

Solana Program Library ZK-Token

Security Assessment

Solana Foundation

Version 1.2 – April 4, 2023

©2023 – NCC Group

Prepared by NCC Group Security Services, Inc. for Solana Foundation. Portions of this document and

the templates used in its production are the property of NCC Group and cannot be copied (in full or in

part) without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of

the information contained herein. Use of NCC Group’s services does not guarantee the security of a

system, or that computer intrusions will not occur.

Prepared By

Gérald Doussot

Thomas Pornin

Prepared For

Sam Kim

1 Executive Summary

Synopsis
In August 2022, Solana Foundation engaged NCC Group to conduct a security assessment

of the ZK-Token SDK, a collection of open-source functions and types that implement the

core cryptographic functionalities of the Solana Program Library (SPL) Confidential Token

extension. These functionalities are homomorphic encryption and associated proofs used

to demonstrate the consistency of elementary instructions that move tokens between

accounts while keeping the involved amounts in an encrypted format that ensures that only

the sender and recipient may learn any information about these amounts.

Scope
NCC Group’s evaluation was over the contents of the zk-token-sdk directory of the main

Solana repository on GitHub. The most recent commit at the time of the start of the

engagement was used (commit 4e43aa6c18e6bb4d98559f80eb004de18bc6b418, dated 5

August 2022). The SDK uses the curve25519-dalek library for operations over the

Ristretto255 group and its associated scalar field; that library was assumed to be correct

and to properly implement the documented operations.

The evaluation target was verifying correctness of the implementation with regard to the

specifications in the protocol papers (part1.pdf and part2.pdf files), in particular proper

usage of the curve25519-dalek library. Timing-based side-channel attacks on private

information (private keys, transaction amounts) were in scope.

Limitations
NCC Group’s evaluation covered the functionality implemented by the ZK-Token SDK. The

SDK implements zero-knowledge proofs of internal consistency of instructions. For

example, the SDK will verify that any transfer instruction is for an amount that does not

exceed the current balance of the source account. It is up to the private key owners to

ensure that they generate proofs only for legitimate transactions, and that the smart

contracts they invoke properly realize all the operations for which the account owners

authorize the transfers.

The confidentiality model used by the Confidential Token extension has some inherent

limitations, in that it can keep amounts secret for transfers, but a CloseAccount instruction

necessarily reveals that the target account has an empty balance; similarly, a Withdraw

operation always uses a non-secret amount and thereby reveals that the account balance

was at least that high before the operation.

Key Findings and Strategic Recommendations
The assessment uncovered a high-severity issue through which invalid transaction data

may trigger a panic and crash the instruction processor by making it attempt to read out-

of-bounds data; see finding "Parsing of SPL ZK-Token Protocol and Cryptographic Key Data

May Crash System".

Some operations on secret keys and amounts were found to potentially leak information

through timing-based side-channels. Most can be fixed easily with negligible runtime

overhead. Leaks related to the use of JSON are harder to mitigate unless JSON is

abandoned as a storage format for private elements; this may require architectural changes

in applications that use the ZK-Token library. No inexpensive solution is known about the

leak inherent to the discrete logarithm used in amount decryption; however, that leak

impacts only amounts, for which timing attacks are harder to leverage due to the non-

repeated nature of individual transactions.

2 / 33 – Executive Summary

https://github.com/solana-labs/solana/tree/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk
https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/solana-labs/solana-program-library/tree/b096cdecc17905e355b626c0f7eb816a9b5df84c/token/zk-token-protocol-paper

NCC Group recommends that the protocol papers be completed with specifications of the

instructions and zero-knowledge proofs that they do not currently describe, such as the

TransferWithFee instruction.

Retest Summary
Solana Foundation implemented a number of changes to address NCC Group’s findings.

NCC Group expended another five days to retest these changes at the end of February

2023. During the initial assessment, NCC Group identified:

One (1) high-severity vulnerability,

Seven (7) low-severity vulnerabilities, and

Three (3) informational findings.

Upon completion of the assessment, all findings were reported to Solana Foundation, along

with recommendations. After retesting, seven findings were found to be fully fixed. Of the

remaining four findings:

Three (3) low-severity vulnerabilities were considered an acceptable risk by Solana

Foundation, and

One (1) informational finding was considered an acceptable risk by Solana Foundation.

•

•

•

•

•

3 / 33 – Executive Summary

2 Dashboard

Target Data Engagement Data

Name SPL Confidential Token

Extension

Type Implementation Review

Type Library Method Code-assisted

Platforms Rust Dates 2022-08-08 to 2022-08-19

Consultants 2

Level of Effort 20 person-days

Finding Breakdown

Critical issues 0

High issues 1

Medium issues 0

Low issues 7

Informational issues 3

Total issues 11

Category Breakdown

Cryptography 2

Data Validation 1

Uncategorized 8

Component Breakdown

AuthenticatedEncryption 1

DiscreteLog 2

ElGamal 2

ElGamal, AuthenticatedEncryption 1

Instruction 1

RangeProof 1

SigmaProofs 1

ZkTokenElGamal 2

 Critical High Medium Low Informational

4 / 33 – Dashboard

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Parsing of SPL ZK-Token Protocol and Cryptographic

Key Data May Crash System

Fixed EY7 High

Non-Constant-Time Signature Comparison May Leak

Some Information About Derived AES Key

Fixed 3PM Low

Multiple Timing Side-Channels in Discrete Log

Computation May Reveal Amount

Risk Accepted WP9 Low

Private Key JSON Decoding/Encoding is not

Constant-Time

Risk Accepted QLJ Low

Amount Value Split Discrepancy Between In-Sealevel

and Out-of-Sealevel Code

Fixed 4FA Low

Encoded Scalars are Malleable Fixed XL7 Low

Secret Amount May Leak Through Side Channels in

Fee Calculation

Risk Accepted 77E Low

Inner Product Computations are not Constant-Time Fixed 4D4 Low

Fragile Key Derivation from Ed25519 Signatures Risk Accepted BE6 Info

Discrete Logarithm Failure with Many Threads Fixed T7P Info

Timing Side-Channels May Reveal Which Transaction

Amounts Have Large Fees

Fixed R64 Info

5 / 33 – Table of Findings

4 Finding Details

Parsing of SPL ZK-Token Protocol and

Cryptographic Key Data May Crash System

Overall Risk High

Impact Medium

Exploitability High

Finding ID NCC-E004944-EY7

Component ElGamal

Category Data Validation

Status Fixed

Impact
An attacker can submit invalid data, including invalid ElGamal encrypted ciphertexts, to a

ZK-Token process and crash it, resulting in a denial-of-service condition for users of this

process. The impact is contingent on the execution environment, be it a Solana node

operating system or a Solana smart contract VM; for the former, it may bring down an

affected Solana node process and cause substantial disruption to the service, while for the

latter, it may abort the execution of one smart contract.

