUM: 44, HIGH: 29, CRITICAL: 20)

68 / 88 – Supplemental Data - Docker Image
Scan Results

┌─────────────────────────┬──────────────────┬──────────┬──────────────────────┬───────────────

──────────┬──┐

│ Library │ Vulnerability │ Severity │ Installed Version │ Fixed

Version │ Title │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ libc6 │ CVE-2021-33574 │ CRITICAL │ 2.28-10 │

2.28-10+deb10u2 │ glibc: mq_notify does not handle separately allocated thread │

│ │ │ │

│ │ attributes │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-33574 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-35942 │ │

│ │ glibc: Arbitrary read in wordexp() │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35942 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-23218 │ │

│ │ glibc: Stack-based buffer overflow in svcunix_create via │

│ │ │ │

│ │ long pathnames │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-23218 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-23219 │ │

│ │ glibc: Stack-based buffer overflow in sunrpc clnt_create via │

│ │ │ │

│ │ a long pathname │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-23219 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2020-1751 │ HIGH │

│ │ glibc: array overflow in backtrace functions for powerpc │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2020-1751 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2020-1752 │ │ │

2.28-10+deb10u2 │ glibc: use-after-free in glob() function when expanding │

│ │ │ │

│ │ ~user │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2020-1752 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2020-6096 │ │

│ │ glibc: signed comparison vulnerability in the ARMv7 memcpy │

│ │ │ │

│ │ function │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2020-6096 │

│ ├──────────────────┤ │

│ ├──┤

69 / 88 – Supplemental Data - Docker Image
Scan Results

│ │ CVE-2021-3326 │ │

│ │ glibc: Assertion failure in ISO-2022-JP-3 gconv module │

│ │ │ │

│ │ related to combining characters │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-3326 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-3999 │ │

│ │ glibc: Off-by-one buffer overflow/underflow in getcwd() │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-3999 │

│ ├──────────────────┼──────────┤

│ ├──┤

│ │ CVE-2016-10228 │ MEDIUM │

│ │ glibc: iconv program can hang when invoked with the -c │

│ │ │ │

│ │ option │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2016-10228 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2019-25013 │ │

│ │ glibc: buffer over-read in iconv when processing invalid │

│ │ │ │

│ │ multi-byte input sequences in... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-25013 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2020-10029 │ │

│ │ glibc: stack corruption from crafted input in cosl, sinl, │

│ │ │ │

│ │ sincosl, and tanl... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2020-10029 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2020-27618 │ │

│ │ glibc: iconv when processing invalid multi-byte input │

│ │ │ │

│ │ sequences fails to advance the... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2020-27618 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2010-4756 │ LOW │

│ │ glibc: glob implementation can cause excessive CPU and │

│ │ │ │

│ │ memory consumption due to... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2010-4756 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2018-20796 │ │

│ │ glibc: uncontrolled recursion in function │

│ │ │ │

│ │ check_dst_limits_calc_pos_1 in posix/regexec.c │

70 / 88 – Supplemental Data - Docker Image
Scan Results

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2018-20796 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-1010022 │ │

│ │ glibc: stack guard protection bypass │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-1010022 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-1010023 │ │

│ │ glibc: running ldd on malicious ELF leads to code execution │

│ │ │ │

│ │ because of... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-1010023 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-1010024 │ │

│ │ glibc: ASLR bypass using cache of thread stack and heap │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-1010024 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-1010025 │ │

│ │ glibc: information disclosure of heap addresses of │

│ │ │ │

│ │ pthread_created thread │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-1010025 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-19126 │ │ │

2.28-10+deb10u2 │ glibc: LD_PREFER_MAP_32BIT_EXEC not ignored in setuid │

│ │ │ │

│ │ binaries │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-19126 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-9192 │ │

│ │ glibc: uncontrolled recursion in function │

│ │ │ │

│ │ check_dst_limits_calc_pos_1 in posix/regexec.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-9192 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2021-27645 │ │ │

