
 - 1 -

Writing Secure ASP Scripts

Chris Anley [chris@ngssoftware.com]

An NGSSoftware Insight Security Research (NISR) Publication
©2003 Next Generation Security Software Ltd

http://www.ngssoftware.com

 - 2 -

Table of contents

Classes of problem .. 3
Input validation.. 3

Insufficient validation of fields in SQL queries.. 4
Email handling problems... 8
Parent path problems ... 9

Predictability and secure management of state... 10
Poor randomness.. 10
Predictable session identifiers.. 11
Session state manipulation bugs... 11
Poor credential management .. 14

Source maintenance problems.. 15
Improper source and data file maintenance .. 15
Debug code.. 16
Hardcoded credentials.. 17
Error messages/error handling.. 17

 - 3 -

Introduction

This paper briefly describes several common classes of coding error generally
encountered when auditing web applications running on the Active Server Pages
(ASP) platform.

The paper is broken down into three broad sections, each of which addresses several
common coding problems. The following is a list of the common errors that are
discussed in this document, divided into three broad categories. The remainder of the
document deals with each of these problems in turn. Any ASP code samples assume
that the default language is VBScript, but all of the points apply equally to JavaScript.
Equally, all occurrences of the SQL language assume that Microsoft SQL Server is
being used as the back – end database.

Input validation

Insufficient validation of fields in SQL queries
Email handling problems
Parent path problems

Predictability and secure management of state

Poor randomness
Predictable session identifiers
Session state manipulation bugs
Poor credential management

Source maintenance problems

Improper source and data file maintenance
Debug code
Hardcoded credentials
Error messages/error handling

Classes of problem

Input validation

Input validation errors are probably the most common form of problem encountered
when auditing ASP applications. Three of the most common classes of input
validation error are:

Insufficient validation of fields in SQL queries
Email handling problems
Parent path problems

We will address each of these classes of error in turn.

 - 4 -

Insufficient validation of fields in SQL queries

ASP applications frequently communicate with back – end databases. Most databases
use the Structured Query Language (SQL) to manage and manipulate data. SQL is a
textual language that has a rich syntax; it is effectively a programming language in its
own right. Here are some examples of SQL statements:

sel ect * f r om user s wher e user name = ' f r ed'

i nser t i nt o user s (user name, passwor d) val ues (' f r ed' , ' sesame')

dr op t abl e user s

Typically, an ASP application will create the SQL query string dynamically, based on
data supplied by the user in a query string or form, like this:

st r SQL = " sel ect * f r om user s wher e user name = ' " &_
 r equest . f or m(" user name") & " ' and passwor d = ' " &_
 r equest . f or m(" passwor d") & " ' "

The "request.form" statements refer to the strings that the user types into a HTML
form in their web browser. Unfortunately, there is nothing to prevent the user from
typing anything they want into the form. This can lead to the user being able to submit
arbitrary SQL queries. Here is an example of how this might happen.

Let's consider an example 'login' form processing script. This script handles an
attempt by a user to 'log in' to the ASP application using a username and password.
The portion of the code that verified whether the user has used a valid username and
password might look something like this:

user name = r equest . f or m(" user name")
passwor d = r equest . f or m(" passwor d")

st r SQL = " sel ect * f r om user s wher e user name = ' " & user name &_
 " ' and passwor d = ' " & passwor d & " ' "

set obj RS = obj DB. execut e(st r SQL)

i f (obj RS. EOF) t hen
 r esponse. r edi r ect (" Logi nFai l ed. asp")
end i f

…(t he user i s now val i d, do some st uf f)

What we are doing here is selecting all fields in a row from the users table, where the
username and password match the supplied data. If the returned recordset is empty
(EOF) we redirect the user to a 'login failed' page, otherwise, we continue, with the
user data that we retrieved from the database.

This has several flaws. These flaws are easily illustrated if we consider what happens
when the user inputs a 'normal' username and password:

User name: f r ed
Passwor d: sesame

 - 5 -

…the string 'strSQL' becomes

sel ect * f r om user s wher e user name = ' f r ed' and passwor d = ' sesame'

…which runs fine. If there is a user 'fred' with a password 'sesame', we will get fred's
row, and all will be fine.

