les of Window:

detec‘uon

0 ‘ s ffﬂan |mplaf t

fram 770

Ollie Whitehouse
Group CTO, NCC Group

Commercial Frameworks are evolving

* in memory patching techniques
» exception handlers for code execution
* sleep routine obfuscation

... and numerous others

Framing the questions

What artefacts do implant frameworks introduce
by virtue of being present?

What are the high sighal detection opportunities?

Copy on Write patch detection

Thesis:

By default Microsoft Windows will back copies of the same DLL against the same
physical memory to save space. When a patch occurs a copy on write operation will
happen.

Solution:

* Open processes

e Search for the address of EtwEventWrite

* Use QueryWorkingSetEx to check the page is shared OR not
* If not then it is an indication a patch has occurred

Copy on Write patch detection - result

x64\Release>d-cow.exe

[i] Running..

[1] [1196@][Calculator.exe] EtwEventWrite is located in NONE shared memory - indication of copy of write

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-cow
https://github.com/forrest-orr/moneta/blob/master/Source/Subregions.cpp

of Critical Sections

Thesis:

If an implant needs locking it may use critical sections. We can enumerate the
number of critical sections and detect variance when
we have fleet level visibility for processes We eXpect. [[i soc men mon famevork ereating 11 rtcal Sectons and

e,

asked can you enum how many a Windows proc has to detect variances?
Yes you can with a bit of effort..

Proud of the GetRTLCritSecAddress() technique to get

SO | U t i O n : RtICriticalSectionList

* Open processes

calSection ((LPCRITICAL SECTT NSNS

’ Enumerate Critical SECtionS calSection((LBCRITICAL SECTIf

calSection((LECRITICAL SECTT NS R

* Detect mean/median based on fleet telemetry catsection (LecRITICAL secr|ANSHINRE

.calSection((LPCRITICAL SECTI

calSection((LPCRITICAL SECTT e s
calSection ((LPCRITICAL SECT NGO Rt
calSection((LECRITICAL SECTI NGl
calSection((LPCRITICAL SECT I |lee e
calSection((LPCRITICAL SECTI N R
calSection((LECRITICAL SECTI|NSeen s

He He He e He e He He He He e He e e

—_— e e e et bd ed bd bed bed bed ed d e

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

of Critical Sections - result

[1872][1sass.exe] has 513 Critical Sections

[1128][winlogon.exe] has 2@ Critical Sections

[1248][svchost.exe] has
[126@][fontdrvhost.exe]
[1268][fontdrvhost.exe]
[1388][svchost.exe] has
[1432][svchost.exe] has

33 Critical Sections
has 4 Critical Sections
has & Critical Sections
21 Critical Sections
64 Critical Sections

[1544][WUDFHost.exe] has 37 Critical Sections
[1612][WUDFHost.exe] has 6 Critical Sections

[168@][svchost. has
[1688][svchost.
[176@][svchost.
[1776][svchost.

[1824][svchost.

exe]
exe] has
exe] has
exe] has

exe] has

]
]
]
]
]
]
]
[1508][dwm.exe] has 33 Critical Sections
]
]
]
]
]
]
]

51 Critical Sections
2 Critical Sections
2 Critical Sections
5 Critical Sections
7 Critical Sections

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-criticalsections

Use of Vector Exception Handlers

Thesis:

VEH is used to do function hooking but avoid copy on write detection when
combined with hardware breakpoints. We can detect the use of VEH and
enumerate where they point to in order to detect.

Solution:

* Open processes

* Query the PEB for VEH usage

* Load the VEH linked list and decode

Use of Vector Exception Handlers - result

] [566@][com.docker.service] is using VEH - Vectored Exception Handler

] RtlRemoveVectoredExceptionHandler [7fff5df92070)

] LdrpVectorHandlerList [7fffseeafies]

] [5668][com.docker.service] VEH handler(decoded) @x@@@e7FFF3C3F523@ which is in clr.dll

] [566@][com.docker.service] # of VEH: 1

] [668B][C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-8\MsMpEng.exe] not analysed 5
] [9996][C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-8\NisSrv.exe] not analysed 5
] [7468][C:\Windows\System32\SecurityHealthService.exe] not analysed 5

] [15288][slack.exe] is using VEH - Vectored Exception Handler

] RtlRemoveVectoredExceptionHandler [7fff5df92070)

] LdrpVectorHandlerList [7fff5e08f3e8]

] [15288][slack.exe] VEH handler(decoded) @x@eee7FF753B7EE2@ which is in slack.exe