Description
The SPL ZK-Tokens protocol aims to provide confidentiality of SPL token transactions. It

does so by augmenting transactions with encrypted data, to hide the actual transactions’

values, and zero-knowledge proof data, to prove certain properties about the encrypted

transactions without revealing their plaintext values.

Protocol data and supporting cryptographic key data are mapped from bytes to the

relevant Rust data structures using their respective from_bytes() methods. When

performing this mapping, the SPL ZK-Tokens application does not validate that there is

sufficient data in the Rust byte slices passed as arguments to these methods in several

locations. An attacker may craft data that will result in out-of-bound slice access during

the mapping, cause a Rust panic , and crash of the SPL ZK-Tokens application.

NCC Group identified the following vulnerable locations. In the first code snippet, of

method from_bytes() of structure ElGamalCiphertext , the array_ref macros extract a

subset of the slice passed as an argument of the specified lengths. If there are not enough

data, the process will crash.

High

impl ElGamalCiphertext {

// SNIP

pub fn from_bytes(bytes: &[u8]) -> Option<ElGamalCiphertext> {

let bytes = array_ref![bytes, 0, 64];

let (commitment, handle) = array_refs![bytes, 32, 32];

let commitment = CompressedRistretto::from_slice(commitment).decompress()?;

let handle = CompressedRistretto::from_slice(handle).decompress()?;

Some(ElGamalCiphertext {

commitment: PedersenCommitment(commitment),

handle: DecryptHandle(handle),

})

}

6 / 33 – Finding Details

Method from_bytes() of structure ElGamalKeypair attempts to operate on a subset of the

bytes variable method argument, without checking that it has sufficient data:

Recommendation

Ensure that the aforementioned from_bytes() methods validate that it has exactly 64

bytes of data before operating on it. Otherwise, the protocol should ignore the data.

Location

Method from_bytes() of structure ElGamalKeypair in file elgamal.rs, line 197

Method from_bytes() of structure ElGamalCiphertext in file elgamal.rs, line 434

Retest Results
2023-02-27 – Fixed

NCC Group reviewed the changes implemented in PR #27389, and found that Solana

Foundation implemented NCC Group’s recommended fixes. The from_bytes() methods of

the ElGamalCiphertext and ElGamalKeypair structs now validate that it has exactly 64

bytes of data before operating on it, thus preventing a process crash.

Furthermore, NCC Group notes that Solana Foundation has implemented additional input

size checks on several methods of other structures, including ElGamalPubkey ,

ElGamalSecretKey , DecryptHandle , PedersenCommitment , and proofs. These additional

changes do not appear to introduce further security issues.

•

•

impl ElGamalKeypair {

// SNIP

pub fn from_bytes(bytes: &[u8]) -> Option<Self> {

Some(Self {

public: ElGamalPubkey::from_bytes(bytes[..32].try_into().ok()?)?,

secret: ElGamalSecretKey::from_bytes(bytes[32..].try_into().ok()?)?,

})

}

7 / 33 – Finding Details

https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L197
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L434
https://github.com/solana-labs/solana/pull/27389

Non-Constant-Time Signature Comparison

May Leak Some Information About Derived AES

Key

Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E004944-3PM

Component AuthenticatedEncryption

Category Cryptography

Status Fixed

Impact
An attacker may be able to recover the first few bytes of the Token program AES key, if the

generated key starts with bytes of value zero. This may in turn facilitate the recovery of the

AES private key employed to encrypt the balance of an account, in the current

implementation.

Description
An account’s available balance is currently encrypted using Twisted ElGamal for processing

of zero-knowledge proofs about the encrypted amount, and using AES-GCM-SIV for

decryption by the Token program. The AES encryption key is generated from the Ed25519

signature of a message consisting of several dynamic and static parameters including the

Token program public key, using the client signing private key.

As a result, the resulting signature can be considered secret data, which is usually not the

case in typical deployment scenarios. This computed signature is compared with the

default Signature structure value using the == comparison operator. This structure is a

wrapper around a Rust generic array GenericArray<u8, U64> data structure, with its length

parametrized with value 64 . The comparison operator == is not overloaded with another

implementation, so the code will resort to a non-constant-time comparison of the

computed signature (in effect the AES key), with an array filled with bytes of value zero, as

illustrated below:

Low

pub struct AeKey([u8; 16]);

impl AeKey {

pub fn new(signer: &dyn Signer, address: &Pubkey) -> Result<Self, SignerError> {

let message = Message::new(

&[Instruction::new_with_bytes(*address, b"AeKey", vec![])],

Some(&signer.try_pubkey()?),

);

let signature = signer.try_sign_message(&message.serialize())?;

// Some `Signer` implementations return the default signature, which is not suitable

for

// use as key material

if signature == Signature::default() {

Err(SignerError::Custom("Rejecting default signature".into()))

} else {

Ok(AeKey(signature.as_ref()[..16].try_into().unwrap()))

}

}

8 / 33 – Finding Details

The comparison will complete faster if the signature’s initial bytes do not match the default

signature’s initial bytes of value zero, and will be slower otherwise. The granularity of

comparison is typically not in bytes, but in larger chunks, depending on the compiler and

run-time environment; this may reduce the likelihood of a successful attack.

Recommendation

Implement and use a Signature structure comparison operator to run in constant-time, no

matter what bytes differ. Note that overloading the existing == comparison operator may

affect the performance of comparing public signature values in other areas of the system,

and is not advised.

Location

Method new() of structure AeKey in file auth_encryption.rs, line 74

Retest Results
2023-02-27 – Fixed

NCC Group reviewed the changes implemented in PR #27364, and found that Solana

Foundation implemented NCC Group’s recommended fix. The signature is now compared in

constant-time using crate subtle::ConstantTimeEq .

Furthermore, NCC Group notes that Solana Foundation has implemented another constant-

time comparison of signatures in the new() method of struct ElGamalKeypair . The code

changes do not appear to introduce further security issues.

9 / 33 – Finding Details

https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/auth_encryption.rs#L74
https://github.com/solana-labs/solana/pull/27364

Multiple Timing Side-Channels in Discrete Log

Computation May Reveal Amount

Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E004944-WP9

Component DiscreteLog

Category Cryptography

Status Risk Accepted

Impact
An attacker who can monitor the node memory cache may be able to determine the

amount of a transaction being decrypted.

Description

The decode_range() function solves the discrete logarithm problem, as a final step of the

Twisted ElGamal decryption process, to retrieve the confidential amount of a transaction.

The computation can be distributed amongst a configurable number of threads.