However, consider the following scenario:

User name: f r ed' - -
Passwor d: what ever

…the string 'strSQL' becomes

sel ect * f r om user s wher e user name = ' f r ed' - - ' and passwor d =
' what ever '

Given the above logic, this will log us in as 'fred', without knowing fred's password.
The '--' character sequence represents a single - line comment in Transact-SQL, the
SQL language used by Microsoft SQL Server, so it stops executing the SQL statement
when it reaches it. The result? We get fred's row returned to us, without knowing
fred's password.

Further, more dangerous uses of the technique are possible. Consider this:

User name: f r ed' dr op t abl e user s- -
Passwor d: what ever

The SQL parser terminates the first Transact-SQL query after fred'. If more SQL
statements follow it, they are run as well. In this case, the table 'users' will be deleted,
effectively denying everyone the ability to log into the database.

Using this technique, it is possible to run whatever SQL query an attacker wishes.
Using the rich capabilities of SQL server and it's range of built in stored procedures
and extended stored procedures, it is possible to use the database server as a
bridgehead into the back-end network that supports the ASP application. Examples of
things an attacker might do:

• use error messages returned by the server to obtain information in fields in the
database, or information about the structure of the database (credit card
information, user credentials such as passwords)

• use the xp_cmdshell extended stored procedure to run commands as the SQL
server user, on the database server

• use the sp_OACreate, sp_OAMethod and sp_OAGetProperty system stored
procedures to create Ole Automation (ActiveX) applications that can do
everything an ASP script can do

Traditional wisdom has it that if an ASP application uses stored procedures in the
database, that SQL injection is not possible. This is a half-truth, and it depends on the
manner in which the stored procedure is called from the ASP script.

 - 6 -

Good general rules are:

• If the ASP script creates a SQL query string that is submitted to the server, it
is vulnerable to SQL injection, *even if* it uses stored procedures

• If the ASP script uses a procedure object that wraps the assignment of
parameters to a stored procedure (such as the ADO command object, used
with the Parameters collection) then it is generally safe.

To illustrate the stored procedure query injection point, execute the following SQL
string:

sp_who ' 1' sel ect * f r om sysobj ect s

or
sp_who ' 1' ; sel ect * f r om sysobj ect s

Either way, the appended query is still run.

There are several ways to fix this problem:

1. Disallow input which is known to be bad
2. Allow only input which is known to be good
3. Attempt to 'escape' delimiting characters

Each scheme has its merits.

If we disallow input which is known to be bad, we would be looking for specific
characters or words in the input that we know are dangerous. The code might look
like this:

f unct i on val i dat e(i nput)

 bad_st r i ngs = Ar r ay(" ' " , " sel ect " , " uni on" , " i nser t " , " - - ")

 f or each i i n bad_st r i ngs

 i f (I nSt r (i nput , i) <> 0) t hen
 val i dat e = f al se
 exi t f unct i on
 end i f

 next

 val i dat e = t r ue

end f unct i on

user name = r equest . f or m(" user name")
passwor d = r equest . f or m(" passwor d")

i f (not val i dat e(user name) or not val i dat e(passwor d)) t hen
 r esponse. r edi r ect (" i nval i d_i nput . asp")
end i f

 - 7 -

The disadvantage of this scheme is that we don't necessarily know what bad data
looks like. On the basis of this brief tutorial, we could probably guess, but we might
pick the wrong items for 'bad_strings'. Also, we would have problems if we want to
allow usernames like
O'Brien

The second method, allowing only input which is known to be good, is better, but a
little more demanding to code. The idea with this method is that we define several
data types, and permit only certain character combinations in each. For example, we
might have a 'name', 'password', 'integer' and 'session_id' type. The validate function
might look like this:

f unct i on val i dat e(i nput , dat at ype)

 good_name_char s =_
" abcdef ghi j k l mnopqr st uvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ' - "
 good_passwor d_char s =_
" abcdef ghi j k l mnopqr st uvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789"
 good_number _char s = " 0123456789"
 good_sessi oni d_char s = " ABCDEF0123456789"

