
PROTECTING STORED CARDHOLDER DATA

(AN UNOFFICIAL SUPPLEMENT TO PCI DSS V3.0)

Rob Chahin — rob[dot]chahin[at]nccgroup[dot]com

iSEC Partners, Inc

123 Mission Street, Suite 1020

San Francisco, CA 94105

https://www.isecpartners.com

February 12, 2015

Abstract

In what started as a blog post that got too long, I take a look at PCI DSS v3.0 Requirement 3.4 - the requirement

to protect cardholder data on disk / at rest. It is a security industry mantra that ``there is a difference between

compliance and security'', and the requirement to protect stored cardholder data is an excellent example of this.

There are a number of compliant options available, with varying levels of security in different scenarios. This

document is intended as an analysis of the various compliant options such that the reader can choose an option

that makes sense - and in doing so, meet their compliance obligations while also improving security and keeping

costs proportionate. Ultimately, all of the advice in this document boils down to two things: don't store any data

that you don't need to, and always consider what you're actually protecting your data from. Different methods of

storage have different security properties, and what works for one organization might not work for another.

1 VERSION HISTORY

February 12, 2015 — v1.2: Minor clarification on the state of MD5 preimage vulnerabilities.

February 11, 2015— v1.1: Thanks to Jann Horn for pointing out that the definitions of collision resistance and second

preimage resistance had become reversed.

February 9, 2015 — v1.0

2 THE REQUIREMENT

I was looking for some additional guidance or rigor in PCI DSS v3.0 regarding the `correct' way to store cardholder

data, and reading other blog posts and presentations on the subject tells me that I wasn't alone. While PCI DSS

v3.0 did add an optional salt to card number hashes, unfortunately nothing else changed. I had originally planned

an extremely in-depth piece on the use of hashing, but the more assessments I do and the more approaches I see,

I feel that a more general view is needed. All of the most important points on the use of cryptographic hashes are

still included in the hashing section.

Doing some research before writing this document, I came across varying levels of accuracy and usefulness in the

current guidance:

https://www.isecpartners.com 1/8

https://www.isecpartners.com
https://www.isecpartners.com

``One-way hash functions based on strong cryptography—also called hashed index, which displays

only index data that point to records in the database where sensitive data actually reside.''

Source: https://www.pcisecuritystandards.org/pdfs/pci_fs_data_storage.pdf (2008)

Frankly, this is just incorrect, but it was written in 2008.

``PANs stored in primary storage (databases, or flat files such as text files spreadsheets) as well as non-

primary storage (backup, audit logs, exception or troubleshooting logs) must all be protected.''

Source: PCI DSS v3.0 Requirement 3.4

Protecting the card number is hopefully evident to anyone subject to PCI DSS, but that's the point of every require-

ment. The guidance here falls short of articulating any risk.

``Full disk encryption helps to protect data in the event of physical loss of a disk and therefore may be

appropriate for portable devices that store cardholder data.''

Source: PCI DSS v3.0 Requirement 3.4.1

It seems that the SSC is acknowledging a critical point here: that full-disk encryption is valuable primarily for

movable or removable media. The requirements also acknowledge a difference between file, column and disk

encryption, but don't articulate what that difference is.

The requirement is specified in DSS v3.0 with auxiliary information in information supplements and FAQs, all of

which can be easy to lose track of when you're looking at hundreds of other requirements. The standards documen-

tation does not currently provide guidance on when different kinds of storage are appropriate.

3 THE POINT

You can pick any one of the compliant data storage methods, implement it, and have your assessor sign off. How-

ever, with a handful of different approved methods of storage — all of which function very differently — the more

important question is: what are you protecting the cardholder data from?

Each of these methods protects against different threat actors (the people trying to steal your data) and compromise

scenarios in different ways, but this is often not considered when deciding which method to go for.

As it stands, these are your options:

• One way hashes, meeting the definition of ``Strong Cryptography''; with an optional but ``not required'' salt,

specifically to protect against pre-computed hashes.