2.28-10+deb10u2 │ glibc: Use-after-free in addgetnetgrentX function in │

│ │ │ │

│ │ netgroupcache.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-27645 │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ libexpat1 │ CVE-2022-22822 │ CRITICAL │ 2.2.6-2+deb10u1 │

2.2.6-2+deb10u2 │ expat: Integer overflow in addBinding in xmlparse.c │

71 / 88 – Supplemental Data - Docker Image
Scan Results

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-22822 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-22823 │ │

│ │ expat: Integer overflow in build_model in xmlparse.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-22823 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-22824 │ │

│ │ expat: Integer overflow in defineAttribute in xmlparse.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-22824 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-23852 │ │

│ │ expat: Integer overflow in function XML_GetBuffer │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-23852 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-25235 │ │ │

2.2.6-2+deb10u3 │ expat: Malformed 2- and 3-byte UTF-8 sequences can lead to │

│ │ │ │

│ │ arbitrary code... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-25235 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-25236 │ │

│ │ expat: Namespace-separator characters in "xmlns[:prefix]" │

│ │ │ │

│ │ attribute values can lead to arbitrary code... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-25236 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-25315 │ │

│ │ expat: Integer overflow in storeRawNames() │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-25315 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-40674 │ │ │

2.2.6-2+deb10u5 │ expat: a use-after-free in the doContent function in │

│ │ │ │

│ │ xmlparse.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-40674 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2021-45960 │ HIGH │ │

2.2.6-2+deb10u2 │ expat: Large number of prefixed XML attributes on a single │

│ │ │ │

│ │ tag can... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-45960 │

72 / 88 – Supplemental Data - Docker Image
Scan Results

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-46143 │ │

│ │ expat: Integer overflow in doProlog in xmlparse.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-46143 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-22825 │ │

│ │ expat: Integer overflow in lookup in xmlparse.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-22825 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-22826 │ │

│ │ expat: Integer overflow in nextScaffoldPart in xmlparse.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-22826 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-22827 │ │

│ │ expat: Integer overflow in storeAtts in xmlparse.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-22827 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-23990 │ │

│ │ expat: integer overflow in the doProlog function │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-23990 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-25314 │ │ │

2.2.6-2+deb10u3 │ expat: Integer overflow in copyString() │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-25314 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-43680 │ │ │

2.2.6-2+deb10u6 │ expat: use-after free caused by overeager destruction of a │

│ │ │ │

│ │ shared DTD in... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-43680 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2022-25313 │ MEDIUM │ │

2.2.6-2+deb10u3 │ expat: Stack exhaustion in doctype parsing │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-25313 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2013-0340 │ LOW │

│ │ expat: internal entity expansion │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2013-0340 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

73 / 88 – Supplemental Data - Docker Image
Scan Results

│ │ DSA-5085-2 │ UNKNOWN │ │

2.2.6-2+deb10u4 │ expat - regression update │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ libfreetype6 │ CVE-2022-27404 │ CRITICAL │ 2.9.1-3+deb10u2 │

2.9.1-3+deb10u3 │ FreeType: Buffer overflow in sfnt_init_face │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-27404 │

│ ├──────────────────┼──────────┤

│ ├──┤

│ │ CVE-2022-27405 │ HIGH │

│ │ FreeType: Segmentation violation via FNT_Size_Request │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-27405 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-27406 │ │

│ │ Freetype: Segmentation violation via FT_Request_Size │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-27406 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2022-31782 │ LOW │

│ │ ftbench.c in FreeType Demo Programs through 2.12.1 has a │

│ │ │ │

│ │ heap-based bu │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-31782 │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ libgcc1 │ CVE-2018-12886 │ HIGH │ 8.3.0-6

│ │ gcc: spilling of stack protection address in cfgexpand.c and │

│ │ │ │

│ │ function.c leads to... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2018-12886 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-15847 │ │

│ │ gcc: POWER9 "DARN" RNG intrinsic produces repeated output │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-15847 │