Precomputed results are stored in a Rust HashMap , which maps hash key 2^16 * x_hi * G

to hash value x_hi , where x_hi is the most significant 16 bits of the 32-bit amount value

to uncover. decode_range() then iterates with x_lo , the least significant remaining bits of

the amount value, from 0 to range_bound , which is 2^16 divided by the number of

threads. In each iteration, it checks if the hash table contains the value C - x_lo where C

is the value to solve the discrete logarithm for, and if it is the case, computes the amount

value as x_lo + 2^16 * x_hi . The function code is listed below:

The code checks the hash table for the presence of the key with value C - x_lo , using an

if conditional statement, which is not a constant-time operation, and is susceptible to

side-channel attacks. Common processors use caches to speed up access to resources

such as data and code. Attackers who can monitor the cache, for example and

hypothetically from a virtual machine running on the same hypervisor as the virtual

machine running the Solana ZK Tokens program, may observe changes in speed and cache

behavior, when resources that depend on sensitive information are used. This attack can

reveal the locations where the victim is accessing data (data flow), or in the case of this

conditional statement, the code the victim is running and when (control flow).

Moreover, hash table operations are inherently non-constant-time (data-flow and control-

flow, typically), and may reveal the secret hash key in case of a match (and/or by ruling out

non-matches). Furthermore, if the hash table key being queried is present, then the hash

Low

fn decode_range(ristretto_iterator: RistrettoIterator, range_bound: usize) -> Option<u64> {

let hashmap = &DECODE_PRECOMPUTATION_FOR_G;

let mut decoded = None;

for (point, x_lo) in ristretto_iterator.take(range_bound) {

let key = point.compress().to_bytes();

if hashmap.0.contains_key(&key) {

let x_hi = hashmap.0[&key];

decoded = Some(x_lo + TWO16 * x_hi as u64);

}

}

decoded

}

10 / 33 – Finding Details

table is accessed again to read the actual x_hi value, based on the secret C - x_lo

value. This operation amplifies the exploitability of the aforementioned control-flow side-

channel.

Furthermore, the distribution of these non-constant-time operations across several threads

may reveal what threads find or do not find the solution to the discrete logarithm problem.

Recommendation
Timing side-channels arising from conditional execution of code based on secret values

can typically be addressed by performing branchless operations instead.

Side channels inherent to hash table structures may be addressed by performing a whole

table scan, or using privacy techniques such as Path ORAM, which would be costly in this

case.

Location

Function decode_range() in file discrete_log.rs, line 128

Retest Results
2023-02-27 – Not Fixed

Solana Foundation deems the risk of this finding to be acceptable, and did not fix this

issue.

11 / 33 – Finding Details

https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/discrete_log.rs#L128

Private Key JSON Decoding/Encoding is not

Constant-Time

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E004944-QLJ

Component ElGamal

Category Uncategorized

Status Risk Accepted

Impact
An attacker able to measure the precise timing of operations when a private key is decoded

from a JSON object, or encoded to a JSON object, may learn partial information on the

private key.

Description
ElGamal key pairs can be encoded to JSON objects, and decoded back from JSON files,

using the functions in encryption/elgamal.rs, lines 204 and 218:

The encoding/decoding backend is serde_json , which is invoked over the type Vec<u8> .

The actual encoding format is a JSON array where each byte value is an integer,

represented in decimal, e.g. as follows:

The encoding process will then perform multiple conversions to decimal and output for

each byte a number of digits that depends on the byte value; this is done with conditional

jumps in the encoder. Similarly, upon decoding, the comma characters that separate

successive values will be detected and treated differently, again using conditional jumps.

This implies that the overall memory access pattern, both for instructions and for data, as

well as the execution time of the decoding/encoding of each byte, will depend on the

Low

/// Reads a JSON-encoded keypair from a `Reader` implementor

pub fn read_json<R: Read>(reader: &mut R) -> Result<Self, Box<dyn std::error::Error>> {

let bytes: Vec<u8> = serde_json::from_reader(reader)?;

Self::from_bytes(&bytes).ok_or_else(|| {

std::io::Error::new(std::io::ErrorKind::Other, "Invalid ElGamalKeypair").into()

})

}

// ...

/// Writes to a `Write` implementer with JSON-encoding

pub fn write_json<W: Write>(

&self,

writer: &mut W,

) -> Result<String, Box<dyn std::error::Error>> {

let bytes = self.to_bytes();

let json = serde_json::to_string(&bytes.to_vec())?;

writer.write_all(&json.clone().into_bytes())?;

Ok(json)

}

[207,131,225,53,126,239,184,189,241,84,40,80,214,109,128,7,214,32,228,5,11,87,21,220,131,244,16

9,33,211,108,233,206,71,208,209,60,93,133,242,176,255,131,24,210,135,126,236,47,99,185,49,189

,71,65,122,129,165,56,50,122,249,39,218,62]

12 / 33 – Finding Details

https://crates.io/crates/serde_json
https://crates.io/crates/serde_json
https://crates.io/crates/serde_json

values of the private key bytes. The overall execution time of the decoding or encoding of a

key pair, and the resulting encoded key pair length, will also vary depending on the value of

the private key bytes.

An attacker who is in position to make precise and repeated timing measurements may be

able to obtain the length of the decimal encoding of each byte value. In particular, each

byte that encodes to a single character (value between 0 and 9) is “worth” about 4.68 bits

of information to the attacker. In total, such an attacker may hope for getting information

mathematically equivalent to between 43.4 and 149.7 bits of entropy about the private key.

Recommendation
Private keys should be serialized and deserialized as opaque bytes. Text-based formats

such as JSON make such handling challenging; the ct-codecs crate can be used to

perform constant-time Base64 encoding and decoding of arbitrary sequences of bytes.

The JSON encoder and decoder may still leak some information if they are using a look-up

table mechanism to process string contents (e.g. to efficiently identify escape sequences

or the end of the string); constant-time Base64 processing is only a partial mitigation. In

general, it is best for the safety of secret data such as cryptographic keys if JSON or

similar text formats are not used at all.

Location

Methods read_json() and write_json() of structure ElGamalKeypair in file elgamal.rs,

line 204 and line 212

Retest Results
2023-02-27 – Not Fixed

Solana Foundation deems the risk of this finding to be acceptable, and did not fix this

issue.

13 / 33 – Finding Details

https://crates.io/crates/ct-codecs
https://crates.io/crates/ct-codecs
https://crates.io/crates/ct-codecs
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L204
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L204
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L212

Amount Value Split Discrepancy Between In-

Sealevel and Out-of-Sealevel Code

Overall Risk Low

Impact Medium

Exploitability Undetermined

Finding ID NCC-E004944-4FA

Component ZkTokenElGamal

Category Uncategorized

Status Fixed

Impact
Some computations performed both inside the Sealevel parallel runtime (by smart

contracts) and outside the runtime may disagree on how amount values are rebuilt from

their two 32-bit halves.