• Truncation, defined as ``permanently removing a segment of PAN data'', most often by deleting all but the first

six and last four digits.

• ``Tokens and one-time pads" — note that these are two distinct things, and are explained separately in this

document.

• Encryption plus good key management.

Let's take a look at some pros and cons. Some vendors conveniently forget to include the cons in their own docu-

mentation.

https://www.isecpartners.com 2/8

https://www.pcisecuritystandards.org/pdfs/pci_fs_data_storage.pdf
https://www.isecpartners.com

4 TYPES OF CARDHOLDER DATA PROTECTION

4.1 TRUNCATION

This is the easiest option to address. If you don't need the card number — for example, you process a transaction

as soon as you receive a card number, and you don't need it for repeat transactions — you don't keep it. The first

six and last four digits are not protected under PCI, and are mostly useless to an attacker. You generally do not

need to protect these for compliance purposes, but be mindful of who has access to them, and what other data they

might have access to. There was a high-profile breach of an email service in 2012 because the provider was using

the last four digits as identity verification.

First six and last four are sometimes an alternative for hashing, as — combined with other cardholder data — they

can uniquely identify a card, if not across your entire customer base, at least within the range of people with a given

name. They're not guaranteed to be unique, so another method is necessary if uniqueness needs to be guaranteed.

The last four alone are often stored in clear text so they can be displayed to a customer to help them identify their

own cards. Stored alongside an encrypted or tokenized number, this is often not a problem, but storing cleartext

alongside a hash is a major problem. This is discussed further in the hashing section.

4.2 ONE-TIME PADS

Popularized in the two World Wars, one-time pads are a mechanism for perfect encryption. By combining your

secret message (card numbers) with a secret value (the pad), the encryption is unbreakable for as long as the key is

unknown.

If you're wondering why we don't use this for encrypting everything, it's because it has somemajor limitations. First,

the pad has to be as long as the data you're encrypting (hence `pad'), and can never be reused (hence `one-time').

For a 16-digit credit card number that's easy enough, but for large files it gets tricky— for one thousand 1MB photos,

you'd need a 1GB encryption key. Second, you need a way of securely transmitting the secret to someone else and a

secure location to store it — if you have those, then why not just use those to store and transmit the card number?

One-time pads still see a lot of use in the military, but not so much in commerce. You can think of it as encryption

with gigantic encryption keys and no built-in key exchange mechanism. Some of the other options in this list use it

as part of a larger solution.

4.3 ONE-WAY HASHES

4.3.1 Why MD5 is really broken

It's pretty widely known that MD5 is `cryptographically broken', and does not meet the PCI requirements for strong

cryptography. However, it's widely misunderstood why this is.

One-way hashes are great. They have a wide range of uses, from storing a secret value in a way that lets you match

input to a secret without knowing what the secret is, to providing digests of large data for integrity checking. They

have so many uses because they have so many properties, but for storing card numbers we rely only on one of those.

The property that we rely on is called `preimage resistance', and it means that given the hash of a card number, you

have no way of calculating the original card number, i.e. the hash is truly one-way. If you lose all of your card hashes,

it should be impossible for an attacker to derive the card numbers.

Two of the other big properties of a hash are second preimage resistance, and collision resistance.

https://www.isecpartners.com 3/8

https://www.isecpartners.com

Second preimage resistance means that given a card number, you cannot find another card number with the same

hash. This is good when we store a card number because we're usually checking a card against a hash to see if

it matches. If there were collisions, we might get a false positive match. Fortunately, credit card numbers have a

limited range of values, and we can pretty trivially demonstrate that for ALL card numbers, there are no collisions

with any hash function in use today.

Collision resistance is like a combination of preimage resistance and second preimage resistance; it means that you

cannot pick two card numbers that result in the same hash, without the limitation of having to start with a given

number; you get to choose both. This property is made redundant in the same way as second preimage resistance.