├─────────────────────────┼──────────────────┤ │

├─────────────────────────┼──┤

│ libgomp1 │ CVE-2018-12886 │ │

│ │ gcc: spilling of stack protection address in cfgexpand.c and │

│ │ │ │

│ │ function.c leads to... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2018-12886 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-15847 │ │

│ │ gcc: POWER9 "DARN" RNG intrinsic produces repeated output │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-15847 │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

74 / 88 – Supplemental Data - Docker Image
Scan Results

│ libjpeg62-turbo │ CVE-2020-35538 │ MEDIUM │ 1:1.5.2-2+deb10u1

│ │ libjpeg-turbo: Null pointer dereference in │

│ │ │ │

│ │ jcopy_sample_rows() function │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2020-35538 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2021-46822 │ │

│ │ libjpeg-turbo: heap buffer overflow in get_word_rgb_row() in │

│ │ │ │

│ │ rdppm.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-46822 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2017-15232 │ LOW │

│ │ libjpeg-turbo: NULL pointer dereference in jdpostct.c and │

│ │ │ │

│ │ jquant1.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2017-15232 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2018-11813 │ │

│ │ libjpeg: "cjpeg" utility large loop because read_pixel in │

│ │ │ │

│ │ rdtarga.c mishandles EOF │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2018-11813 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2020-17541 │ │

│ │ libjpeg-turbo: Stack-based buffer overflow in the │

│ │ │ │

│ │ "transform" component │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2020-17541 │

├─────────────────────────┼──────────────────┤

├──────────────────────┼─────────────────────────┼───

───────────────────┤

│ libpng16-16 │ CVE-2018-14048 │ │ 1.6.36-6

│ │ libpng: Segmentation fault in png.c:png_free_data function │

│ │ │ │

│ │ causing denial of service │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2018-14048 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2018-14550 │ │

│ │ libpng: Stack-based buffer overflow in │

│ │ │ │

│ │ contrib/pngminus/pnm2png.c:get_token() potentially leading │

│ │ │ │

│ │ to arbitrary code execution... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2018-14550 │

75 / 88 – Supplemental Data - Docker Image
Scan Results

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-6129 │ │

│ │ libpng: memory leak of png_info struct in pngcp.c │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-6129 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2021-4214 │ │

│ │ libpng: hardcoded value leads to heap-overflow │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-4214 │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ libssl1.1 │ CVE-2021-3711 │ CRITICAL │ 1.1.1d-0+deb10u6 │

1.1.1d-0+deb10u7 │ openssl: SM2 Decryption Buffer Overflow │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-3711 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-1292 │ │ │

1.1.1n-0+deb10u2 │ openssl: c_rehash script allows command injection │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-1292 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-2068 │ │ │

1.1.1n-0+deb10u3 │ openssl: the c_rehash script allows command injection │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-2068 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2021-3712 │ HIGH │ │

1.1.1d-0+deb10u7 │ openssl: Read buffer overruns processing ASN.1 strings │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-3712 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-0778 │ │ │

1.1.1d-0+deb10u8 │ openssl: Infinite loop in BN_mod_sqrt() reachable when │

│ │ │ │

│ │ parsing certificates │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-0778 │

│ ├──────────────────┼──────────┤

│ ├──┤

│ │ CVE-2021-4160 │ MEDIUM │

│ │ openssl: Carry propagation bug in the MIPS32 and MIPS64 │

│ │ │ │

│ │ squaring procedure │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-4160 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-2097 │ │

│ │ openssl: AES OCB fails to encrypt some bytes │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-2097 │

76 / 88 – Supplemental Data - Docker Image
Scan Results

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2007-6755 │ LOW │

│ │ Dual_EC_DRBG: weak pseudo random number generator │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2007-6755 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2010-0928 │ │

│ │ openssl: RSA authentication weakness │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2010-0928 │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ libstdc++6 │ CVE-2018-12886 │ HIGH │ 8.3.0-6

