

Remotely Exploiting 3 Embedded Devices
Pwn2Own 2021

Cedric Halbronn

Alex Plaskett

Aaron Adams

Catalin Visinescu

3 / 62

Introduction

Talk Overview and Aims
Technical breakdown of Pwn2Own 2021 Austin research

Share knowledge of vuln classes / hardware hacking / exploit techniques

Neither the competition details nor journey for finding these bugs

Highly condensed

See our other talk!

5 / 62

Quick Pwn2Own Overview
Developed exploit chains for 3 devices

Didn't compete with the Netgear router exploit

Netgear Router

Western Digital NAS

Lexmark Printer

6 / 62

Agenda
Netgear Router
Western Digital NAS
Lexmark Printer

7 / 62

Netgear R6700 Router

Vuln found in KC_PRINT service (tcp/631)

Netgear R6700 Router

Feature provides access to a USB printer connected through a router as if
network printer

Handles HTTP-like requests

Can be exploited on LAN side and does not require auth

Arch: 32-bit ARM

Mitigations

No PIE

ASLR

NX

Libraries and stack only

Heap not random

9 / 62

 usblp_index = atoi(pCurrent);
 if (!is_printer_connected(usblp_index))
 return 0xFFFFFFFF; // exit if no printer connected
 ...
 count_read = recv(client_sock, recv_buf, 8u, 0);
 ...
 if ((recv_buf[2] || recv_buf[3] != 2) && (recv_buf[2] || recv_buf[3] != 6)) {
 ret_1 = do_airippWithContentLength(kc_client_, content_len, recv_buf);

do_http() Function
Checks POST /USB [...] _LQ<integer>

Ensures a printer is connected

Calls do_airippWithContentLength() depending on first 8 bytes

10 / 62

do_airippWithContentLength(kc_client *kc_client, int content_len, char *recv_buf_initial) {
...
 if (toRead(client_sock, recv_buf2 + 8, content_len - 8) >= 0) {
 if (recv_buf2[2] || recv_buf2[3] != 0xB) {
 if (recv_buf2[2] || recv_buf2[3] != 4) {
 if (recv_buf2[2] || recv_buf2[3] != 8) {
 if (recv_buf2[2] || recv_buf2[3] != 9) {
 ...
 else {
 Job = Response_Get_Jobs(kc_client, recv_buf2, content_len);

do_airippWithContentLength() Function
Same 8 bytes dictate what gets called next

Stack overflow found in Response_Get_Jobs()

11 / 62

 char command[64];
 ...
 copy_len = (recv_buf[offset] << 8) + recv_buf[offset + 1];
 offset += 2;
 if (flag2)
 {
 memcpy(command, &recv_buf[offset], copy_len);// VULN: stack overflow here

Response_Get_Jobs() Function (VULN HERE)
recv_buf and copy_len are from client-controlled data

command is 64-byte stack buffer

Goals

Corrupt return address and return from this function

Bypass ASLR/NX

12 / 62

Reaching the End of the Function
command is far from the return address (>0x1000 bytes)

Will clobber other important variables
-00001090 command DCB 64 dup(?)
...
-00000040 prefix_size DCD ? ; corrupted to dictate how much we leak
-0000003C in_offset DCD ?
-00000038 prefix_ptr DCD ? ; corrupted to achieve leak primitive
-00000034 usblp_index DCD ?
-00000030 client_sock DCD ? ; must be legitimate socket value
...
-00000018 final_size DCD ?
...
-00000008 suffix_offset DCD ?
[RETURN ADDRESS]

13 / 62

final_ptr = (char *)malloc(++final_size);
copied_len = memcpy_at_index(final_ptr, response_len, prefix_ptr, prefix_size);
error = write_ipp_response(client_sock, final_ptr, response_len);
free(prefix_ptr);

Building a Leak Primitive
Called later in Response_Get_Jobs vulnerable function

Overwrite prefix_ptr and prefix_size we can leak data in IPP response

Need to know a valid client_sock...

Where to point prefix_ptr to leak?

Bruteforce without overwriting return address

Global Offset Table (GOT) address works and survives free()

Leak memset() address in response -> libc base address -> system() address

14 / 62

Achieving Command Execution
Overwrite return address with ROP gadget, then call system() with a string we control

Where to store the string passed to system()?

Any fixed address somewhere?

