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Buffer Underruns and Stack Protection 
 
Starting with Windows 2003 Server, Microsoft introduced a number of Exploitation Prevention 
Mechanisms (XPMs) into their software. Over time these XPMs were refined as weaknesses were 
discovered [1][2] and more XPMs were introduced. Today the XPMs have been added to Windows XP 
Service Pack 2 and Windows 2003 Service Pack1 and include protection of the base pointer and saved 
return addresses by use of a security cookie or canary on the stack, variable re-ordering, parameter saving, 
NX/DEP, software DEP and Safe SEH. XPMs are realized with a combination of architectural changes to 
the OS, hardware capabilities and modifications to the Microsoft compilers by inserting procedure 
prologues and epilogues to potentially dangerous functions, the latter commonly known as "GS", named 
after the flags used to turn on "stack protection". Whilst there are recognized improvements that can be 
made to XPMs relating to the heap, in most cases where code still contains a stack based overflow, the 
current incarnations of the stack related XPMs make it extremely difficult, if not impossible to exploit. This 
is true of buffer overrun vulnerabilities; however, this is not true of buffer underrun vulnerabilities. 
Consider the following code: 
 
Code listing 1 
 
#include <windows.h> 
    
int foo(char *str); 
 
 
int main(int argc, char *argv[]) 
{ 
 foo(argv[1]); 
 return 0; 
} 
 
int foo(char *str) 
{ 
 int padding = 0; 
 int i=0; 
 char *p=NULL; 
 char buffer[33]=""; 
 
 // Ooops! 
 padding = 32 - strlen(str); 
 
 for( i = 0; i < padding; ++i )  
 buffer[i] = '0'; 
 
 // Ooops, again! 
 p = &buffer[ padding ]; 
 lstrcpy( p , str ); 
 printf("%s\n",buffer); 
 return 0; 
} 
 
In the foo function, there's a buffer underrun vulnerability. The strlen() function gets the length of the string 
and subtracts this from 32. If the string is longer than 32 bytes then the integer “padding” goes negative. 
Thus when we get the address of buffer[padding] then, the address is outside of the buffer - at an address 
lower on the stack than buffer - in other words a buffer underrun.  
 
 
Before the lstrcpy() function is called our stack looks like this: 



 

 
 
Our pointer p points to an address outside of buffer at an address less than buffer. Note our saved base 
pointer and saved return address are protected by the cookie. Once the lstrcpy function has been called our 
stack frame looks like this: 
 



 
 
Note that as the lstrcpy function contains no buffers of its own it has no need for a cookie to protect the 
saved base pointer or return address. When we start copying data from the source (str) to the destination (p) 
look what happens, however: 
 



 
 
The act of copying from the source to the destination overwrites the saved base pointer and, crucially, the 
saved return address. As such, when lstrcpy has finished and returns it does so to a location of the attacker's 
choosing. 
 
While buffer underruns are not common they do exist, a good example being in MIT Kerberos [3]. 
  
In terms of exploitation this is mitigated by DEP. Or is it? An extremely simple way of defeating DEP is a 
return into LoadLibrary 
 
Return-into-LoadLibrary 
 
Return-into-libc attacks are a well known method of defeating non-exec XPMs [4],[5]. The idea is to 
overwrite the saved return address with the address of system() (or another useful function) and set the 
stack in such a way that it will spawn a shell on entry [6]. In more complex return-to-libc attacks it's 
possible to chain together a number of functions to achieve the goal. As far as Windows is concerned, one 
method of defeating DEP that has been discussed already is to return to VirtualAlloc(to allocate executable 
and writable memory), then lstrcat the shellcode to the newly allocated memory, then return to the 
shellcode [7]. A simpler solution is to return to LoadLibraryA. LoadLibrary takes as its first and only 
parameter a pointer to the name of the library to load. Once loaded, any code in the DllMain() function will 
be executed. 
 