│ │ gcc: spilling of stack protection address in cfgexpand.c and │

│ │ │ │

│ │ function.c leads to... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2018-12886 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2019-15847 │ │

│ │ gcc: POWER9 "DARN" RNG intrinsic produces repeated output │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2019-15847 │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ libuuid1 │ CVE-2021-37600 │ LOW │ 2.33.1-0.1

│ │ util-linux: integer overflow can lead to buffer overflow in │

│ │ │ │

│ │ get_sem_elements() in sys-utils/ipcutils.c... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-37600 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-0563 │ │

│ │ util-linux: partial disclosure of arbitrary files in chfn │

│ │ │ │

│ │ and chsh when compiled... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-0563 │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ openjdk-11-jre-headless │ CVE-2021-2388 │ HIGH │ 11.0.9.1+1-1~deb10u2 │

11.0.12+7-2~deb10u1 │ OpenJDK: Incorrect comparison during range check elimination │

│ │ │ │

│ │ (Hotspot, 8264066) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-2388 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21476 │ │ │

11.0.15+10-1~deb10u1 │ OpenJDK: Defective secure validation in Apache Santuario │

│ │ │ │

│ │ (Libraries, 8278008) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21476 │

77 / 88 – Supplemental Data - Docker Image
Scan Results

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-34169 │ │ │

11.0.16+8-1~deb10u1 │ OpenJDK: integer truncation issue in Xalan-J (JAXP, 8285407) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-34169 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2021-2163 │ MEDIUM │ │

11.0.11+9-1~deb10u1 │ OpenJDK: Incomplete enforcement of JAR signing disabled │

│ │ │ │

│ │ algorithms (Libraries, 8249906) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-2163 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2021-2369 │ │ │

11.0.12+7-2~deb10u1 │ OpenJDK: Incorrect verification of JAR files with multiple │

│ │ │ │

│ │ MANIFEST.MF files (Library, 8260967)... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-2369 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2021-35550 │ │ │

11.0.13+8-1~deb10u1 │ OpenJDK: Weak ciphers preferred over stronger ones for TLS │

│ │ │ │

│ │ (JSSE, 8264210) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35550 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-35556 │ │

│ │ OpenJDK: Excessive memory allocation in RTFParser (Swing, │

│ │ │ │

│ │ 8265167) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35556 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-35559 │ │

│ │ OpenJDK: Excessive memory allocation in RTFReader (Swing, │

│ │ │ │

│ │ 8265580) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35559 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-35561 │ │

│ │ OpenJDK: Excessive memory allocation in HashMap and HashSet │

│ │ │ │

│ │ (Utility, 8266097) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35561 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-35564 │ │

│ │ OpenJDK: Certificates with end dates too far in the future │

78 / 88 – Supplemental Data - Docker Image
Scan Results

│ │ │ │

│ │ can corrupt... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35564 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-35565 │ │

│ │ OpenJDK: Loop in HttpsServer triggered during TLS session │

│ │ │ │

│ │ close (JSSE, 8254967) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35565 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-35567 │ │

│ │ OpenJDK: Incorrect principal selection when using Kerberos │

│ │ │ │

│ │ Constrained Delegation (Libraries, 8266689) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35567 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-35578 │ │

│ │ OpenJDK: Unexpected exception raised during TLS handshake │

│ │ │ │

│ │ (JSSE, 8267729) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35578 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2021-35586 │ │

│ │ OpenJDK: Excessive memory allocation in BMPImageReader │

│ │ │ │

│ │ (ImageIO, 8267735) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35586 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21277 │ │ │

11.0.14+9-1~deb10u1 │ OpenJDK: Incorrect reading of TIFF files in │

│ │ │ │

│ │ TIFFNullDecompressor (ImageIO, 8270952) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21277 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21282 │ │

│ │ OpenJDK: Insufficient URI checks in the XSLT TransformerImpl │

│ │ │ │

│ │ (JAXP, 8270492) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21282 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21283 │ │