Description

In src/zk_token_elgamal/ops.rs, the functions add_with_lo_hi() and subtract_with_lo_hi

() compute additions and subtractions on ElGamal-encrypted amounts, leveraging the

homomorphic encryption property. Namely, the functions add (or subtract) the encrypted

amount ct_1 to/from the encrypted amount ct_0 . The amount ct_1 is itself provided as

two ciphertexts ct_1_lo and ct_1_hi , each encrypting the low and high 32 bits of the 64-

bit amount, respectively. The functions, in the out-of-Sealevel section of the code,

recompute ct_1 from ct_1_lo and ct_1_hi using an appropriate linear combination (line

27):

In the in-Sealevel code, though, the linear coefficient is equal to 2
16

 instead of 2
32

 (lines

132 and 160):

Low

#[cfg(not(target_os = "solana"))]

mod target_arch {

// ...

pub const TWO_32: u64 = 4294967296;

// ...

pub(crate) fn combine_lo_hi(

ct_lo: &pod::ElGamalCiphertext,

ct_hi: &pod::ElGamalCiphertext,

) -> Option<pod::ElGamalCiphertext> {

add_ciphertexts(Scalar::one(), ct_lo, Scalar::from(TWO_32), ct_hi)

}

#[cfg(target_os = "solana")]

#[allow(unused_variables)]

mod target_arch {

// ...

const SHIFT_BITS: usize = 16;

// ...

pub fn add_with_lo_hi(

left_ciphertext: &pod::ElGamalCiphertext,

right_ciphertext_lo: &pod::ElGamalCiphertext,

right_ciphertext_hi: &pod::ElGamalCiphertext,

) -> Option<pod::ElGamalCiphertext> {

let shift_scalar = to_scalar(1_u64 << SHIFT_BITS);

14 / 33 – Finding Details

Thus, the two code versions do not compute the same final amount (except for very small

amounts, up to 65535). The out-of-Sealevel code seems to be the correct version, since

the specification of the protocol indeed calls for splitting 64-bit amounts into 32-bit halves.

Recommendation

The SHIFT_BITS value should be 32, to align with the out-of-Sealevel code and the

specification.

Location
src/zk_token_elgamal/ops.rs, line 103

Retest Results
2023-02-27 – Fixed

NCC Group reviewed the changes implemented in PR #28470, and found that Solana

Foundation modified the code to be agnostic of the target (inside or outside of the Sealevel

parallel runtime). The new common code now computes left_ciphertext +

(right_ciphertext_lo + 2^16 * right_ciphertext_hi . The function combine_lo_hi()

was removed from the implementation.

let shifted_right_ciphertext_hi = scalar_ciphertext(&shift_scalar,

&right_ciphertext_hi)?;

let combined_right_ciphertext = add(right_ciphertext_lo,

&shifted_right_ciphertext_hi)?;

add(left_ciphertext, &combined_right_ciphertext)

}

15 / 33 – Finding Details

https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/zk_token_elgamal/ops.rs#L103
https://github.com/solana-labs/solana/pull/28470

Encoded Scalars are Malleable

Overall Risk Low

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E004944-XL7

Component ZkTokenElGamal

Category Uncategorized

Status Fixed

Impact
Scalar values accept several distinct encodings; this can induce some malleability of

transactions, depending how the encoded scalars are used. Extra malleability has proven

to induce weaknesses in some protocols.

Description

The PodScalar type is defined in src/curve25519/scalar.rs as a wrapper around 32 bytes,

which nominally encode a scalar value (i.e., an integer modulo the prime order L of the

Ristretto255 group). Conversion functions from that encoded format to the Scalar type of

the curve25519-dalek library are provided in src/curve25519/scalar.rs, line 17:

and also in src/zk_token_elgamal/convert.rs, line 84:

The Scalar::from_bits() function in curve25519-dalek performs a non-canonical

decoding: the provided bit pattern is used without checking whether it is a value already in

the 0 to L -1 range. Since L is about 2
252

, this means that the from_bits() function

accepts up to 16 distinct encodings for a given scalar, that all yield in fine the same

mathematical value.

This kind of malleability is usually not a problem, but it has occasionally led to trouble,

especially in consensus protocols where different actors would disagree on the validity of a

given non-canonical input. It also opens the possibility of making seemingly distinct

sequences of bytes that are still, algebraically, the same object, which has also enabled

attacks in some protocols. Note that for Ristretto points, the canonical encoding and

decoding process is enforced, thereby avoiding any similar issue for group elements.

Recommendation
Decoding of a scalar from bytes should enforce a canonical encoding; this can be done by

using the Scalar::from_canonical_bytes() function of curve25519-dalek.

Location
src/curve25519/scalar.rs, line 17

src/zk_token_elgamal/convert.rs, line 84

Low

•

•

impl From<&PodScalar> for Scalar {

fn from(pod: &PodScalar) -> Self {

Scalar::from_bits(pod.0)

}

}

impl From<PodScalar> for Scalar {

fn from(pod: PodScalar) -> Self {

Scalar::from_bits(pod.0)

}

}

16 / 33 – Finding Details

https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/curve25519/scalar.rs#L17
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/zk_token_elgamal/convert.rs#L84
https://doc.dalek.rs/curve25519_dalek/scalar/struct.Scalar.html#method.from_bits
https://doc.dalek.rs/curve25519_dalek/scalar/struct.Scalar.html#method.from_bits
https://doc.dalek.rs/curve25519_dalek/scalar/struct.Scalar.html#method.from_bits
https://doc.dalek.rs/curve25519_dalek/scalar/struct.Scalar.html#method.from_canonical_bytes
https://doc.dalek.rs/curve25519_dalek/scalar/struct.Scalar.html#method.from_canonical_bytes
https://doc.dalek.rs/curve25519_dalek/scalar/struct.Scalar.html#method.from_canonical_bytes
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/curve25519/scalar.rs#L17
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/zk_token_elgamal/convert.rs#L84

Retest Results
2023-02-27 – Fixed

NCC Group reviewed the changes implemented in PR #28870, and found that Solana

Foundation implemented NCC Group’s recommended fix. The two aforementioned locations

now decode a scalar from bytes using Scalar::from_canonical_bytes() , which enforces a

canonical encoding.

17 / 33 – Finding Details

https://github.com/solana-labs/solana/pull/28870

Secret Amount May Leak Through Side

Channels in Fee Calculation

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E004944-77E

Component Instruction

Category Uncategorized

Status Risk Accepted

Impact
An attacker able to make precise timing measurements on the behavior of a target system

may infer information about the amount in a transaction through side channels in the fee

calculation.

Description
In a TransferWithFee instruction, the fee is computed by applying a configurable rate and a

maximum value to the transaction amount; both the amount and the fee are secret values.

The fee is computed in src/instruction/transfer_with_fee.rs, lines 697-709:

Some operations in this function take a variable amount of time that depends on the source

operands, or perform a memory access pattern at addresses that depend on the source

operands:

Integer divisions (calls to checked_div() and checked_rem()) involve CPU opcodes

that may have a varying execution time, because they apply algorithms with a number

of steps proportional to the size difference between the dividend and the divisor; they

may also implement some optimizations when the divisor is a power of two. For

instance, on Intel x86 CPUs of the “Skylake” series (up to and including “Coffee Lake”

cores), the 64-bit unsigned division opcode DIV takes between 35 and 88 cycles to

complete, depending on the input values.

The conditional jump on the remainder value will lead to a different execution time

(some instructions will be skipped) and a different memory access pattern (some

instructions will not be fetched from RAM) if the value happens to be a multiple of the

fee rate, leading to a remainder of value zero.