] [15288][slack.exe] # of VEH: 1

] [14732][C:\Windows\System32\SgrmBroker.exe] not analysed 5

] [6676][C:\Windows\System32\svchost.exe] not analysed 5

]
]
]

-

[15304][OUTLOOK.EXE] is using VEH - Vectored Exception Handler

RtlRemoveVectoredExceptionHandler [7fff5df92070]

LdrpVectorHandlerList [7fff5e08f3e8] 1) et iR ored) U L) G e ERES e A6 1 e Tl

[15304][OUTLOOK.EXE] VEH handler(decoded) @x@0007FFF3C3F5230 which is in clr.dll e e gt YA A A

[15304][OUTLOOK.EXE] VEH handler(decoded) ©x00007FFFO25BA7A® which is in InkObj.d1l e e S

[15304] [OUTLOOK.EXE] VEH handler(decoded) @x@@@@7FFF33FE3450 which is in rtscom.dll [6] [1550e] meedgemeirions. o] # of VoH: 3 e
[]

[15580] [msedgewebview2.exe] # of VEH: 1
[15304][OUTLOOK . EXE

[13@84][msedgewebview2.exe] is using VEH - Vectored Exception Handler
RtlRemoveVectoredExceptionHandler [7fff5df92670]
LdrpVectorHandlerList [7fffseeafies]

-

]

]

] [15588][msedge.exe] is using VEH - Vectored Exception Handler
of VEH: 3 [i] RtlRemoveVectoredExceptionHandler [7fff5df9207@]

]

1

Lo T s T e T e T e I s B ey |

a a a a -
o b L L

LdrpVectorHandlerlist [7fff5e@sfies]

[15568][msedge.exe] VEH handler(decoded) ©x@@@07FFEDE523880 which is in msedge.dll
[d] [15508][msedge.exe] # of VEH: 1

[4] [16612][C:\Windows\System32\svchost.exe] not analysed S

[1] [15304][OUTLOOK.EXE] is using VEH - Vectored Exception Handler

[1] RtlRemoveVectoredExceptionHandler [7fff5df92070]

[i] LdrpVecteorHandlerList [7fffSe@sfies]

[d] [15304][OUTLOOK.EXE] VEH handler(decoded) @x@@@e7FFF3C3F523@ which is in clr.dll
[d] [15304][OUTLOOK.EXE] VEH handler(decoded) @x@@ee7FFF@25BA7A® which is in Inkobj.dll
[d] [15304][OUTLOOK.EXE] VEH handler(decoded) @x@@@@7FFF33FE3450 which is in rtscom.dll
[d] [15304][OUTLOOK.EXE] # of VEH: 3

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-vehimplant
https://research.nccgroup.com/2022/01/03/detecting-anomalous-vectored-exception-handlers-on-windows/

Use of Debug Registers (Hardware Breakpoints)

Thesis:

Using exception handlers requires either software or hardware breakpoints.
Hardware breakpoints can be enumerated on a per process via the presence of
debug registers. We don’t expect any to be set on a typical system.

Solution:
e Open processes
e Get thread context

* Inspect the DrO, Dr1, Dr2 and Dr3 registers

Use of Debug Registers - result

[i] [20076][MEMGUARD.exe] has
[1i] [20076][MEMGUARD.exe] has
[1i] [20076][MEMGUARD.exe] has
[1i] [20076][MEMGUARD.exe] has

o o o o Q

thread (1@208) with debug registers set - 7fff5e874570 0 0 ©
thread (13564) with debug registers set - 7fff5e874570 © © ©
thread (9832) with debug registers set - 7fff5e874570 @ @ @
thread (24988) with debug registers set - 7fff5e874570 0 0 0

[i]
['1
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]
[i]

[i]
[i]
[i]

Running. .

[@][UNKNOWN] Failed to OpenProcess - 87

[4][UNKNOWN] not analysed 31

[S6][UNKNOWN] not analysed 31

[108][UNKNOWN] not analysed 31

[576][C:\Windows\System32\smss.exe] not analysed 5

[868][C:\Windows\System32\csrss.exe] not analysed 5
[66@0][C:\Windows\System32\wininit.exe] not analysed 5
[856][C:\Windows\System32\csrss.exe] not analysed 5

[1040][C: \Windows\System32\services.exe] not analysed 5
[1864][C:\Windows\System32\Lsalso.exe] not analysed 998

[4016][UNKNOWN] not analysed 31

[6608][C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\MsMpEng.exe] not analysed 5
[9996][C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\NisSrv.exe] not analysed 5
[7468][C: \Windows\System32\SecurityHealthService.exe] not analysed 5
[14732][C:\Windows\System32\SgrmBroker.exe] not analysed 5
[6676][C:\Windows\System32\svchost.exe] not analysed 5
[16612][C:\Windows\System32\svchost.exe] not analysed 5