 val i dat e = t r ue

 sel ect case dat at ype

 case " name"
 f or i = 1 t o l en(i nput)
 c = mi d(i nput , i , 1)

 i f (I nSt r (good_name_char s, c) = 0) t hen
 val i dat e = f al se
 end i f

 next
 case " passwor d"
 f or i = 1 t o l en(i nput)
 c = mi d(i nput , i , 1)

 i f (I nSt r (good_passwor d_char s, c) = 0) t hen
 val i dat e = f al se
 end i f

 next
 case " number "
 f or i = 1 t o l en(i nput)
 c = mi d(i nput , i , 1)

 i f (I nSt r (good_number _char s, c) = 0) t hen
 val i dat e = f al se
 end i f

 next
 case " sessi oni d"
 f or i = 1 t o l en(i nput)
 c = mi d(i nput , i , 1)

 i f (I nSt r (good_sessi oni d_char s, c) = 0) t hen
 val i dat e = f al se

 - 8 -

 end i f

 next
 case el se
 val i dat e = f al se
 end sel ect

end f unct i on

An important point here is that we allow the character ' in a name, along with '-' and
spaces. This would allow an attacker to perform the

User name: f r ed' - -

attack outlined above, though it would restrict what an attacker could do in terms of
arbitrary queries.

The final solution (which is not necessarily better than either of the above) is to
attempt to 'escape' delimiting characters. An example function, that 'doubles up' single
quote characters, looks like this:

f unct i on escape(i nput)
 i nput = r epl ace(i nput , " ' " , " ' ' ")
 escape = i nput
end f unct i on

The problem with this solution is that not all terms in an SQL query are delimited. For
example, if we had a numeric userid, our SQL query might look like this:

sel ect * f r om user s wher e user i d = 24 and passwor d = ' what ever '

Obviously, the attacker can simply input SQL statements into the field directly,
without needing to 'escape' from a data string.

The best method depends upon the circumstances. A very secure method is to use
both the first and second methods, in combination. First we verify that the input
contains only valid characters, then we look for strings that we know to be
specifically bad. The method chosen will, however, depend on the requirements
associated with user input to the application.

For more information on this kind of bug, see the other papers I've written on the
subject, at:
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
and
http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf

Email handling problems

A similarly nasty problem occurs when handling data that is to be passed into an
email. The problem arises because most objects that wrap sending an SMTP message
send SMTP commands directly to the server, without validating the user's input. For

 - 9 -

example, the cdonts.newmail object permits various of it's properties to contain
carriage-return and linefeed characters, and periods ('.').

SMTP (Simple Message Transfer Protocol) is a text - based network protocol that is
the method that most ASP email objects use to send messages. SMTP has a fairly
simple syntax. For example, the commands to send a message might look like this:
('>' indicates client-to-server communication, '<' indicates server-to-client)

(client opens connection to server on TCP port 25)
< 220 mai l . exampl e. net ESMTP Thu, 3 Jan 2002 18: 16: 35 +0000
> HELO cl i ent
< 250 mai l . exampl e. net Hel l o cl i ent [10. 1. 1. 1]
> MAI L FROM: <j oe. bl ow@exampl e. net >
< 250 <j oe. bl ow@exampl e. net > i s synt act i cal l y cor r ect
> RCPT TO: <f oo. bar @exampl e. net >
< 250 <f oo. bar @exampl e. net > i s synt act i cal l y cor r ect
> DATA
< 354 Ent er message, endi ng wi t h " . " on a l i ne by i t sel f
> Subj ect : Test mai l
> Dat e: Thu, 3 Jan 2002 18: 14: 45 - 0000
>
> Got i t .
> : o)
>
> - j oe
> .
>
< 250 OK i d=12345
> QUI T
< 221 mai l . exampl e. net cl osi ng connect i on
(ser ver cl oses connect i on)

In a similar manner to SQL, you can see that if the user were to enter, (say) in the
body of the message, a '.' on a line by itself, the server would terminate the message.
In a similar manner to the SQL ';' character, we can then begin a new message, which
can have a totally arbitrary sender and recipient, and can contain whatever data the
attacker wishes, including potentially harmful MIME encoded file attachments.