Low

•

•

#[cfg(not(target_os = "solana"))]

fn calculate_fee(transfer_amount: u64, fee_rate_basis_points: u16) -> Option<(u64, u64)> {

let numerator = (transfer_amount as u128).checked_mul(fee_rate_basis_points as u128)?;

let mut fee = numerator.checked_div(ONE_IN_BASIS_POINTS)?;

let mut delta_fee = 0_u128;

let remainder = numerator.checked_rem(ONE_IN_BASIS_POINTS)?;

if remainder > 0 {

fee = fee.checked_add(1)?;

let scaled_fee = fee.checked_mul(ONE_IN_BASIS_POINTS)?;

delta_fee = scaled_fee.checked_sub(numerator)?;

}

let fee = u64::try_from(fee).ok()?;

Some((fee as u64, delta_fee as u64))

}

18 / 33 – Finding Details

An attacker in position to perform precise timing measurements (e.g. controlling a virtual

machine co-hosted on the same hardware as the target system) may leverage these leaks

to obtain some information on the amount.

Recommendation

The test on the remainder can be avoided by adding ONE_IN_BASIS_POINTS - 1 to the

numerator prior to the division; with this change, a rounding-up division is performed,

which is what the function aims at achieving. The computation of delta_fee would then be

done systematically.

Since the divisor is non-secret (it is part of the public configuration), the division operation

itself can be replaced with a multiplication followed by a shift, as described by Grandlund

and Montgomery. In this case, the dividend (numerator) may use up to 80 bits, and that

method entails computing an 80×80→160 multiplication, which exceeds the size of the

largest unsigned integer type available in Rust. The multiplication thus would have to be

performed using 64-bit limbs and manual carry propagation. The Rust compiler may

already implement this method in the generated code (since the divisor,

ONE_IN_BASIS_POINTS , is a constant known at compile-time) but this is not guaranteed and

may depend on the target CPU architecture and model, the Rust compiler version, and the

compilation flags.

Location
src/instruction/transfer_with_fee.rs, lines 697-709

Retest Results
2023-02-27 – Partially Fixed

NCC Group reviewed the changes implemented in PR #27356, and found that Solana

Foundation implemented all but one of NCC Group’s recommended fixes.

Solana has implemented the rounding-up division fix, but did not replace the division with a

multiplication followed by a shift, leaving one potential side channel unaddressed. The

remaining low side channel risk is considered acceptable by Solana Foundation.

19 / 33 – Finding Details

https://gmplib.org/~tege/divcnst-pldi94.pdf
https://gmplib.org/~tege/divcnst-pldi94.pdf
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/instruction/transfer_with_fee.rs#L697-L709
https://github.com/solana-labs/solana/pull/27356

Inner Product Computations are not Constant-

Time

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E004944-4D4

Component RangeProof

Category Uncategorized

Status Fixed

Impact
Attackers able to perform precise timing measurements on the behavior of a target system

may infer information about private elements involved in range proofs, in particular

transaction amounts.

Description

The InnerProductProof::new() function creates an inner-product proof; this is used as a

core element of range proofs, involved in particular in demonstrating that encrypted

amount values are in the proper range. The elements of some of the vectors on which inner

product proofs are computed directly translate the bits of the binary representation of

amount values.

The proof construction entails many linear combinations of elements of the Ristretto group;

the linear coefficients are derived from the elements of the input vectors. To perform these

linear combinations, the curve25519-dalek RistrettoPoint::vartime_multiscalar_mul()

function is invoked in several places. However, that function is not constant-time; internally,

it uses Straus’s algorithm in combination with dynamically generated windows of point

multiples, and a wNAF scalar representation. In Straus’s algorithm, a common sequence of

successive point doublings is performed, with occasional extra point additions; the exact

places at which the point addition occurs in the sequence of point doublings depend on the

position of non-zero digits in the wNAF representation, which itself depends on the exact

value of the source scalars. Moreover, the points which are added are looked up from the

windows at addresses that depend on the digit values in the wNAF scalar representation.

Thus, the operation is not constant-time and will leak information detectable through

timing-based side channels.

Note: vartime_multiscalar_mul() is also used in proof verifications; this is fine, since the

verification uses only public data.

Recommendation
The constant-time implementation of Straus’s algorithm should be used instead; it is

implemented by curve25519-dalek as RistrettoPoint::multiscalar_mul() . That variant

uses a non-wNAF scalar representation, so that point additions occur at times that do not

depend on the source scalars; moreover, all window lookups are done in a constant-time

way.

Location
src/range_proof/inner_product.rs, lines 88, 102, 128, 132, 154, 160, 178, 179

Low

20 / 33 – Finding Details

https://doc.dalek.rs/curve25519_dalek/traits/trait.VartimeMultiscalarMul.html#method.vartime_multiscalar_mul
https://doc.dalek.rs/curve25519_dalek/traits/trait.VartimeMultiscalarMul.html#method.vartime_multiscalar_mul
https://doc.dalek.rs/curve25519_dalek/traits/trait.VartimeMultiscalarMul.html#method.vartime_multiscalar_mul
https://doc.dalek.rs/curve25519_dalek/traits/trait.VartimeMultiscalarMul.html#method.vartime_multiscalar_mul
https://doc.dalek.rs/curve25519_dalek/traits/trait.MultiscalarMul.html#tymethod.multiscalar_mul
https://doc.dalek.rs/curve25519_dalek/traits/trait.MultiscalarMul.html#tymethod.multiscalar_mul
https://doc.dalek.rs/curve25519_dalek/traits/trait.MultiscalarMul.html#tymethod.multiscalar_mul
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/range_proof/inner_product.rs#L88

Retest Results
2023-02-27 – Fixed

NCC Group reviewed the changes implemented in PR #27355, and found that Solana

Foundation implemented NCC Group’s recommended fix. Solana Foundation replaced all

aforementioned calls to vartime_multiscalar_mul() with multiscalar_mul() .

21 / 33 – Finding Details

https://github.com/solana-labs/solana/pull/27355

Fragile Key Derivation from Ed25519

Signatures

Overall Risk Informational

Impact Medium

Exploitability None

Finding ID NCC-E004944-BE6

Component ElGamal, AuthenticatedEncryp

tion

Category Uncategorized

Status Risk Accepted

Impact
The derivation of secret keys from Ed25519 signatures may break, leading to loss of private

keys and associated assets, if the signature generation engine ceases to use deterministic

per-signature nonce generation.

Description
In src/encryption/auth_encryption.rs, a symmetric encryption key (for AES) is obtained by

computing an Ed25519 signature over a conventional, fixed encoded message:

A similar mechanism is used to derive an ElGamal private key in src/encryption/elgamal.rs,

line 173 and line 340.