15 / 62

cat /proc/317/maps
00008000-00018000 r-xp 00000000 1f:03 1429 /usr/bin/KC_PRINT // static
00018000-00019000 rw-p 00010000 1f:03 1429 /usr/bin/KC_PRINT // static
00019000-0001c000 rw-p 00000000 00:00 0 [heap] // static
[...STRIPPED OTHER LIBS]
4016e000-401d3000 r-xp 00000000 1f:03 352 /lib/libc.so.0 // ASLR
401d3000-401db000 ---p 00000000 00:00 0
401db000-401dc000 r--p 00065000 1f:03 352 /lib/libc.so.0
401dc000-401dd000 rw-p 00066000 1f:03 352 /lib/libc.so.0
401dd000-401e2000 rw-p 00000000 00:00 0 // Broken ASLR (large heap alloc)
bcdfd000-bce00000 rwxp 00000000 00:00 0
...
beacc000-beaed000 rw-p 00000000 00:00 0 [stack] // ASLR

Achieving Command Execution

By sending an HTTP content of e.g. 0x1000000 (16MB)

Allocation always in the 0x401xxxxx-0x403xxxxx range

0x41000100 a stable static heap address

16 / 62

.text:000118A0 LDR R3, [R11,#-0x28]

.text:000118A4 MOV R0, R3

.text:000118A8 SUB SP, R11, #4

.text:000118AC POP {R11,PC}

nvram set http_passwd=nccgroup && sleep 4 && utelnetd -d -i br0

Return-Oriented Programming (ROP)
When Response_Get_Jobs returns, R11 point to our static region at 0x41000100

Use gadget to retrieve address of command and set first argument (R0) of system

Pivot and return to system("any command")

Command?

Pwned!

17 / 62

Router Demo

18 / 62

Western Digital PR4100 NAS

Western Digital PR4100 NAS
Vuln found in netatalk service (/usr/sbin/afpd) (tcp/548)

Arch: x64

Mitigations

PIE

ASLR

NX

20 / 62

Netatalk Overview
Open source implementation of Apple Filing Protocol (AFP)

Project looks largely dead for a long time

AFP is an older protocol used by old Mac OS X systems

Widely used on NAS devices

PR4100 was running the latest netatalk-3.1.12

Exploited in the past by Pwn2Own winners (Devcore)

Think Apple's Server Message Block (SMB) equivalent

Deprecated since OS X 10.9

Their two-year-old bug was still unpatched on netatalk-3.1.12

Silently patched by Synology

Taiwan NAS vendor who was exploited at Pwn2own

21 / 62

https://en.wikipedia.org/wiki/Apple_Filing_Protocol

DSI / AFP Protocols
AFP is transmitted over the Data Stream Interface (DSI) protocol

Wrote a python library to speak both protocols

AFP has lots of file system functions:

AFP has a pre-auth and post-auth function table

Ex: FPOpenVol, FPCreateFile, FPOpenDir

Pre-auth exposes login and logout related only (4 funcs)

Post-auth has everything else (~60 funcs)

Main pre-auth attack surface is DSI

22 / 62

https://en.wikipedia.org/wiki/Data_Stream_Interface

Guest Access
Default share Public is configured

Default password-less guest account

This gives us enough to reach post-auth functions

Can be accessed from both samba and netatalk

23 / 62

AppleDouble File Format Overview
Actually a AppleSingle and AppleDouble format

Wrote a python library for generating these files

Basically introduces extra file with metadata

netatalk handles/converts these files

AppleDouble files are stored on file systems as ._<filename>

FPOpenFork AFP command specifically for working on them

Also called data/resource forks

Simulates features on OS X file system

Ex: File mooncake has ._mooncake

24 / 62

CVE-2022-23121 - Netatalk
OOB read/write while handling AppleDouble file format

Requires samba service also running, and specific configurations

Some configurations use different storage for AppleDouble data

Netatalk limits what access you have to edit AppleDouble files

Ex: Synology configuration not exploitable

25 / 62

Vulnerability Details
ad_header_read_osx() won't exit if parse_entries() validation fails

Responsible for copying attribute entries in to struct adouble

parse_entries() checks for the following errors (amongst others):

The AppleDouble eid is zero

The AppleDouble offset is out of bounds

26 / 62

The adouble Structure
ad_header_read_osx() stack variable is struct adouble adosx

This structure will hold the values read from the AppleDouble file on disk

Helper functions:

ad_getentryoff(): get an EID offset value

ad_getentrylen(): get an EID length value

ad_entry(): get the entry data via ad_getentryoff()

27 / 62

Out-of-bounds Offset
ad_header_read_osx() continues using structure bad offset

We can hit ad_convert_osx()

Convert from Apple's ._ file to netatalk compatible format

Passing in the adosx structure

28 / 62

Finding Memory Corruption
Original AppleDouble file mapped to map

The memmove() destination is map + ad_getentryoff(ad, ADEID_FINDERI) + ADEDLEN_FINDERI

Technically source could also be out of bounds to leak data into finder part of map

This could be the offset that is out of bounds!