The resolution to this problem is to ensure that the user cannot submit a '.' on a line by
itself at any point in the message, including the 'from' and 'to' fields. Which of the
validation methods is used would depend on circumstances.

David Litchfield of NGSSoftware has written a more lengthy explanation of this type
of problem, which can be found at
http://www.ngssoftware.com/papers/aspmail.pdf

Parent path problems

Another exceptionally common problem related to input validation is the 'parent path'
problem. We can group in this category all problems having to do with unexpected
characters in filenames.

 - 10 -

Suppose we have a code snippet that adds some text to a log file corresponding to a
user session. The code might look like this:

f i l ename = " c: \ l ogs\ " & user name
set f s = cr eat eobj ect (" scr i pt i ng. f i l esyst emobj ect ")
set f = f s. OpenText Fi l e(f i l ename, 8, Tr ue)
f . wr i t el i ne message
f . c l ose
set f = not hi ng
set f s = not hi ng

Say we add the text of each web request made by each user to their own log file.

This is fine if the username is, say, 'fred'. But what if the username is
. . \ . . \ . . \ . . \ . . \ . . \ i net pub\ wwwr oot \ r uncmd. asp

An ASP script will be created in the web root, with contents that the user can control
part of. That part might look something like this:

<% set o = ser ver . cr eat eobj ect (" wscr i pt . shel l ")
o. r un(r equest . quer yst r i ng(" cmd")) %>

The attacker has created a script that will run an arbitrary command line on the web
server. In versions of Microsoft Internet Information Server prior to version 5, this
command would run in the context of the local 'system' account, and could thus add
local administrative users, or perform any other action that the system itself can
perform, such as reading the SAM.

The underlying problem here is the same as the SQL and SMTP problems; the data
submitted by the user is interpreted in some context where special characters or
character sequences have meaning.

Wherever an application creates filenames, any part of which is controlled by the
user, the application must validate the user input very carefully.

Here are some example abuses of poor filename validation:
Reading the source code of any .asp file on the server (revealing ODBC connection
strings, for example)
Creating a script file of some sort that can then be run in subsequent HTTP requests.
Overwriting the contents of a critical system file or script with garbage, thereby
preventing audit (web server log), or destroying specified parts of the web application
(such as an administrative part of the website; simple overwrite the login.asp script
with garbage, or null data)

Predictability and secure management of state

Web applications typically requite some way of maintaining the 'state' of a user's
interaction with the application. This can manifest itself in a number of ways, and if
handled poorly, is open to abuse by attackers.

Poor randomness

 - 11 -

Applications generally have some requirement for randomness. The application may
have to generate its own session identifiers, for example, or it might have to create
some kind of random password.

Most 'random' number generators build into languages and libraries are based upon
arithmetic 'pseudo' random number generators. A problem frequently exhibited by
these generators is that they issue repeating sequences. Another common problem is
that of seeding with predictable data, such as a tick count, an IP address or hostname.

Some applications pick data that is not at all random for supposedly 'random'
numbers. For example, it is common to use the current time, measured in seconds, as
the 'secret', combine it with (say) the userid and then pass it through a hashing
function such as MD5 or SHA1. The problem here is that there are only 3600 seconds
in an hour. It is within the realms of possibility that an attacker can generate 3600
requests in the time that a user's session exists on the server, given that most web
servers can comfortably handle several thousand requests per second. A crucial point
is that hashing the data doesn't help, or more precisely, hashing a value doesn't change
the amount of entropy it contains. If there is only a small amount of 'randomness'
input, only a small amount of 'randomness' will be output. Competent attackers have
access to session id generation code for a variety of platforms, and there are only a
small number of cryptographically 'strong' hashing functions in existence. In essence,
hashing doesn't win you much.

An attacker is very likely to be able to guess the time at the server, even to
millisecond resolution; often it is contained in web responses. The ICMP timestamp
request is another method of obtaining the time at the server.

Predictable session identifiers

Some applications use monotonically increasing session identifiers (i.e. the first id is
1, the second 2 and so on). Some applications use the primary key of a table in a
database; again, this is extremely weak and quite easy to guess, given a single valid
identifier.