│ │ OpenJDK: Unexpected exception thrown in regex Pattern │

│ │ │ │

│ │ (Libraries, 8268813) │

79 / 88 – Supplemental Data - Docker Image
Scan Results

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21283 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21291 │ │

│ │ OpenJDK: Incorrect marking of writeable fields (Hotspot, │

│ │ │ │

│ │ 8270386) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21291 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21293 │ │

│ │ OpenJDK: Incomplete checks of StringBuffer and StringBuilder │

│ │ │ │

│ │ during deserialization (Libraries, 8270392) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21293 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21294 │ │

│ │ OpenJDK: Incorrect IdentityHashMap size checks during │

│ │ │ │

│ │ deserialization (Libraries, 8270416) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21294 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21296 │ │

│ │ OpenJDK: Incorrect access checks in XMLEntityManager (JAXP, │

│ │ │ │

│ │ 8270498) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21296 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21299 │ │

│ │ OpenJDK: Infinite loop related to incorrect handling of │

│ │ │ │

│ │ newlines in XMLEntityScanner (JAXP,... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21299 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21305 │ │

│ │ OpenJDK: Array indexing issues in LIRGenerator (Hotspot, │

│ │ │ │

│ │ 8272014) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21305 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21340 │ │

│ │ OpenJDK: Excessive resource use when reading JAR manifest │

│ │ │ │

│ │ attributes (Libraries, 8272026) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21340 │

80 / 88 – Supplemental Data - Docker Image
Scan Results

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21341 │ │

│ │ OpenJDK: Insufficient checks when deserializing exceptions │

│ │ │ │

│ │ in ObjectInputStream (Serialization, 8272236) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21341 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21360 │ │

│ │ OpenJDK: Excessive memory allocation in BMPImageReader │

│ │ │ │

│ │ (ImageIO, 8273756) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21360 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21365 │ │

│ │ OpenJDK: Integer overflow in BMPImageReader (ImageIO, │

│ │ │ │

│ │ 8273838) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21365 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21366 │ │

│ │ OpenJDK: Excessive memory allocation in TIFF*Decompressor │

│ │ │ │

│ │ (ImageIO, 8274096) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21366 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21426 │ │ │

11.0.15+10-1~deb10u1 │ OpenJDK: Unbounded memory allocation when compiling crafted │

│ │ │ │

│ │ XPath expressions (JAXP, 8270504) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21426 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21434 │ │

│ │ OpenJDK: Improper object-to-string conversion in │

│ │ │ │

│ │ AnnotationInvocationHandler (Libraries, 8277672) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21434 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21496 │ │

│ │ OpenJDK: URI parsing inconsistencies (JNDI, 8278972) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21496 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21540 │ │ │

11.0.16+8-1~deb10u1 │ OpenJDK: class compilation issue (Hotspot, 8281859) │

81 / 88 – Supplemental Data - Docker Image
Scan Results

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21540 │

│ ├──────────────────┤ │

│ ├──┤

│ │ CVE-2022-21541 │ │

│ │ OpenJDK: improper restriction of MethodHandle.invokeBasic() │

│ │ │ │

│ │ (Hotspot, 8281866) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21541 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21626 │ │

│ │ OpenJDK: excessive memory allocation in X.509 certificate │

│ │ │ │

│ │ parsing (Security, 8286533) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21626 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21628 │ │

│ │ OpenJDK: HttpServer no connection count limit (Lightweight │

│ │ │ │

│ │ HTTP Server, 8286918) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21628 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2023-21835 │ │

│ │ Vulnerability in the Oracle Java SE, Oracle GraalVM │

│ │ │ │

│ │ Enterprise Edition ... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2023-21835 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2021-2341 │ LOW │ │

11.0.12+7-2~deb10u1 │ OpenJDK: FTP PASV command response can cause FtpClient to │

│ │ │ │

│ │ connect to arbitrary... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-2341 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2021-35603 │ │ │

11.0.13+8-1~deb10u1 │ OpenJDK: Non-constant comparison during TLS handshakes │

│ │ │ │

│ │ (JSSE, 8269618) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-35603 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21248 │ │ │