[20076] [MEMGUARD.exe] has a thread (10208) with debug registers set - 7fff5e074570 © © ©
[20076] [MEMGUARD.exe] has a thread (13564) with debug registers set - 7fff5e074570 © © ©
[20076] [MEMGUARD.exe] has a thread (9832) with debug registers set - 7fff5e@74570 © © ©
[20076] [MEMGUARD.exe] has a thread (24988) with debug registers set - 7fff5e074570 © © ©
[20628][C:\Windows\System32\svchost.exe] not analysed 5

Total of 359 processes - didn't open 17

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-dr-registers

DLL loading

Thesis:

Implants will need libraries above and beyond what the host process would

typically need. We can enumerate the libraries loaded, the date/time they occurred
and the reason as a source of signal

Solution:

* Open processes

* Enumerate the PEB

 Walk the LDR_DATA_TABLE

DLL loading - result

[
[
[
[
[
[
[
[
[
[
[
[
[
[

i]
i]
i]
i]
i]
i]
i]
i]
i]
i]
i]
i]
i]
i]

1872][1sass
1072]
1072]
1072]
1072]
1072]
1072]
1072]
1072]
1072]
1072]
1072]
1072]
1072]

lsass
lsass
lsass

lsass

[
[
[
[
[
[
[
[
[
[
[
[
[
[

Lo T e T s T s T e, Y e, Y e, Y e Y s T e Y e T e T e T e |

lsass

lsass.

lsass.
Isass.
lsass.
lsass.
lsass.
lsass.

lsass.

.exe]

exe]

.exe]
.exe]
.exe]

exe]
exe]
exe]
exe]
exe]
exe]

.exe]

exe]

.exe]

Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load

Reason
Reason
Reason
Reason
Reason
Reason
Reason
Reason
Reason
Reason
Reason
Reason
Reason
Reason

for
for
for
for
for
for
for
for
for
for
for
for
for
for

SspiSrv.dll is Delayload Dependency - loaded @ 2022-81-04 15:23:25 - Delta @
KDCPW.DLL is Dynamic Load - loaded @ 2022-01-04 15:23:25 - Delta ©

scecli.DLL is Dynamic Load - loaded @ 2022-01-04 15:23:25 - Delta ©
winsta.dll is Delayload Dependency - loaded @ 2022-61-84 15:23:25 - Delta ©
wevtapi.dll is Delayload Dependency - loaded @ 2822-81-84 15:23:38 - Delta 5
ncryptsslp.dll is Dynamic Load - loaded @ 2022-01-84 15:23:36 - Delta 11
ncryptprov.dll is Dynamic Load - loaded @ 2022-01-04 15:23:36 - Delta 11
dssenh.dll is Dynamic Load - loaded @ 2022-01-064 15:23:36 - Delta 11
gpapi.dll is Delayload Dependency - loaded @ 2022-81-84 15:23:36 - Delta 11
mskeyprotect.dll is Dynamic Load - loaded @ 2022-81-84 15:23:36 - Delta 11
keyiso.dll is Dynamic Load - loaded @ 2822-61-84 15:23:38 - Delta 13
AUTHZ.d1ll is Delayload Dependency - loaded @ 2022-81-84 15:23:38 - Delta 13
secur32.dll is Delayload Dependency - loaded @ 2022-01-94 15:23:44 - Delta 19
wtsapi32.dll is Delayload Dependency - loaded @ 2022-01-04 15:23:44 - Delta 19

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-peb-dll-loadreason

Impersonating threads

Thesis:

An implant will need to impersonate other users on the system to conduct some
operations. Such impersonations would be an anomaly when observed in the
context of certain host processes.

Solution:
* Open processes and each sub thread
* Enumerate the TEB

* Enumerate Isimpersonating in the TEB

Impersonating threads - result @

[!'] [@][UNKNOWN] Failed to OpenProcess - 87

[i] [4][UNKNOWN] not analysed 31

[i] [56][UNKNOWN] not analysed 31

[i] [1@8][UNKNOWN] not analysed 31

[i] [576][C:\Windows\System32\smss.exe] not analysed 5

[i] [868][C:\Windows\System32\csrss.exe] not analysed 5

[i] [668][C:\Windows\System32\wininit.exe] not analysed 5
[i] [856][C:\Windows\System32\csrss.exe] not analysed 5