29 / 62

Where is map Allocated?
We know there is ASLR, so we want to know where mapped file exists?

We find its consistently 0xC000 bytes from /lib/ld-2.28.so mapping

Across reboots

Specifically when AppleDouble file is 0x1000 bytes

30 / 62

Targeting ld.so Error Handling
Provide a destination >0xC000 offset to corrupt ld.so .data section

A memcpy() fails due to our large offset

Controlled function pointer!

Controlled data at argument pointer

_dl_rtld_lock_recursive(_dl_load_lock)

31 / 62

Triggering RIP Control
Step 1: Construct a malicious AppleDouble file

Step 2: Copy to Public share

Step 3: Send a AFP packet to cause netatalk to parse the file

BUT... Still have no info leak!?

32 / 62

ASLR Bypass - Building an Info Leak
How to build an info leak?

After modifying the contents, map file is truncated

Then controlled adouble and map are passed to ad_rebuild_adouble_header_osx

Let's investigate what happens after the memmove()

33 / 62

ad_rebuild_adouble_header_osx() Logic

We control this offset used in ad_entry(ad, ADEID_FINDERI)

ad stack variable from ad_header_read_osx()

We can index outside of adouble.ad_data[AD_DATASZ_MAX];

Copy out of bound stack data into the mapped file

34 / 62

Leaking the Data
Converted ._mooncake file contains converted AppleDouble contents

Use Samba to read the file (restricted by AFP)

We chose to leak the address of __libc_start_main()

This is what calls main() for afpd

Deterministic stack offset from adosx

35 / 62

Putting It All Together
Write infoleak AppleDouble to Public to leak data

Cause netatalk service to parse AppleDouble

Read file with samba, compute ASLR slide and system() address

Write RCE AppleDouble to Public

Cause netatalk service to parse AppleDouble

A file containing __libc_start_main() is written

Crash occurs inside ad_rebuild_adouble_header_osx()

Controlled function pointer gets called during panic

Controlled command is run as root via system()

36 / 62

NAS Demo

37 / 62

Aftermath and "Patching"
Western Digital chose to just remove netatalk service entirely

BONUS: QNAP also chose to remove it

We weren't the only ones to exploit it

Probably wise given Apple already deprecated

Widely popular NAS vendor in Taiwan

38 / 62

Lexmark Printer (MC3224i)

Hardware Research
Two printers purchased

OTA update firmware is encrypted

Hardware details

Marvell 88PA6220-BUX2 SoC

Micron MT29F2G08ABAGA NAND flash

JRIP1 connector used for UART

RX pin disabled, no shell

Not so interesting: DDR, 2Kb EEPROM, few TI motor stepper drivers

40 / 62

U-Boot 2018.07-AUTOINC+761a3261e9 (Feb 28 2020 - 23:26:43 +0000)
Booting kernel from Legacy Image at 00a00000 ...
 Image Name: Linux-4.17.19-yocto-standard-74b
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 4773352 Bytes = 4.6 MiB
 Load Address: 00008000
 Entry Point: 00008000

Areas of Interest on the PCB and UART Output

41 / 62

Extracting the Firmware From Flash
Connect the TSOP-48 adapter to the flash
programmer

Delicate job performed under the microscope

Programmer: select the specific model of flash

Read content, if error clean pins again and repeat

Remove flash using heat gun

Clean flash pins carefully

Place flash carefully into adapter, align pins

42 / 62

Extracting the Firmware (cont.)
Flash dump is exactly 285,212,672 bytes (272MB) long, more than expected 268,435,456 bytes (256MB)

The extra bytes are the OOB data

Usable flash size = 272MB * 2048 / 2176 = 256MB

Needs to be removed before image can be used

Contains error codes, and flags for bad block management among other things

Each page has 2048-byte usable data + 128 bytes OOB data (2176 bytes)

43 / 62

Analyzing the Dump
88PA6220 specifically for printers, but similar to other Marvell processors

Flash image starts with few familiar images:

Following the Marvell images

TIM (Trusted Image Module) header

OBMI - early bootloader

OSLO - contains U-Boot

More info available on blog for header format

After removing the Marvell headers we're left with a 253MB file

UBI signature "UBI#" present every page of each 64-page block (128 KB)

Contains erase count header

If block contains user data, second page has UBI volume signature "UBI!"