The reason why predictable session identifiers must be avoided is that knowledge of
the session id typically grants access to the application. Once a user has passed the
'authentication' phase of an application, the session identifier is the only way the
application has of verifying who is who.

Consequently, if an attacker can guess the session id of a user who is currently
authenticated with the application, they will be able to interact with the application as
though they were that user.

Session state manipulation bugs

This is a subtle class of problem that exploits the manipulation of the state of an
application.

 - 12 -

Most ASP applications maintain some kind of state using the built-in 'session' object.
For example, an application might do this (hopefully after the 'authentication' process
has been successfully concluded):

sessi on(" user name") = r equest . f or m(" user name")

The application would then use the sessi on(" user name") variable whenever it
wishes to retrieve the user's username.

The state of the 'session' object is maintained by ASP session id cookies.

The problem with maintaining a complex session state is that whenever the code
manipulates the state, it might be laying itself open to malicious changes by an
attacker.

Applications will use 'include' files to structure scripts. Every .asp script might
include a 'header', 'footer' or 'menu', or similar. These 'include' scripts are generally
executed in the context of the main 'body' scripts, but there is nothing stopping an
attacker from requesting the script in isolation. If the 'include' script manipulates the
session state, an attacker can take advantage of this.

Typical attacks using this technique might be:

Becoming another user by manipulating the 'authentication' states.
Obtaining free 'downloads' by bypassing state transitions that the application goes
through to 'verify' valid users.
Obtaining administrative access to an application

As an example of this class of error, here is a login page drawn from sample code:
(some lines are wrapped)

<%@LANGUAGE = " VBSCRI PT" %>

<%sessi on(" user name") = r equest (" user name") %>

<%
st r Er r = " "
i f r equest (" act i on") = " l ogi n" t hen

 Set Conn = Ser ver . Cr eat eObj ect (" ADODB. Connect i on")
 Conn. Open " DRI VER={ Mi cr osof t Access Dr i ver (* . mdb) } ; DBQ=" &_
 Ser ver . MapPat h(" f or um. mdb")

 SQL = " sel ect user name, passwor d f r om user s wher e user name = ' "
 & r equest (" user name") & " ' "
 set RSuser = Conn. execut e (SQL)

 i f RSuser (" passwor d") = r equest (" passwor d") t hen

 Response. Redi r ect (" l i st . asp")
 el se
 st r Er r = st r Er r & " I nval i d passwor d"
 end i f

el sei f r equest (" act i on") = " r egi st er " t hen

 - 13 -

 i f r equest (" user name") = " " t hen
 st r Er r = st r Er r & " User name i s a r equi r ed f i el d"
 end i f
 i f r equest (" passwor d") = " " t hen
 st r Er r = st r Er r & " Passwor d i s a r equi r ed f i el d"
 end i f
 i f st r Er r = " " t hen
 i f r equest (" passwor d") <> r equest (" conf i r m") t hen
 st r Er r = st r Er r & " Passwor d must mat ch t he
conf i r mat i on"
 el se

 Set Conn = Ser ver . Cr eat eObj ect (" ADODB. Connect i on")
 Conn. Open " DRI VER={ Mi cr osof t Access Dr i ver
(* . mdb) } ; DBQ=" &_
 Ser ver . MapPat h(" f or um. mdb")

 SQL = " sel ect user name f r om user s wher e user name =
' " & r equest (" user name") & " ' "
 set RSuser = Conn. execut e (SQL)

 i f not RSuser . BOF and not RSuser . EOF t hen
 st r Er r = st r Er r & " Thi s user name al r eady
exi st s"
 el se
 SQL = " i nser t i nt o user s (user name, passwor d,
dat e_cr eat ed, dat e_modi f i ed) VALUES (' " & r equest (" user name") & " ' ,
' " & r equest (" passwor d") & " ' , ' " & now & " ' , ' " & now & " ') "
 Conn. execut e (SQL)
 end i f
 end i f
 end i f

el se
 st r Er r = st r Er r & " Unr ecogni sed Act i on, pl ease r esubmi t "
end i f
%>