The idea behind this construction is to try to obtain private keys for new cryptographic

operations based on an existing private key storage system (e.g. a wallet) that supports

only Ed25519 signature generation. Ed25519 signature generators usually employ a

deterministic signature generation process in which the per-signature nonce value is

obtained as a hash over the signature key pair and the message to sign. Ed25519

signatures are nominally a randomized signature scheme; the deterministic generation is

known as derandomization and its main benefit is that it ensures cryptographic safety even

if no high-quality cryptographic random number generator is available.

However, whether the per-signature nonce was chosen deterministically or randomly

cannot be detected by verifiers; a signature generator may also use a randomized process

and still output valid and interoperable signature values. Moreover, it has been argued that

purely deterministic signatures increase vulnerability to fault attacks; thus, an

implementation of an Ed25519 signature generator may legitimately switch its behavior

Info

pub fn new(signer: &dyn Signer, address: &Pubkey) -> Result<Self, SignerError> {

let message = Message::new(

&[Instruction::new_with_bytes(*address, b"AeKey", vec![])],

Some(&signer.try_pubkey()?),

);

let signature = signer.try_sign_message(&message.serialize())?;

// Some `Signer` implementations return the default signature, which is not suitable

for

// use as key material

if signature == Signature::default() {

Err(SignerError::Custom("Rejecting default signature".into()))

} else {

Ok(AeKey(signature.as_ref()[..16].try_into().unwrap()))

}

}

22 / 33 – Finding Details

https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/auth_encryption.rs#L77
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L173
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L173
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L340
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.6
https://eprint.iacr.org/2017/1014

from deterministic to randomized. In fact, using an extra random seed inside the

derandomization process, to maintain the mathematical safety in case the random

generator turns out not to be of high enough quality. This would still conform to the

relevant standards (e.g. RFC 8032). In such a case, the key derivation process

implemented by Solana would break, in that a new secret key would be obtained at each

execution, even if working with the same Ed25519 private key. This occurrence would be

equivalent to a private key loss. In that sense, this key derivation process is fragile.

Apart from the risk of key loss, the use of signature values as the source for private keys

may raise some extra security concerns, depending on the usage context:

Implementations usually take great care to protect private keys against eavesdropping

by attackers, but may not be as careful about signature values, which are normally

considered public data. For instance, in usage scenarios where ulterior RAM scanning is

considered to be a practical threat, it is customary to wipe private elements after usage

(any in-RAM copy of the private key, and of the per-signature nonce), but the same

treatment would not be applied to the signature value itself.

The resulting private key remains private only as long as the signer cannot be convinced

by an attacker to sign the exact same conventional message. Solana is using a

consistent serialized message format throughout its SDK, and the conventional message

for key derivation includes an explicit tag, which avoids collisions with any other use of

signatures within Solana. If the private key owner uses the same private key in a

different system, then such guarantees no longer apply.

Recommendation
Clearly document the limitations and potential fragility of the construction, and recommend

another mechanism when possible.

Location
src/encryption/auth_encryption.rs, line 77

src/encryption/elgamal.rs, line 173 and line 340

Retest Results
2023-02-27 – Not Fixed

Solana Foundation deems the risk of this finding to be acceptable, and did not fix this

issue.

•

•

•

•

23 / 33 – Finding Details

https://datatracker.ietf.org/doc/html/rfc8032
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/auth_encryption.rs#L77
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L173
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/elgamal.rs#L340

Discrete Logarithm Failure with Many Threads

Overall Risk Informational

Impact High

Exploitability None

Finding ID NCC-E004944-T7P

Component DiscreteLog

Category Uncategorized

Status Fixed

Impact
If using 131072 threads or more for solving discrete logarithms, the implementation no

longer finds the solution, and it reports a failure for all inputs.

Description

The decode_32() function in src/encryption/discrete_log.rs recovers a value from its

decrypted ciphertext representation using a baby-step/giant-step discrete logarithm

algorithm that leverages the fact that the solution is known to be in the limited range (0 to

2
32

-1). This process entails performing 2
16

 point additions and lookups; this is expensive,

therefore the implementation allows for splitting the work over a configurable number of

threads. Each thread then performs a fraction of the 2
16

 operations.

The workload split is computed in the DiscreteLog::num_threads() function (line 79):

The code checks explicitly that the number of threads is not zero, and is a power of two.

(The latter condition is intended to ensure an equal split of the workload among all

threads.) However, it does not check any upper bound on the number of threads. If that

number is larger than 2
16

 (i.e. at least 2
17

 = 131072, since it is still checked to be a power

of two), then the division will yield a value of range_bound equal to zero, and none of the

threads will perform any work, since the upper range limit is exclusive in the

decode_range() function that the threads run. In total, the 131072 threads will exit quickly,

and decode_u32() will return None , as if the input were invalid.

Recommendation

Enforce in num_threads() an upper limit of 65536 on the number of threads.

Location
src/encryption/discrete_log.rs, line 79

Info

/// Adjusts number of threads in a discrete log instance.

pub fn num_threads(&mut self, num_threads: usize) -> Result<(), ProofError> {

// number of threads must be a positive power-of-two integer

if num_threads == 0 || (num_threads & (num_threads - 1)) != 0 {

return Err(ProofError::DiscreteLogThreads);

}

self.num_threads = num_threads;

self.range_bound = (TWO16 as usize).checked_div(num_threads).unwrap();

self.step_point = Scalar::from(num_threads as u64) * G;

Ok(())

}

24 / 33 – Finding Details

https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/discrete_log.rs#L79
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/encryption/discrete_log.rs#L79

Retest Results
2023-02-28 – Fixed

NCC Group reviewed the changes implemented in PR #27412, and found that Solana

Foundation imposed an upper limit of 65536 on the number of threads, thus ensuring that

the implementation finds a solution for the restricted input domain.

25 / 33 – Finding Details

https://github.com/solana-labs/solana/pull/27412

Timing Side-Channels May Reveal Which

Transaction Amounts Have Large Fees

Overall Risk Informational

Impact Low

Exploitability Low

Finding ID NCC-E004944-R64

Component SigmaProofs

Category Uncategorized

Status Fixed

Impact
An attacker able to perform precise timing measurements on the behaviour of the target

system may infer which transactions use amounts large enough to make the fee reach the

configured maximum bound.

Description
In a TransferWithFee instruction, the fee is computed by applying a given configurable rate

to the transaction amount. However, a maximum value is applied to the fee; for transactions

with large amounts, the fee will be equal to that bound. Two fee proofs are produced for

the transaction, one showing that the fee is equal to the maximum value, and the other

showing that the fee is the same inside two distinct ciphertexts, which covers the case of a

fee below the maximum value. The two proofs cannot be true simultaneously, so one of

them is simulated; the aggregated proof shows that one of the two proofs is real, but does

not reveal which one was simulated. The production system entails making two pairs of

proofs, to cover both cases (src/sigma_proofs/fee_proof.rs, line 58):

The create_proof_fee_above_max() and create_proof_fee_below_max() functions return

a pair of sigma proofs (one true, one simulated). These functions also use, and modify, a

transcript, to inject the relevant proof elements and obtain the challenge values. The two

functions are called on freshly created clones of the current transcript.