Contains volume metadata: volume name and block index

62/64 pages in each block contain user data

44 / 62

Extracting the Printer Binaries
UBI Volumes Extraction

Interesting to us

ubireader_display_info to view the volumes

ubireader_extract_images to extract the
volumes

img-0_vol-Base.ubifs contains the
interesting binaries (squashfs, read-only volume)

img-0_vol-InternalStorage.ubifs
contains the user data (ubifs, writable volume)

45 / 62

Flash Image Processing (Summarized and Oversimplified)

46 / 62

$ unsquashfs img-0_vol-Base.ubifs
$ ls -l Base_squashfs_dir
drwxr-xr-x 2 cvisinescu cvisinescu 4096 Jun 22 2021 bin
drwxr-xr-x 2 cvisinescu cvisinescu 4096 Jun 22 2021 boot
-rw-r--r-- 1 cvisinescu cvisinescu 909 Jun 22 2021 Build.Info
drwxr-xr-x 2 cvisinescu cvisinescu 4096 Mar 11 2021 dev
drwxr-xr-x 53 cvisinescu cvisinescu 4096 Jun 22 2021 etc
drwxr-xr-x 6 cvisinescu cvisinescu 4096 Jun 22 2021 home
drwxr-xr-x 8 cvisinescu cvisinescu 4096 Jun 22 2021 lib
drwxr-xr-x 2 cvisinescu cvisinescu 4096 Mar 11 2021 media
drwxr-xr-x 2 cvisinescu cvisinescu 4096 Mar 11 2021 mnt
drwxr-xr-x 5 cvisinescu cvisinescu 4096 Jun 22 2021 opt
drwxr-xr-x 2 cvisinescu cvisinescu 4096 Jun 22 2021 pkg-netapps
dr-xr-xr-x 2 cvisinescu cvisinescu 4096 Mar 11 2021 proc
drwx------ 4 cvisinescu cvisinescu 4096 Jun 22 2021 root
drwxr-xr-x 2 cvisinescu cvisinescu 4096 Mar 11 2021 run
drwxr-xr-x 2 cvisinescu cvisinescu 4096 Jun 22 2021 sbin

Mission Accomplished
Extract with unsquashfs

Can now access the binaries!

47 / 62

@PJL SET PAPER=A4
@PJL SET COPIES=10
@PJL ENTER LANGUAGE=POSTSCRIPT

Vulnerability Details
Printer Job Language (PJL)

Port 9100

PRET Tooling

Vuln affected 100+ Lexmark models

48 / 62

https://github.com/RUB-NDS/PRET

int __fastcall setup_pjl_commands(int a1)
{
 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

 pjl_ctx = create_pjl_ctx(a1);
 pjl_set_datastall_timeout(pjl_ctx, 5);
 sub_11981C();
 pjlpGrowCommandHandler("UEL", pjl_handle_uel);
 ...
 pjlpGrowCommandHandler("LDLWELCOMESCREEN", pjl_handle_ldlwelcomescreen);
 ...

Reaching the Vulnerable Function (Hydra)
No symbols but lots of logging / error functions

PJL commands registered in setup_pjl_commands

We are interested in LDLWELCOMESCREEN an undocumented Lexmark command

49 / 62

int __fastcall pjl_handle_ldlwelcomescreen(char *client_cmd)
{
 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

 result = pjl_check_args(client_cmd, "FILE", "PJL_STRING_TYPE", "PJL_REQ_PARAMETER", 0);
 if (result <= 0)
 return result;
 filename = (const char *)pjl_parse_arg(client_cmd, "FILE", 0);
 return pjl_handle_ldlwelcomescreen_internal(filename);
}

LDLWELCOMESCREEN
Function called from handler function

50 / 62

unsigned int __fastcall pjl_handle_ldlwelcomescreen_internal(const char *filename)
{
 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

 if (!filename)
 return 0xFFFFFFFF;

 fd = open(filename, 0xC1, 0777); // open(filename,O_WRONLY|O_CREAT|O_EXCL, 0777)
 if (fd == 0xFFFFFFFF)
 return 0xFFFFFFFF;
 ret = pjl_ldwelcomescreen_internal2(0, 1, pjl_getc_, write_to_file_, &fd);// goes here
 if (!ret && pjl_unk_function && pjl_unk_function(filename))
 pjl_process_ustatus_device_(20001);
 close(fd);
 remove(filename); // Removal is annoying!
 return ret;
}

pjl_handle_ldlwelcomescreen_internal
Opens fd, calls inner function, closes fd and removes the file