<%
i f st r Er r <> " " t hen
%>
<ht ml >
<head>
 <t i t l e>Er r or </ t i t l e>
</ head>
<body>
<t abl e bor der =" 0" cel l paddi ng=" 0" cel l spaci ng=" 0" wi dt h=" 400" >
<t r >
 <t d>The f ol l owi ng er r or s wer e det ect ed: </ b></ t d>
</ t r >
<t r >
 <t d><%=st r Er r %></ t d>
</ t r >
<t r >
 <t d>Pl ease go <a hr ef =" def aul t . asp" >back</ a> and cor r ect
t hem. </ t d>
</ t r >
</ t abl e>
</ body>

 - 14 -

</ ht ml >

<%el se%>
<ht ml >
<head>
 <t i t l e>Regi st r at i on</ t i t l e>
</ head>

<body>

<t abl e bor der =" 0" cel l paddi ng=" 0" cel l spaci ng=" 0" wi dt h=" 400" >
<t r >
 <t d>Regi st r at i on compl et ed</ b></ t d>
 <t d>Cl i ck <a hr ef =" l i st . asp" >her e</ a> t o ent er t he f or um. </ t d>
</ t r >
</ t abl e>
</ body>
</ ht ml >
<%end i f %>
<%Conn. cl ose%>

The point to note here is the second line of code:

<%sessi on(" user name") = r equest (" user name") %>

The page then goes on to perform various operations based on the value of the 'action'
field in the request. The point to note is that if the attacker specifies a username and
an invalid action, the session("username") variable remains set to whatever the
attacker chose. In this sample site, it turns out that the session("username") field is all
that is used for authentication.

The resolution to these issues is to take care in the use of session() variables; ensure
that if an error is encountered, that the modifications to the session state are erased, or
otherwise rendered 'safe'.

Poor credential management

Another issue related to state and session maintenance is that of credential
management.

Problems in this area include plaintext usernames and passwords in querystrings, form
'post' data or cookies. The fewer times credentials are transmitted, the better.

It is generally bad practice to have any form of credential (username, password,
session id) in the querystring of a HTTP request. This is because of the likelihood that
an attacker will gain the ability to read the web server's log file. Cookies and POST
data are typically not held in web server logs, and thus are a slightly safer place to
transfer credentials.

Another common issue is that of 'incremental verification'. This occurs where an
application requests multiple items of data in order to authenticate, verifying each
item in sequence and returning a different error message if each item is incorrect.

 - 15 -

For example, input of the username 'wibble123eqr' might result in the error message
"error: the user does not exist"
Whereas the username 'admin' might result in the error message
"error: the password was incorrect"

Other examples might be 'business unit', 'username', 'password', or even 'domain
name', 'username', 'password'.

Many applications allow an attacker to verify whether a given userid exists by simply
registering for an id themselves, then guessing names based on the format of the
userid they were given. For example, if the attacker 'John Smith' receives the
username 'jsmith', it is obvious what username he should guess if he suspects that his
arch-rival 'John Doe' also uses the system. The resolution to this problem is to return
the minimum of error information when incorrect credentials are entered.

Source maintenance problems

This section discusses problems that arise through the development process itself. It is
often the case that management insistence on aggressive deadlines leads to the general
quality of the codebase deteriorating. The cause of this problem is typically the
pressure that the development team is under; the best resolution to the problem is to
make the quality of the codebase, in terms of error handling, file locations, and
credential handling, as important a part of the development process as the code itself.
If an application is lacking in this area, management must allow the development
team the time to 'tidy up'.

Improper source and data file maintenance

If an attacker can access the source code to an application, they will have an
advantage in attacking it. Backup files are often created when files are modified in the
source tree. Typically these files might be named .bak, .old or similar. Occasionally
the file is copied in windows explorer, which results in a 'copy of' filename.

As an example, let us say that the file 'login.asp' has been patched several times, in a
hurried manner. The following files are quite likely to be in the same directory:

l ogi n. asp
l ogi n. bak
l ogi n. ol d
l ogi n. asp. bak
l ogi n. asp. ol d
l ogi n. asp. 2
Copy of l ogi n. asp
Copy (2) of l ogi n. asp

This has quite a serious impact on the security of the application. For example, since
the 'login.bak' file will not be interpreted by Active Server Pages; it's source code will
be returned in 'raw' form. This will give an attacker knowledge of the exact
authentication scheme in use. It might include an ODBC connection string, or other
credentials.