As LoadLibrary will accept a UNC path as a parameter this can be used for remote exploitation. What 
exacerbates the problem is the WebDAV redirector: if the host in the UNC path cannot be contacted over 
TCP 139 or 445 it will attempt to connect over the web on TCP port 80. Thus, if a firewall prevents 



outbound client connections on TCP 139/445 but not port 80, then the attacked system will download the 
library from a web server and load it. [Note: To prevent this behaviour disable the WebClient service.] 
 
At first glance it would seem that, to do this successfully, the address of LoadLibraryA must be known 
beforehand as well as the location of the UNC path in memory. If address space layout randomization 
(ASLR) is employed then this would make knowing these values impossible and thus make returning to 
LoadLibraryA impossible. 
 
Address Space Layout Randomization 
 
As the term implies, address space layout randomization locates the stacks, heaps and base load addresses 
of libraries at random locations and there are third party tools available for Windows to allow this. 
WehnTrust [8] is a great example of such as tool. On Windows, the current problem with existing ASLR 
solutions is relocation of the main executable itself – whilst the location of everything else is randomized 
the main exe, not having a .reloc section, can still be found it the same place, though I’m reliably informed 
that the WehnTrust team have a few cool tricks up their sleeves that they’re playing with. For the time 
being however, ASLR on Windows can be defeated in many cases. 
 
Rather than overwriting the saved return address on the stack with the address of LoadLibraryA in 
kernel32.dll, we can overwrite the saved return address with an address in the main executable that 
executes 
 
 CALL DS:LoadLibraryA 
 
With the location of the saved return address being at ESP, this would require that a pointer to the 
attacker’s DLL be located at ESP + 4. Thus, when we return to this call instruction and it executes, the 
pointer to the name of the library to load is at the right location. For this to happen either a pointer to the 
library would need to have been the first parameter pushed onto the stack to the vulnerable function, or the 
pointer is written by the attacker. With ASLR the latter would not be a possibility and if, given the actual 
vulnerability, the former is not the case then a bit more work is required.  
 
Firstly, the stack should be searched for a pointer to data controlled by the attacker. Once found, its offset 
from the location of the saved return address is then measured and for each DWORD a new return address 
is set – each new return address should point to an address in the main executable that executes a RET 
instruction – thus giving a chain of returns. With each RET, the stack pointer is indirectly adjusted – the 
equivalent of adding four to the ESP. Last in the chain is the return to the call LoadLibrary. 
 
So assuming our stack looks like this before the real saved return address is overwritten… 
 
 

 



 
… and assume we’re targeting winlogon.exe on Windows XP Service Pack 2.  This has a base address of 
0x01000000 and at address 0x0103D15C we can find the following instruction  
 
 CALL DS:LoadLibraryA 
 
 
At address 0x0103D25A we can find the instruction: 
 
 RET 
 
On overwriting the saved return address the attack would leave the stack in the following state: 
 

 
 
When the vulnerable function returns it does so to 0x0103D25A. The instruction at this address is “RET” 
and when this executes we land back at 0x0103D25A. This continues three more times until we return to 
0x0103D15C. The instruction at this address is the “CALL DS:LoadLibraryA” and when this executes 
the library pointer to by “ptr” is loaded. 
 
If the return addresses used have a NULL then this technique may not be possible unless the overflow in 
Unicode in nature. 
 
Whilst LoadLibraryA is used here as an example there could be other possible, “useful” functions. 
WinExec provides an interesting (though unlikely!) alternative. It too will accept a UNC path. There of 
course will be others. The point is that, unless the main executable is relocated, an attacker can still run 
code of their choosing; that said, having the protection provided by ASLR is better than not having it. An 
attacker needs to know you’ve got it to defeat it. Additionally, there will be vulnerabilities that can’t be 
exploited using the techniques described here. 
 
 
Protecting the saved return address more effectively. 
 