Info

let mut transcript_fee_above_max = transcript.clone();

let mut transcript_fee_below_max = transcript.clone();

// compute proof for both cases `fee_amount' >= `max_fee` and `fee_amount` < `max_fee`

let proof_fee_above_max = Self::create_proof_fee_above_max(

fee_opening,

delta_commitment,

claimed_commitment,

&mut transcript_fee_above_max,

);

let proof_fee_below_max = Self::create_proof_fee_below_max(

fee_commitment,

(delta_fee, delta_opening),

claimed_opening,

max_fee,

&mut transcript_fee_below_max,

);

26 / 33 – Finding Details

The right pair of proofs is then selected in a constant-time way, to avoid leaking through

side-channels whether the fee was equal to the maximum (i.e. the transaction amount was

large) or below the maximum:

While the selection of fee_max_proof and fee_equality_proof is done with constant-time

conditional selection, the choice of the correct transcript clone is done in a non-constant-

time way, with a conditional evaluation that leads to a specific memory access pattern:

only one of the two cloned transcript states is copied into the current transcript object.

Thus, whether the source amount was large or not still leaks through timing-based side-

channels.

Recommendation
The side-channel leak can be avoided by modifying the implementation in the following

way: instead of selecting one of the two cloned transcripts, the two clones may be

discarded, and the original transcript instance updated after the constant-time selection of

the right pair of proofs. Indeed, the updates to the transcript are the insertion of the

Y_max_proof , Y_delta , and Y_claimed points, and the extraction of the c and w

challenge scalars; the points to insert are part of the finally returned FeeSigmaProof

instance. This would lead to the following code:

let below_max = u64::ct_gt(&max_fee, &fee_amount);

// conditionally assign transcript; transcript is not conditionally selectable

if bool::from(below_max) {

*transcript = transcript_fee_below_max;

} else {

*transcript = transcript_fee_above_max;

}

Self {

fee_max_proof: FeeMaxProof::conditional_select(

&proof_fee_above_max.fee_max_proof,

&proof_fee_below_max.fee_max_proof,

below_max,

),

fee_equality_proof: FeeEqualityProof::conditional_select(

&proof_fee_above_max.fee_equality_proof,

&proof_fee_below_max.fee_equality_proof,

below_max,

),

}

let below_max = u64::ct_gt(&max_fee, &fee_amount);

// we discard the two transcript clones

let rv = Self {

fee_max_proof: FeeMaxProof::conditional_select(

&proof_fee_above_max.fee_max_proof,

&proof_fee_below_max.fee_max_proof,

below_max,

),

fee_equality_proof: FeeEqualityProof::conditional_select(

&proof_fee_above_max.fee_equality_proof,

&proof_fee_below_max.fee_equality_proof,

below_max,

27 / 33 – Finding Details

Since hashing data into a transcript has very low cost compared to the elliptic curve

operations used in the sigma proofs, the overhead induced by this recommendation should

be negligible.

Location
src/sigma_proofs/fee_proof.rs, line 80

Retest Results
2023-02-20 – Fixed

NCC Group reviewed the changes implemented in PR #27354, and found that Solana

Foundation implemented NCC Group’s provided code fix.

),

};

// Update the transcript just like the verifier will do

transcript.append_point(b"Y_max_proof", &rv.fee_max_proof.Y_max_proof);

transcript.append_point(b"Y_delta", &rv.fee_equality_proof.Y_delta);

transcript.append_point(b"Y_claimed", &rv.fee_equality_proof.Y_claimed);

transcript.challenge_scalar(b"c");

transcript.challenge_scalar(b"w");

rv

28 / 33 – Finding Details

https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/sigma_proofs/fee_proof.rs#L80
https://github.com/solana-labs/solana/pull/27354

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

Medium

29 / 33 – Finding Field Definitions

Rating Description

Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

30 / 33 – Finding Field Definitions

6 Audit Notes

In this section, we include extra remarks which were deemed worth reporting, but are not

security vulnerabilities by themselves.

Discrete logarithm inefficiency: The implementation of the limited-range discrete

logarithm, in src/encryption/discrete_log.rs, recovers the value x from the input point

C = xG by computing all points C - iG (for i = 0 to 2
16

-1) and looking for the presence of

these points in the precomputed table of points j(216G) (for j = 0 to 2
16

-1). The function

decode_range() performs this operation:

The Ristretto point compression function is invoked for each point; this is by far the most

expensive step of this process. Ristretto point compression involves a square root

computation in the field, with a cost roughly equivalent to 200 field multiplications, while a

point addition uses only eight field multiplications, and a few additions and subtractions,

leading to a per-addition cost equivalent to about 10 field multiplications. Thus, point

compression is 20 times more expensive than point addition; the lookup (in a hash table) is

also much faster than a point addition and adds negligible overhead.

Point compression can be made much more efficient by using batches, in which many

points are compressed at the same time. Raw Ristretto compression cannot by itself

benefit from batches, but it can if coupled with a point doubling. Indeed, when

compressing a Ristretto point 2P, knowledge of its half P allows replacing the square root

with an inversion in the field. Thanks to a trick due to Montgomery, a batch of independent

inversions can be all computed using a single inversion in the field, and a per-value

overhead of only three multiplications. If decode_range() performed compression by

batches of, for instance, 128 points, then the overall discrete logarithm process could be

sped up by a factor of up to 10 or so.

A few caveats apply to this batching process:

As explained above, the optimization can be applied only if combined with a point

doubling, which must be taken into account: the actual lookup will be with point 2(C -

 iG); hence, the precomputed table should contain values 2j(216G) = j(217G).

Batch doubling-and-compression is a functionality provided by curve25519-dalek as the

RistrettoPoint::double_and_compress_batch() function, which already implements all

the necessary formulas. However, there is a known issue in that implementation, in that

it can fail (with a panic) if one of the points to compress happens to be the Ristretto

identity point (the neutral element in the group). A patch is available; until the patch is

merged into the library, the callers should take care not to include the identity point into

their batches. (The is_identity() function on a RistrettoPoint is a relatively efficient

way to check whether a point is indeed the group neutral or not.)

When a thread has found the correct solution, it may stop right away; in particular, if a

single thread is involved, then this would halve the total computation time (on average).