So for storing a hash of a card number, we really just need preimage resistance. If we take a look at MD5 as the

example of the weakest hash still widely used, it has that for our purposes. The broken part is the collision resistance

— you can generate two messages with the same MD5 hash, but not when your messages are 16-digits. We know

that because we can easily generate all of the possible 16-digit MD5 hashes.

That last statement is critical. The same thing that allows us to generate all MD5 hashes to demonstrate that

collision and second preimage resistance are still in place for credit card numbers is the same thing that

makes MD5 unfit for use — it's really fast.

4.3.2 Why the alternatives are broken as well

According to the oclHashcat website1 (a tool for bruteforce attacks on hashes) and some benchmarks generated on

real-world hardware, we can generate 8.5 billion MD5 hashes per second on a computer with a $200 graphics card.

Build a machine designed to bruteforce hashes, and we can pretty easily reach 100 billion MD5 hashes per second.

An AMEX PAN is 15 digits long, and the last digit is predictable when you're guessing because it's a Luhn digit. An

AMEX also starts with either a 35 or a 37, so the first digit is known, and the second digit is easily guessed. That

leaves us with 2 trillion possible combinations.2

On our very high-end test machine above, it would take 20 seconds to try all of them. (There are some minor

complications— generating the Luhn digit isn't a feature of the tool, so that becomes limited by the CPU. In practice

we would actually just add the last digit as another unknown digit— so it would take 200 seconds to try all of them.)

No QSA worth his or her salt (no pun intended) will have signed off MD5 storage in the history of PCI, and that's

great news — the cryptographic weaknesses in MD5 have been known for a long time, and every practicing QSA

should know this. This weakness is the reason that MD5 doesn't meet the PCI definition of `Strong Cryptography'.

In fact, the PCI definition of `Strong Cryptography' doesn't even include hashing algorithms; it defers to NIST SP

800-57 Part 1, which says that the SHA family of hashes are allowed.

SHA-1 on the same machine we use as an example above can be bruteforced at a rate of about 30 billion hashes

per second. That's 30% of the speed of MD5, so even factoring in the extra work to include the last digit in our

bruteforce attack, that takes us to 11 minutes.

Similarly, for other popular hashes:

SHA-256: 27 minutes

SHA-512: 73 minutes

This type of attack is highly parallelized — in the examples above, we can actually test the card numbers against

every single hash you store at the same time by generating a candidate hash once, then comparing it extremely

1http://hashcat.net/oclhashcat/
2Some papers on this topic also assume that the first six digits — the issuer or bank identifier number (IIN/BIN) — are predictable. This

would only be true in edge cases where you store detailed information about the type of card that a customer is using, which is rarely done in

practice. However, a list of most IIN/BIN codes is not difficult to acquire, so if you do store additional card metadata such as this, be aware that

your hashes are weakened further.

https://www.isecpartners.com 4/8

http://hashcat.net/oclhashcat/
https://www.isecpartners.com

quickly to every stored hash. Our 73 minutes figure means we can 'crack' every one of your ten million stored cards

in 73 minutes (give or take a small overhead)..

If you consider MD5 broken for the purposes of storing a card number, you should also consider all of the

SHA hashes as broken as well.

4.3.3 What ISN'T broken?

There are two techniques used to prevent the bruteforce of hashes described above — salting and slow hashing.

First, salting. In PCI DSS, this is the (optional) ``additional, random input value'' described in the guidance column.

By introducing this random value, you prevent pre-generation of all possible hash values, and more importantly,

you prevent the parallelization of the attack above. If every card uses a unique salt, the attacker has to attack each

card individually — so we would need to spend up to 73 minutes attacking the first card, 73 minutes attacking the

second, and so on.