It is necessary to protect the saved return address more effectively. Whilst a cookie or canary acts as a goal 
keeper in the case of stack based overflows we have seen it doesn’t protect from stack based buffer 
underruns. Providing that there is true randomization of the stack location, one idea to protect the saved 
return address itself would be to XOR it with the address at which it can be found. See Code Listing 2 
 
Code Listing 2 
 
#include <stdio.h> 
#include <windows.h> 



 
int foo(); 
 
#define PROLOG { \ 
   __asm lea eax, dword ptr[esp] \ 
   __asm xor dword ptr[esp],eax \ 
   __asm push ebp \ 
   __asm mov ebp, esp \ 
   } 
 
#define EPILOG { \ 
   __asm mov esp, ebp \ 
   __asm pop ebp \ 
   __asm lea eax, dword ptr[esp] \ 
   __asm xor dword ptr[esp],eax \ 
   __asm ret \ 
   } 
 
int main() 
{ 
 foo(); 
 return 0; 
} 
 
__declspec(naked) int foo() 
{ 
 PROLOG; 
 printf("hello"); 
 EPILOG;  
} 
 
 
In order to successfully attack this an attacker would need to know the address at which the saved return 
address is stored at and overwrite the saved return address with a their chosen replacement XORed with the 
stack address. The strength of this as a potential XPM relies on the location of the stack being random. 
With there being a finite number of locations where the base of the stack could possibly be located, and 
with the offset into the stack where the saved return address is stored being consistent, then this XPM could 
fall to a brute force attack. If the underrun existed in a system service that restarted on failure then this 
could provide an attacker with the opportunity they need: by keeping their values consistent, the law of 
diminishing returns suggests their attack would eventually succeed. The degree of likelihood depends on 
just how finite the number of possible stack locations is. If the implementation provides for 4096 possible 
locations then the attack has a good chance of success – 262144 possible locations and the chances are 
much slimmer. 
 
During discussions with colleagues about this topic, several possible solutions were suggested: maintain a 
separate “stack” of saved return address on a heap allocated at process startup. On return these would be 
compared with the current return address; another is to XOR the saved return address with a global security 
cookie; another would be to maintain a copy of the most recent saved return address in the Thread 
Environment Block and previous saved return address chained on the stack by the current call. This is 
demonstrated with the following code: 
 
Code Listing 3 
 
#define PLOG { \ 
   __asm mov eax, dword ptr fs:[0x18] \ 
   __asm mov ecx, dword ptr[eax+80] \ 



   __asm push ecx \ 
   __asm mov ecx, dword ptr[ebp+4] \ 
   __asm mov dword ptr[eax+80], ecx \ 
   __asm xor ecx, ecx \ 
   __asm xor eax, eax \ 
   } 
 
#define ELOG { \ 
   __asm mov eax, dword ptr fs:[0x18] \ 
   __asm mov ecx, dword ptr[eax+80] \ 
   __asm cmp dword ptr[ebp+4],ecx \ 
   __asm jne KillTheProcess \ 
   __asm pop ecx \ 
   __asm mov dword ptr[eax+80], ecx \ 
    } 
 
Doing this would wreak havoc with exception handling, however, in the event of an exception as the chain 
of return addresses is broken. This is true also of the stack of return addresses saved on the heap; neither is 
suitable, therefore. 
 
 
Conclusion 
 
Like everything in security the question really boils down to a risk assessment. What is the likelihood of 
there being enough buffer underruns in the code to make this a prescient issue? If there is only one such 
flaw does this mean we should protect each call in such a manner? It’s a high price to pay if it were the 
case. Would this still be true if the next big worm targeted such a flaw and we didn’t put the protection in 
place? Until this is answered the best thing to do is review the code of critical or high risk applications to 
find and remove such flaws. Typically one would expect such errors to be found in code that relates to 
encoding and decoding such as crypto, SNMP, asn.1, etc.  
 
Finally, it’s important to note that whilst there may occasionally be routes through to arbitrary code 
execution, having these protection mechanisms is far better than not having them. This paper should not be 
taken as a criticism of any of the exploit prevention mechanisms but rather a demonstration of how the 
possibilities for successful code execution exploits are rapidly disappearing. 
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