•

•

•

fn decode_range(ristretto_iterator: RistrettoIterator, range_bound: usize) -> Option<u64> {

let hashmap = &DECODE_PRECOMPUTATION_FOR_G;

let mut decoded = None;

for (point, x_lo) in ristretto_iterator.take(range_bound) {

let key = point.compress().to_bytes();

if hashmap.0.contains_key(&key) {

let x_hi = hashmap.0[&key];

decoded = Some(x_lo + TWO16 * x_hi as u64);

}

}

decoded

}

31 / 33 – Audit Notes

https://doc.dalek.rs/curve25519_dalek/ristretto/struct.RistrettoPoint.html#method.double_and_compress_batch
https://doc.dalek.rs/curve25519_dalek/ristretto/struct.RistrettoPoint.html#method.double_and_compress_batch
https://doc.dalek.rs/curve25519_dalek/ristretto/struct.RistrettoPoint.html#method.double_and_compress_batch
https://github.com/dalek-cryptography/curve25519-dalek/issues/398
https://github.com/dalek-cryptography/curve25519-dalek/pull/399

However, such halting may happen only with the granularity of batches, so that larger

batches are at odds with that optimization; in practice, batch size should be set to some

value benchmarked to yield the best results, probably around 100 points or so. It shall

be noted that early thread exit yields only moderate gains when several threads are

used (since only one thread will benefit from it), and increases the side-channel leaks

inherent to the discrete logarithm process, as described in finding "Multiple Timing

Side-Channels in Discrete Log Computation May Reveal Amount".

Note: During the retest of the findings, NCC Group noticed that Solana Foundation has

implemented point compression optimization using batches, with a batch size of 32 points

in PR #27412.

Invalid amount split: The split_u64() function is defined in src/instruction/mod.rs (line

42); it splits a given amount (u64 value) into “low” and “high” parts, whose lengths (in bits)

are provided as parameters:

The two assertions check that the two lengths are in sensible ranges. However, the checks

are incomplete:

If lo_bit_length is zero, then the two shifts by 64 - lo_bit_length overflow the shift

counter.

If lo_bit_length is 64, then the right shift by lo_bit_length overflows the shift

counter.

If lo_bit_length + hi_bit_length is 64 or more, even if both lengths are individually

lower than 64, then the shift by lo_bit_length + hi_bit_length overflows the shift

counter.

The shift counter normal range, for a 64-bit source operand, is 0 to 63; any shift count

outside of this range is an overflow. Overflows trigger a panic with Rust code compiled in

debug mode; in release mode, the shift count would be silently truncated to its low 6 bits.

In practice, the low and high bit lengths are constants (denoted

TRANSFER_AMOUNT_LOW_BITS and TRANSFER_AMOUNT_HIGH_BITS , respectively, in src/

instruction/transfer.rs and src/instruction/transfer_with_fee.rs); thus, any invalid value

should be detected at compile time, when running the unit tests. The current values are 16

bits for the low part, 32 bits for the high part. We note that some parts of the code in

transfer.rs and transfer_with_fee.rs are meant to cover the case of both lengths being 32

•

•

•

pub fn split_u64(

amount: u64,

lo_bit_length: usize,

hi_bit_length: usize,

) -> Result<(u64, u64), ProofError> {

assert!(lo_bit_length <= 64);

assert!(hi_bit_length <= 64);

if !bool::from((amount >> (lo_bit_length + hi_bit_length)).ct_eq(&0u64)) {

return Err(ProofError::TransferAmount);

}

let lo = amount << (64 - lo_bit_length) >> (64 - lo_bit_length);

let hi = amount >> lo_bit_length;

Ok((lo, hi))

}

32 / 33 – Audit Notes

https://github.com/solana-labs/solana/pull/27412

bits, which will trigger an overflow in split_u64() ; thus, this case is probably not meant to

be used anymore.

Note: During the retest of the findings, NCC Group noticed that Solana Foundation made a

number of changes to this function in PR #28472:

It removed the two assertions.

If bit_length is 64 bits:

The function now returns (amount, 0),

Otherwise:

It returns: (bit_length low bits of amount , 64 - bit_length high bits of amount).

Therefore, it may overflow if bit length is 0; however, currently this value does not appear

to be passed as an argument to the function.

Withdraw operation may reveal information about balance: The withdrawn amount reveals

information about the current balance, specifically that the current balance is greater than

or equal to the withdrawn amount. It is envisaged that an attacker who can observe

encrypted balances before and after account withdraw operations, for example by

capturing transactions on the network, can infer this information by:

guessing an amount,

encrypting this amount with a Pedersen opening of value zero,

and then subtracting this guessed and encrypted value from the previous ciphertext,

until the result is equal to the new ciphertext.

Since the instruction processor must know the plain amount for any Withdraw operation, it

is NCC Group’s understanding that this information is inherently public. This remark is

mostly about pointing out that even if some additional protocol mechanism was added to

somehow convey the withdrawn amount confidentially to the instruction processor, then

the use of a non-secret Pedersen commitment opening (zero, in this case) would make

such a scheme fail.

Note: Solana Foundation has reviewed this audit note, and deems that the risk that

Withdraw operations may reveal information about balance is acceptable.

Errors in comments:

The comment on the ciphertext_lo field of the TransferData structure (in src/

instruction/transfer.rs, line 45) says that it contains the encryption of “the low 32 bits of

the transfer amount”, which is incorrect since TRANSFER_AMOUNT_LOW_BITS is 16, not 32.

The comment on the WithdrawWithheldTokensData structure (in src/instruction/

withdraw_withheld.rs, line 24) specifies that the pre-instruction should call WithdrawDat

a::verify_proof(&self) , which is the wrong type name (it should be WithdrawWithheld

TokensData::verify_proof(&self)).

In src/range_proof/inner_product.rs, line 36, it is documented that InnerProductProof::

new() shall be called only with vectors whose length is either a power of two, or zero.

However, the code explicitly checks (on line 68) that the (common) length of the vector

parameters is a power of two (with the standard usize::is_power_of_two() function),

which is not the case of zero. Thus, vectors with length zero are not actually supported;

they would lead to a panic triggered by the failed assertion on line 68.

•

•

◦

•

◦

•

•

•

•

•

•

33 / 33 – Audit Notes

https://github.com/solana-labs/solana/pull/28472
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/instruction/transfer.rs#L45
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/instruction/transfer.rs#L45
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/instruction/withdraw_withheld.rs#L24
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/instruction/withdraw_withheld.rs#L24
https://github.com/solana-labs/solana/blob/4e43aa6c18e6bb4d98559f80eb004de18bc6b418/zk-token-sdk/src/range_proof/inner_product.rs#L36

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings and Strategic Recommendations
	Retest Summary

	Dashboard
	Table of Findings
	Finding Details
	Parsing of SPL ZK-Token Protocol and Cryptographic Key Data May Crash System
	Non-Constant-Time Signature Comparison May Leak Some Information About Derived AES Key
	Multiple Timing Side-Channels in Discrete Log Computation May Reveal Amount
	Private Key JSON Decoding/Encoding is not Constant-Time
	Amount Value Split Discrepancy Between In-Sealevel and Out-of-Sealevel Code
	Encoded Scalars are Malleable
	Secret Amount May Leak Through Side Channels in Fee Calculation
	Inner Product Computations are not Constant-Time
	Fragile Key Derivation from Ed25519 Signatures
	Discrete Logarithm Failure with Many Threads
	Timing Side-Channels May Reveal Which Transaction Amounts Have Large Fees

	Finding Field Definitions
	Risk Scale
	Category

	Audit Notes