11.0.14+9-1~deb10u1 │ OpenJDK: Incomplete deserialization class filtering in │

│ │ │ │

│ │ ObjectInputStream (Serialization, 8264934) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21248 │

82 / 88 – Supplemental Data - Docker Image
Scan Results

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21443 │ │ │

11.0.15+10-1~deb10u1 │ OpenJDK: Missing check for negative ObjectIdentifier │

│ │ │ │

│ │ (Libraries, 8275151) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21443 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21619 │ │

│ │ OpenJDK: improper handling of long NTLM client hostnames │

│ │ │ │

│ │ (Security, 8286526) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21619 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-21624 │ │

│ │ OpenJDK: insufficient randomization of JNDI DNS port numbers │

│ │ │ │

│ │ (JNDI, 8286910) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-21624 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-39399 │ │

│ │ OpenJDK: missing SNI caching in HTTP/2 (Networking, 8289366) │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-39399 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2023-21843 │ │

│ │ Vulnerability in the Oracle Java SE, Oracle GraalVM │

│ │ │ │

│ │ Enterprise Edition ... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2023-21843 │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ openssl │ CVE-2021-3711 │ CRITICAL │ 1.1.1d-0+deb10u6 │

1.1.1d-0+deb10u7 │ openssl: SM2 Decryption Buffer Overflow │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-3711 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-1292 │ │ │

1.1.1n-0+deb10u2 │ openssl: c_rehash script allows command injection │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-1292 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-2068 │ │ │

1.1.1n-0+deb10u3 │ openssl: the c_rehash script allows command injection │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-2068 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

83 / 88 – Supplemental Data - Docker Image
Scan Results

│ │ CVE-2021-3712 │ HIGH │ │

1.1.1d-0+deb10u7 │ openssl: Read buffer overruns processing ASN.1 strings │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-3712 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-0778 │ │ │

1.1.1d-0+deb10u8 │ openssl: Infinite loop in BN_mod_sqrt() reachable when │

│ │ │ │

│ │ parsing certificates │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-0778 │

│ ├──────────────────┼──────────┤

│ ├──┤

│ │ CVE-2021-4160 │ MEDIUM │

│ │ openssl: Carry propagation bug in the MIPS32 and MIPS64 │

│ │ │ │

│ │ squaring procedure │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2021-4160 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2022-2097 │ │

│ │ openssl: AES OCB fails to encrypt some bytes │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-2097 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

│ │ CVE-2007-6755 │ LOW │

│ │ Dual_EC_DRBG: weak pseudo random number generator │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2007-6755 │

│ ├──────────────────┤ │

├─────────────────────────┼──┤

│ │ CVE-2010-0928 │ │

│ │ openssl: RSA authentication weakness │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2010-0928 │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ tzdata │ DLA-3134-1 │ UNKNOWN │ 2021a-0+deb10u1 │

2021a-0+deb10u7 │ tzdata - new timezone database │

│ ├──────────────────┤ │

├─────────────────────────┤ │

│ │ DLA-3161-1 │ │ │

2021a-0+deb10u8 │ │

├─────────────────────────┼──────────────────┼──────────┼──────────────────────┼───────────────

──────────┼──┤

│ zlib1g │ CVE-2022-37434 │ CRITICAL │ 1:1.2.11.dfsg-1 │

1:1.2.11.dfsg-1+deb10u2 │ zlib: heap-based buffer over-read and overflow in inflate() │

│ │ │ │

│ │ in inflate.c via a... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2022-37434 │

│ ├──────────────────┼──────────┤

├─────────────────────────┼──┤

84 / 88 – Supplemental Data - Docker Image
Scan Results

│ │ CVE-2018-25032 │ HIGH │ │

1:1.2.11.dfsg-1+deb10u1 │ zlib: A flaw found in zlib when compressing (not │

│ │ │ │

│ │ decompressing) certain inputs... │

│ │ │ │

│ │ https://avd.aquasec.com/nvd/cve-2018-25032 │

└─────────────────────────┴──────────────────┴──────────┴──────────────────────┴───────────────