[i] [1e4@][C:\Windows\System32\services.exe] not analysed 5
[i] [1e64][C:\Windows\System32\Lsalso.exe] not analysed 998
[i] [2544]1[svchost.exe] is impersonating

[i] [55@@][svchost.exe] is impersonating
[UNKNOWN] nc}-t analysed 31 [i] [55@@][svchost.exe] is impersonating
[i] [6688][C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\MsMpEng.exe] not analysed 5
[i] [9996][C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\NisSrv.exe] not analysed 5
[i] [7468][C:\Windows\System32\SecurityHealthService.exe] not analysed 5
[i] [14732][C:\Windows\System32\SgrmBroker.exe] not analysed 5
[i] [6676][C:\Windows\System32\svchost.exe] not analysed 5
[i] [16612][C:\Windows\System32\svchost.exe] not analysed 5
[i] [20628][C:\Windows\System32\svchost.exe] not analysed 5
[!'] [18480][UNKNOWN] Failed to OpenProcess - 87
[!'] [25680][UNKNOWN] Failed to OpenProcess - 87
[!'] [25304][UNKNOWN] Failed to OpenProcess - 87
[i] Total of 360 processes - didn't open 17

2544
4016
5500
5500

[svchost.exe] is impersonating

1 1 1
| IS Ry SESSS R S S—

[svchost.exe] is impersonating

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-teb

Non Module Call Stack

Thesis:

JIT code exists in very few processes. Implants will want to execute their own code
and won’t typically use ROP. We can enumerate the call stacks of all threads and
identify those frames which don’t point to a module.

Solution:
* Open processes and each sub thread
* Enumerate the TEB

* Enumerate Isimpersonating in the TEB

In an unscientific sample set

[i
[1
[i
[i

[N N N |

Non Module Call Stack

[5516][7280][cb.exe]
[5516][7280][cb.exe]
[5516][7280][cb.exe]

[24212][21104][MEMGUARD.exe] Frame @ - ©x000002CF87690000 -> .

[i]
[i]
[1]
[i]
[i]
[i]
[i]
[1]
[i]
[i]
[i]
[1]
[i]
[i]
[1]
[i]
[i]
[i]
[1]
[i]
[i]
[i]
[i]

[25852][20616] [MEMGUARD.
[25852][20616] [MEMGUARD.
[25852][20616] [MEMGUARD.
[25852][20616] [MEMGUARD.
[25852][20616] [MEMGUARD.
[25852][20616] [MEMGUARD.
[MEMGUARD.
[25852][20616] [MEMGUARD.
[25852][20616] [MEMGUARD.
[25852][20616] [MEMGUARD.
[25852][20616] [MEMGUARD.

]
]
]
]
]
]
[25852][20616]
]
]
]
]
]

[25852][9896] [MEMGUARD.
[25852][9896] [MEMGUARD.
[25852][9896] [MEMGUARD.
[25852][9896] [MEMGUARD.
[25852][9896] [MEMGUARD.
[25852][6452] [MEMGUARD.
[25852][6452] [MEMGUARD.
[25852][6452] [MEMGUARD.
[25852][6452] [MEMGUARD.

[
[
[
[
[
[
[
[
[
[
[
[25852][
[
[
[
[
[
[
[
[
[
[
[25852][6452] [MEMGUARD.

20616] [MEMGUARD.
[25852][2@8616] [MEMGUARD.

Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame

woN R o

2]
1
2
3
4
5
6
7
8
9

- Ox0000018DA14C0001
- ©x0eee7FFFSDF88A3C
- @xeeee7FFF5DFE1276
- @xPeeR7FFFSDFBOBFE
- Ox000B7FFF2BF11427
- Ox000B7FF6549D2128
- ©xeeee7FF6549D2E49
- @xeeee7FF6549D2CEE
- @x00eeR7FF6549D2BAE
- Ox00087FF6549D2ED9

10 - ©x80Be7FFF5D327034 -
11 - ©xPeed7FFF5DF62651 -

©x0eee7FFFSDFBO7C4
@xeeee7FFFS5DF62DC7
@x00007FFF5D327034
©x00007FFF5DF62651

exeeee7FFFSDFBR7C4
@x00ee7FFF5DF62DC7
©x00007FFF5D327034
©x00007FFF5DF62651

o
Sk
=->
->

o
=->
->
->

>
>

O 0O N0 N

O 0O 0N

OO0 NN o000 n0n -

??