 - 16 -

Old copies of the file with a '.asp' extension are in some ways a more serious issue. If
an old version of the file behaved differently, the attacker may be able to use this to
his advantage. For example, if a previous version of the script was vulnerable to SQL
injection (or one of the other data validation issues outlined in this document) the
attacker will be able to use those issues.

More problems can be caused by version control systems. Improperly used, CVS can
leave files lying around the website that are as good as a directory listing - the
'./CVS/Entries' file contains a list of all files and directories in the current directory.
Also, if a file has been placed 'in conflict' by having two people make mutually
exclusive changes, a 'conflict' file is left in the directory, named
'.#<filename>.<version>' and the version is normally easy to determine.

It is fairly obvious that an attacker, even with no knowledge of the system, will be
able to obtain a fair amount of source code by just guessing filenames corresponding
to old versions of existing scripts. Occasionally whole directories will be copied in
windows explorer, resulting in a 'copy of' filename corresponding to an existing
directory on the server.

Good source control, and the time to 'tidy up' are the best resolution to this problem.

Another security problem in this general area relates to 'including' files in ASP scripts.
Developers will often call the 'include' files 'database.inc' (for example) - the problem
with this is that the '.inc' extension is not interpreted by ASP, and so anyone
requesting

http://www.example.com/scripts/database.inc

(say) gets the source code of 'database.inc'. It is unfortunately common practice for
folks to leave hardcoded credentials in 'include' files of this kind, which can lead to an
almost immediate compromise of the database server or even the network. As soon as
the attacker can see source code, they can begin to pick apart the structure of the
application. It is best to ensure that include files have a '.asp' extension, so that the
source code remains hidden.

Debug code

As part of the development process, developers often add code for use when
debugging the application. This frequently allows rich error information to be
returned to the developer, or possibly allows the full details of a backend transaction
to be viewed. In the worst cases, backdoor or 'test' authentication methods are
included, which allow the developers to bypass aspects of the authentication process
in order to more easily test other functionality.

A 'blind' attackers strategies in this case will be to submit likely 'debug' flags with
most requests. Examples might be

debug=t r ue
debug=1
t r ace=on
l og=on

 - 17 -

and so on. Of course, if any of these mechanisms exist in the source code, the attacker
may perhaps learn of them by other means; a source code disclosure issue from a
'parent path' problem in another script, or possibly a flaw in the web server software
itself (IIS has historically had many issues of this kind and more are regularly
discovered).

Hardcoded credentials

An issue related to code quality is the practice of hardcoding usernames and
passwords in the source code. This is more prevalent in 'scripted' environments like
ASP than it is in 'compiled' environments like Visual Basic or C++, perhaps because
of the perception that a script is easier to change.

Whatever the reason, hardcoded credentials are bad practice. Long experience of
compromising ASP applications has taught that the best place to store credentials on a
windows server is in the registry. Preferably, these credentials should be stored in an
encrypted or even 'obfuscated' form.

Error messages/error handling

One of the most useful forms of feedback a web server gives an attacker is its error
messages. As a trivial example of this, it is frequently possible to determine whether a
directory exists on the web server by requesting a number of 'likely' known directories
- containing sample scripts, or just common names - and observing the return codes.
Often (almost exclusively) the server will return a '404 file not found' error for
directories which do not exist, and some other error - 'directory listing not allowed',
'access denied' or 'authentication required' if the directory does exist.

Research papers have been written on methods of obtaining the structure of a SQL
server database using SQL injection and ASP error messages. It is possible to
determine the value held in any field with a known name, the names of all fields of
tables, and the names of parameters for stored procedures fairly easily, using only
error messages.

When the 'filesystem' object is used in a script, it will return a different error if it is
directed to a nonexistent path, than when it is directed to a nonexistent file within an
existing directory. Using this fact alone, it is possible to narrow down the version of
the web server, operating system and database software to the level of individual
patches and service packs.

The resolution to this problem is to ensure that the errors returned by the production
application contain the absolute minimum of information.