──────────┴──┘

85 / 88 – Supplemental Data - Docker Image
Scan Results

14 Supplemental Data - Container Image Scan
Results

Grype image scan result:

Trivy image scan result:

grype gcr.io/distroless/

cc:latest

 1 ⨯
✔ Vulnerability DB [no update available]

✔ Pulled image

✔ Loaded image

✔ Parsed image

✔ Cataloged packages [9 packages]

✔ Scanned image [13 vulnerabilities]

NAME INSTALLED FIXED-IN TYPE VULNERABILITY SEVERITY

libc6 2.31-13+deb11u5 deb CVE-2010-4756 Negligible

libc6 2.31-13+deb11u5 deb CVE-2018-20796 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-1010022 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-1010023 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-1010024 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-1010025 Negligible

libc6 2.31-13+deb11u5 deb CVE-2019-9192 Negligible

libssl1.1 1.1.1n-0+deb11u3 deb CVE-2007-6755 Negligible

libssl1.1 1.1.1n-0+deb11u3 deb CVE-2010-0928 Negligible

libssl1.1 1.1.1n-0+deb11u3 (won't fix) deb CVE-2022-2097 Medium

openssl 1.1.1n-0+deb11u3 deb CVE-2007-6755 Negligible

openssl 1.1.1n-0+deb11u3 deb CVE-2010-0928 Negligible

openssl 1.1.1n-0+deb11u3 (won't fix) deb CVE-2022-2097 Medium

/usr/local/bin/trivy image gcr.io/distroless/cc:latest

2023-01-25T19:10:15.513Z INFO Need to update DB

2023-01-25T19:10:15.513Z INFO DB Repository: ghcr.io/aquasecurity/trivy-db

2023-01-25T19:10:15.513Z INFO Downloading DB...

36.21 MiB / 36.21 MiB

[--

---] 100.00% 30.47 MiB p/s 1.4s

2023-01-25T19:10:17.335Z INFO Vulnerability scanning is enabled

2023-01-25T19:10:17.335Z INFO Secret scanning is enabled

2023-01-25T19:10:17.335Z INFO If your scanning is slow, please try '--security-

checks vuln' to disable secret scanning

2023-01-25T19:10:17.335Z INFO Please see also https://aquasecurity.github.io/trivy/

v0.36/docs/secret/scanning/#recommendation for faster secret detection

2023-01-25T19:10:18.625Z INFO Detected OS: debian

2023-01-25T19:10:18.625Z INFO Detecting Debian vulnerabilities...

2023-01-25T19:10:18.628Z INFO Number of language-specific files: 0

gcr.io/distroless/cc:latest (debian 11.6)

Total: 13 (UNKNOWN: 0, LOW: 11, MEDIUM: 2, HIGH: 0, CRITICAL: 0)

┌───────────┬──────────────────┬──────────┬───────────────────┬───────────────┬────────────────

───┐

│ Library │ Vulnerability │ Severity │ Installed Version │ Fixed Version

│ Title │

├───────────┼──────────────────┼──────────┼───────────────────┼───────────────┼────────────────

───┤

86 / 88 – Supplemental Data - Container
Image Scan Results

│ libc6 │ CVE-2010-4756 │ LOW │ 2.31-13+deb11u5 │ │ glibc: glob

implementation can cause excessive CPU and │

│ │ │ │ │ │ memory

consumption due to... │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2010-4756 │

│ ├──────────────────┤ │

├───────────────┼───┤

│ │ CVE-2018-20796 │ │ │ │ glibc:

uncontrolled recursion in function │

│ │ │ │ │ │

check_dst_limits_calc_pos_1 in posix/regexec.c │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2018-20796 │

│ ├──────────────────┤ │

├───────────────┼───┤

│ │ CVE-2019-1010022 │ │ │ │ glibc: stack

guard protection bypass │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2019-1010022 │

