
Tales of Windows detection
opportunities for an implant
framework
Ollie Whitehouse
Group CTO, NCC Group

Commercial Frameworks are evolving

• in memory patching techniques

• exception handlers for code execution

• sleep routine obfuscation

… and numerous others

Framing the questions

What artefacts do implant frameworks introduce
by virtue of being present?

What are the high signal detection opportunities?

Copy on Write patch detection

Thesis:

By default Microsoft Windows will back copies of the same DLL against the same
physical memory to save space. When a patch occurs a copy on write operation will
happen.

Solution:

• Open processes

• Search for the address of EtwEventWrite

• Use QueryWorkingSetEx to check the page is shared OR not

• If not then it is an indication a patch has occurred

Copy on Write patch detection - result

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-cow
https://github.com/forrest-orr/moneta/blob/master/Source/Subregions.cpp

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-cow
https://github.com/forrest-orr/moneta/blob/master/Source/Subregions.cpp

of Critical Sections

Thesis:

If an implant needs locking it may use critical sections. We can enumerate the
number of critical sections and detect variance when
we have fleet level visibility for processes we expect.

Solution:

• Open processes

• Enumerate critical sections

• Detect mean/median based on fleet telemetry

of Critical Sections - result

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-criticalsections

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-criticalsections

Use of Vector Exception Handlers

Thesis:

VEH is used to do function hooking but avoid copy on write detection when
combined with hardware breakpoints. We can detect the use of VEH and
enumerate where they point to in order to detect.

Solution:

• Open processes

• Query the PEB for VEH usage

• Load the VEH linked list and decode

Use of Vector Exception Handlers - result

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-vehimplant
https://research.nccgroup.com/2022/01/03/detecting-anomalous-vectored-exception-handlers-on-windows/

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-vehimplant
https://research.nccgroup.com/2022/01/03/detecting-anomalous-vectored-exception-handlers-on-windows/

Use of Debug Registers (Hardware Breakpoints)

Thesis:

Using exception handlers requires either software or hardware breakpoints.
Hardware breakpoints can be enumerated on a per process via the presence of
debug registers. We don’t expect any to be set on a typical system.

Solution:

• Open processes

• Get thread context

• Inspect the Dr0, Dr1, Dr2 and Dr3 registers

Use of Debug Registers - result

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-dr-registers

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-dr-registers

DLL loading

Thesis:

Implants will need libraries above and beyond what the host process would
typically need. We can enumerate the libraries loaded, the date/time they occurred
and the reason as a source of signal

Solution:

• Open processes

• Enumerate the PEB

• Walk the LDR_DATA_TABLE

DLL loading - result

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-peb-dll-loadreason

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-peb-dll-loadreason

Impersonating threads

Thesis:

An implant will need to impersonate other users on the system to conduct some
operations. Such impersonations would be an anomaly when observed in the
context of certain host processes.

Solution:

• Open processes and each sub thread

• Enumerate the TEB

• Enumerate IsImpersonating in the TEB

Impersonating threads - result

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-teb

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-teb

Non Module Call Stack

Thesis:

JIT code exists in very few processes. Implants will want to execute their own code
and won’t typically use ROP. We can enumerate the call stacks of all threads and
identify those frames which don’t point to a module.

Solution:

• Open processes and each sub thread

• Enumerate the TEB

• Enumerate IsImpersonating in the TEB

Non Module Call Stack

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-teb

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-teb

CreateRemoteThread

Thesis:

We can enumerates the address and which module the starting address of each
thread points to. This will help detect when threat actors allocate memory for their
payload and use that address as the start address to CreateThread or
CreateRemoteThread etc.

Solution:

• Open processes and each sub thread

• Enumerate the TEB start address

• Enumerate which module the start address points to

CreateRemoteThread- result

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-thread-start

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-thread-start

Best of the Rest

Things I didn’t get to cover where we see there is opportunity

Variances in the # executable pages on a per process basis

Hooking condrv and catching tool output via stdout and Yara rules

Summary & Conclusions

We can extract a number of signals at low cost

A number of these signals can be stand alone and high signal

Others can be combined when we have fleet level visibility to detect anomalies in
the population

ROP detection strategies will likely be more involved, but not impossible including
CFG variances, shadow stack comparison, stack analysis and similar

Code

various techniques discussed

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI

variance in executable memory pages

https://github.com/nccgroup/WindowsMemPageDelta

stdout condrv output observer via hooking

https://github.com/nccgroup/mimikatz-detector-condrv

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI
https://github.com/nccgroup/WindowsMemPageDelta
https://github.com/nccgroup/mimikatz-detector-condrv

thank you!

twitter: ollieatnccgroup