Evenwith a salted SHA-512 hash though, we're losing a credit card on average every 37minutes (because, statistically,

we will find a card halfway through the search). That's not good enough. The situation gets worse when you look at

why people are using salts. Often, it's to store a list of all of the cards you've received, and to check a new incoming

card to see if you already have it — for example, if you're doing your own anti-fraud or blacklisting. However, to

compare that new card against your stored cards, you need to know the salt of the card you're comparing it to. You

don't know which card you're comparing it to in a blacklist scenario, so you have to generate one hash of the new

card for every unique salt you already have. You are effectively attacking your own card numbers. To work around

this, people use a shared salt, or no salt at all, and remove the primary benefit of having a salt in the first place.

Another point of confusion is the concept of a secret salt. Rather than storing the salt with the hash (which is the

correct place to store it), some companies store the salt away from the hash, using the logic that an attacker stealing

the hashes won't have access to the salts, and therefore won't be able to bruteforce the hashes. If an attacker has

compromised your database, why assume that they haven't also compromised your secret salt location? The salt is

not an encryption key, but if you treat it like one, expect to be assessed against the key management requirements.

Storing the salt elsewhere introduces complexity, but rarely security.

The second technique is using a hash that isn't designed for speed. ``Slow'' hashes like bcrypt and scrypt are designed

to require a lot of work, and to be scalable to require much more work as our computers get faster.

Attacking bcrypt hashes with our test machine results in around 1,700 hash candidates per second — over two

million times slower than attacking SHA-512. This is using a work factor of 10 — bcrypt is configurable, so you can

raise or lower this number as necessary. Work factor 10 is a reasonable medium when considering that new credit

card numbers are accepted relatively infrequently. With hashes generated at 0.0000005% the speed, the hashes are

defeated at a much more reasonable pace — about every 50,000 days, on average. This is assuming unique salts,

which are built into bcrypt. If you force the hash to use a shared salt because you're doing blind lookups, then it

will take 100,000 days to find every single card number you have stored. If that's one million cards, expect to lose

ten per day.

The major limitation to using slow hashes, or any type of hash, is that a bruteforce attack generates hashes just as

you would. In fact, oclHashcat has a number of shortcuts that allow it to generate and test them faster than you

can,3 and your attackers can use specialized hardware, while you're limited to general-purpose compute resources.

The more work you require for the hash, the slower they can be attacked, but the slower they can be generated by

your own servers. No matter how much work you require, hashes can still be attacked. As it stands, hashing

is an arms race, limited by how much work they require (based on your choice of algorithm), and how quickly your

attacker can generate them (based on their computing resources and more efficient tools).

3http://hashcat.net/events/p13/js-ocohaaaa.pdf

https://www.isecpartners.com 5/8

http://hashcat.net/events/p13/js-ocohaaaa.pdf
https://www.isecpartners.com

If a hash is absolutely required — and often it isn't — the goal is to make it unattractive to attack them, and to

buy cardholders time to replace their cards before they are defrauded. If you lose those hashes, you've still been

breached.

4.3.4 Storing hashes with cleartext

One thing that PCI DSS v3.0 is clear about is the increased risk if partial cleartext is stored alongside a hash. Using

the numbers above, if you store the last four digits in cleartext, you reduce the security of your hash by a factor of

10,000. Attacks that would have been measured in hours-per-card will now be measured in cards-per-second. If

you store the first 6 and last 4, you may as well give up.

If you currently store, or are planning to store, partial cleartext alongside a one-way hash, model how long it would

take to perform a brute force attack. No matter how strong your hash is you'll likely find that it's not strong enough.

4.4 ENCRYPTION

If you have a requirement to store the card numbers locally and to retrieve them at a later date, perhaps to send

them on to third parties, encryption is the way to go. However, there are many types of encryption that protect

against different things, and your choice of encryption method should be informed by the threat actor. Let's

look at the common places to encrypt: in the application, in the database, and on the disk.