│ ├──────────────────┤ │

├───────────────┼───┤

│ │ CVE-2019-1010023 │ │ │ │ glibc: running

ldd on malicious ELF leads to code execution │

│ │ │ │ │ │ because

of... │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2019-1010023 │

│ ├──────────────────┤ │

├───────────────┼───┤

│ │ CVE-2019-1010024 │ │ │ │ glibc: ASLR

bypass using cache of thread stack and heap │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2019-1010024 │

│ ├──────────────────┤ │

├───────────────┼───┤

│ │ CVE-2019-1010025 │ │ │ │ glibc:

information disclosure of heap addresses of │

│ │ │ │ │ │

pthread_created thread │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2019-1010025 │

│ ├──────────────────┤ │

├───────────────┼───┤

│ │ CVE-2019-9192 │ │ │ │ glibc:

uncontrolled recursion in function │

│ │ │ │ │ │

check_dst_limits_calc_pos_1 in posix/regexec.c │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2019-9192 │

├───────────┼──────────────────┼──────────┼───────────────────┼───────────────┼────────────────

───┤

│ libssl1.1 │ CVE-2022-2097 │ MEDIUM │ 1.1.1n-0+deb11u3 │ │ openssl: AES

OCB fails to encrypt some bytes │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2022-2097 │

│ ├──────────────────┼──────────┤

├───────────────┼───┤

87 / 88 – Supplemental Data - Container
Image Scan Results

│ │ CVE-2007-6755 │ LOW │ │ │ Dual_EC_DRBG:

weak pseudo random number generator │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2007-6755 │

│ ├──────────────────┤ │

├───────────────┼───┤

│ │ CVE-2010-0928 │ │ │ │ openssl: RSA

authentication weakness │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2010-0928 │

├───────────┼──────────────────┼──────────┤

├───────────────┼───┤

│ openssl │ CVE-2022-2097 │ MEDIUM │ │ │ openssl: AES

OCB fails to encrypt some bytes │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2022-2097 │

│ ├──────────────────┼──────────┤

├───────────────┼───┤

│ │ CVE-2007-6755 │ LOW │ │ │ Dual_EC_DRBG:

weak pseudo random number generator │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2007-6755 │

│ ├──────────────────┤ │

├───────────────┼───┤

│ │ CVE-2010-0928 │ │ │ │ openssl: RSA

authentication weakness │

│ │ │ │ │ │ https://

avd.aquasec.com/nvd/cve-2010-0928 │

└───────────┴──────────────────┴──────────┴───────────────────┴───────────────┴────────────────

───┘

88 / 88 – Supplemental Data - Container
Image Scan Results

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations
	Client Response

	Table of Findings
	Dashboard
	Architecture Review Methodology
	Architecture Review
	Architecture
	Environment
	Communication
	Service Segmentation
	Logging and Auditing
	Confidentiality
	Integrity
	Availability
	Access Control

	Holistic Attacker-Modeled Pentest
	Intro

	Web Service Review
	Overview
	Web Service Testing

	Source Code Review
	Overview
	Front-end API Gateway
	Web Services Input Validation Mechanisms
	Aggregation Service
	Aggregatable Report Accounting Service

	Cryptographic Design and Implementation Review
	Public Key Encryption
	Private Key Generation and Key Splitting
	Aggregatable Report Accounting Service
	Side-Channel Attacks

	Finding Details
	Missing Public Key Integrity Check
	EC2 Instance Metadata Service Version 1 In Use
	Lack of Overwrite Controls in S3
	Lack of VM Image Hardening
	Docker Image with Scan Findings
	Container Image with Scan Findings
	Lambda Function Without Code Signing
	IAM Role Assigned with Excessive Permission
	Dynamo DB Alerting Not Enabled

	Contact Info
	Finding Field Definitions
	Risk Scale
	Category

	Supplemental Data - Docker Image Scan Results
	Supplemental Data - Container Image Scan Results