: \WINDOWS\SYSTEM32\ntd1ll.d1l1l.Rt1lDeleteAce

: \WINDOWS\SYSTEM32\ntdll.d1l1l.Rt1lRaiseException

: \WINDOWS\SYSTEM32\ntd1l1l.dll.KiUserExceptionDispatcher
: \WINDOWS\SYSTEM32\VCRUNTIME14@D.d11l.memcpy
:\Data\NCC\ ! Code\S1lop\MEMGUARD\x64\Debug\MEMGUARD.
:\Data\NCC\!Code\S1lop\MEMGUARD\x64\Debug\MEMGUARD.
:\Data\NCC\!Code\S1lop\MEMGUARD\x64\Debug\MEMGUARD.
:\Data\NCC\ ! Code\S1lop\MEMGUARD\x64\Debug\MEMGUARD.
:\Data\NCC\ ! Code\S1lop\MEMGUARD\x64\Debug\MEMGUARD .exe.mainCRTStartu
C:\WINDOWS\System32\KERNEL32.DLL.BaseThreadInitThunk
C:\WINDOWS\SYSTEM32\ntdll.d11l.Rt1lUserThreadStart

exe.main
exe.invoke_main
exe.__scrt_common
exe,__scrt_common

: \WINDOWS\SYSTEM32\ntdll.d1l.ZwWaitForWorkViaWorkerFactory
:\WINDOWS\SYSTEM32\ntdll.d1ll.TpReleaseCleanupGroupMembers
:\WINDOWS\System32\KERNEL32.DLL.BaseThreadInitThunk

: \WINDOWS\SYSTEM32\ntdll.d1l1l.RtlUserThreadStart

:\WINDOWS\SYSTEM32\ntdll.d1ll.ZwWaitForWorkViaWorkerFactory
:\WINDOWS\SYSTEM32\ntdll.d1ll.TpReleaseCleanupGroupMembers
: \WINDOWS\System32\KERNEL32.DLL.BaseThreadInitThunk

: \WINDOWS\SYSTEM32\ntdll.d1l1l.RtlUserThreadStart

of one host searching for the output . ?? in the result we only saw the following - one of which was the test case:

Frame © - OxPBOO7FF74ES50EF77 -> C:\WINDOWS\CarbonBlack\cbh.exe.
Frame 1 - OxO0RO7FF74ESOFC51 -> C:\WINDOWS\CarbonBlack\cb.exe.
Frame 2 - OxOBOO7FF74E4A1AA2 -> C:\WINDOWS\CarbonBlack\cb.exe.

??

??
2?
??

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-teb

CreateRemoteThread

Thesis:

We can enumerates the address and which module the starting address of each
thread points to. This will help detect when threat actors allocate memory for their
payload and use that address as the start address to CreateThread or
CreateRemoteThread etc.

Solution:

* Open processes and each sub thread

* Enumerate the TEB start address

 Enumerate which module the start address points to

CreateRemoteThread- result

[22516][9764] [MEMGUARD.exe] Start Address of Thread 773441023 in C:\Data\NCC\!Code\Slop\MEMGUARD\x64\Debug\MEMGUARD.exe->ILT+3
[22516][18584] [MEMGUARD.exe] Start Address of Thread 7ffb72dc2ad@ in C:\WINDOWS\SYSTEM32\ntdll.dll->TpReleaseCleanupGroupMembers
[22516][4240] [MEMGUARD.exe] Start Address of Thread 7ffb72dc2ad® in C:\WINDOWS\SYSTEM32\ntdll.dll->TpReleaseCleanupGroupMembers
[22516][9668] [MEMGUARD.exe] Start Address of Thread 1e8c7330000 in UnknownModule->UnknownFunction <---- result of CreateRemote
[22516][7772] [MEMGUARD.exe] Start Address of Thread 7ffb72dc2ad® in C:\WINDOWS\SYSTEM32\ntdll.dll->TpReleaseCleanupGroupMembers

[i] Total of 355 processes - didn't open 20 - total of 2983 threads - 2 start in unknown modules

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-thread-start

Best of the Rest

Things | didn’t get to cover where we see there is opportunity
Variances in the # executable pages on a per process basis

Hooking condrv and catching tool output via stdout and Yara rules

Summary & Conclusions

We can extract a number of signals at low cost
A number of these signals can be stand alone and high signal

Others can be combined when we have fleet level visibility to detect anomalies in
the population

ROP detection strategies will likely be more involved, but not impossible including
CFG variances, shadow stack comparison, stack analysis and similar

Code

various techniques discussed

variance in executable memory pages

stdout condrv output observer via hooking

https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI
https://github.com/nccgroup/WindowsMemPageDelta
https://github.com/nccgroup/mimikatz-detector-condrv

thank you!
twitter: ollieatnccgroup

i ‘