51 / 62

Observations:

Understanding the File Write
pjl_ldwelcomescreen_internal2 just calls pjl_ldwelcomescreen_internal3

pjl_ldwelcomescreen_internal3 responsible for reading additional data and writing to to opened file

Client data received asynchronously and fills a 0x400 stack buffer

If 0x400 bytes received and buffer full, write is flushed to file. Then reset and repeat

If the PJL command’s footer @PJL END DATA is received, discard footer, writes the accumulated
received data (of size < 0x400 bytes) to the file, and exits

If we send more than 0x400 bytes but no footer, data is written but function blocks

Send padding to ensure it reaches multiples of 0x400

We fully reversed this (on the blog, but code is a bit big for this presentation)

File won't be deleted like this

52 / 62

/usr/share/web/cgi-bin/eventlogdebug_se:

...
for i in 9 8 7 6 5 4 3 2 1 0; do
 if [-e /var/fs/shared/eventlog/logs/debug.log.$i] ;
then
 cat /var/fs/shared/eventlog/logs/debug.log.$i
 fi
done

Confirming the File Write

File automatically deleted between 1min and 1m40

Find something that uses it within that time

53 / 62

ls ./squashfs-root/etc/libreport/events.d
abrt_dbus_event.conf emergencyanalysis_event.conf rhtsupport_event.conf vimrc_event.conf
ccpp_event.conf gconf_event.conf smart_event.conf vmcore_event.conf
centos_report_event.conf koops_event.conf svcerrd.conf
coredump_handler.conf print_event.conf uploader_event.conf

Exploiting the Crash Event Handler aka ABRT
Spent a lot of time looking for a way to execute code

A lot of the file system was mounted read only (overlay filesystem)

Can't overwrite existing files

This looks interesting!

54 / 62

coredump-handler passes /dev/null to abrt-hook-ccpp
which causes it to write
an empty core file. Delete this file so we don't
attempt to use it.
EVENT=post-create type=CCpp
 ["$(stat -c %s coredump)" != "0"] || rm coredump

If you need to collect the data at the time of the crash
you need to create a hook that will be run as
a post-create event.

WARNING: post-create events are run with root privileges!

Coredump Handler
How does this config work?

Yeah this sounds exactly what we need!

However, can we trigger a crash remotely?

55 / 62

awk 'match($10,/AH00288/,b){a[b[0]]++}END{for(i in a) if (a[i] > 5) print a[i]}' /tmp/doesnt_exist
free(): invalid pointer
Aborted

ErrorLog "|/usr/sbin/rotatelogs -L '/run/log/apache_error_log' -p '/usr/bin/apache2-logstat.sh'
/run/log/apache_error_log.%Y-%m-%d-%H_%M_%S 32K"

AWK / Log Rotation Bug!
Found through fuzzing HTTP server

Race condition exists due to second-based granularity (%S format specifier) used for naming log files in
apache2

Rotation for every 32KB of logs that are generated

If enough HTTP logs are generated such that rotation occurs twice within one second

Resulting log file having a name that is unique but only at a one second granularity

Two instances of apache2-logstat.sh may be parsing a file with the same name at the same time

One may remove it when the other before the other tries to act on content

56 / 62

Full Chain

57 / 62

Printer Demo

58 / 62

Enhancing Device Security

What was Done Well
Lexmark

Lexmark / Western Digital

Netgear

Architecture focused around a core component (Uranium and a Remote Object Bus (ROB))

Had some boot security (looked like a secured boot chain)

Single point of performing input sanitization

We didn't go into this, see our next talk soon.

Managed languages for certain components (Rust / Go services)

Although other teams found vulns in these components

Hmm..

60 / 62

What Could be Improved
Lexmark

Software

Hardware

Use managed code for externally facing
services

Enable auto updates

Ensure mitigations are complete across all
binaries

Stack canaries, PIE

Encrypt flash/EEPROM and ensure protection
(physical attacks etc)

Disable any external debug capability (UART,
JTAG?)

Enable anti tamper and physical hardening
(security screws etc)

Western Digital

Netgear

Really old native services (AFP, samba etc)

WD removed AFP (netatalk) after pwn2own

Most things (No stack canaries, weak ASLR
randomization, all native binaries etc)

61 / 62

Any questions??!

Questions

62 / 62