In the first of these, your application encrypts data as it's received. Everything downstream of your application

has no access to the keys, so the data is protected from attacks against those systems. If the application accepting

card data doesn't need to see the card data at a later date, you'll use asymmetric encryption — the application will

encrypt with a public key, and then even the application will be unable to decrypt the card data. The private key

will be stored in another, much more restricted part of your network, and all card data decryption will take place

there. Using an e-commerce website as an example, this would protect against many common website attacks —

assuming that the website infrastructure and the decryption environment are suitably separated.

This is probably the best place you can encrypt data, but there's a major caveat. Somewhere, there is a key to

decrypt the data. Even if you store the key in an HSM, there is some application that has access to decrypt

data; if there weren't, then why is the data using reversible encryption? You can massively limit the exposure of the

key or decrypting application, and you can apply additional controls like rate-limiting and other context-dependent

authorization, but it's not bulletproof. I've had clients try to work around this by telling me that the key is encrypted

— but where is the key-encrypting key? And if that's encrypted, where is the key that encrypted THAT one? To

paraphrase Terry Pratchett, it's keys all the way down. Note that key management is a problem regardless of which

encryption method you use; but the other forms of encryption have bigger problems that overshadow this one.

A layer down, and much easier to implement, is database encryption — whether that's tablespace encryption or

column encryption. In this model, the database manages the keys and encrypts all sensitive data it receives. It's

encrypted ondisk and only accessible through the database interface (e.g. just reading the database files or filesystem

backups won't disclose data). However, it IS still accessible through the database interface. Anyone with access

to query the data in the database can query the cardholder data in cleartext. You can use access controls to

limit this, but then you're relying on the access controls, not the encryption. This protects against an attacker with

access to the database storage location but no access to the database itself, but does nothing to protect against SQL

injection. Column-level encryption can also be used to hide data from your database administrators, but practically,

a motivated and malicious DBA will be able to work around this restriction — after all, they have access to the

database settings and all of the user accounts.

Further down still is disk encryption. You can encrypt the entire disk so that any data written to it is automatically

encrypted. While this provides extremely convenient encryption, it also provides convenient decryption. Anyone

with access to the system can also read the decrypted data. Full disk encryption only really protects against the

https://www.isecpartners.com 6/8

https://www.isecpartners.com

physical theft or loss of the machine or drive — which is great for a USB drive or a laptop, but doesn't add much to

the servers in a secure datacenter, and does nothing to protect against vulnerabilities in your software.

So how do you choose which layer to encrypt your data at? PCI DSS doesn't yet provide guidance for making that

decision — requirement 3.5 clearly allows for full disk encryption, so if compliance is your goal, why not go with

that? Well, because it's expensive and operationally complex.

In addition to specifying encryption requirements, the DSS specifies key management requirements. Ultimately,

there must be some key that isn't stored on the server. That means it must be stored by a separate service (like

an HSM), or by people (as components). Having people act as key custodians means that those people need to be

available when your server restarts, or it will be unable to read its own data. For most organizations, that option is

ruled out. There are plenty of HSMs and key management appliances available that will allow your servers to boot

and decrypt themselves without a human (as long as the HSM itself doesn't need to restart), but they're frequently

expensive.

So we've established that full disk encryption, and to some extent database encryption, are expensive, awkward, and

don't defend against much. That means we can do one of three things:

1) Leave everything as it is, and require expensive, awkward encryption that protects from a very small set of attacks.

2) Require encryption at a higher layer than disk or databases. This can add pretty great security, but it's also more

complex, and requires a decent understanding of cryptography from your application developers or vendors.

3) Forego the requirement for encryption for data that is physically protected.

Where this goes in the future will really come down to which attacks the SSC and the card brands are trying to

prevent with requirement 3.4. If the risk is physical theft, then hopefully the requirement will be clarified to state

that only media that could be feasibly stolen needs to be encrypted, and the SAN in your locked cage in a locked

datacenter with an armed guard doesn't need to be backed up by $30,000 of crypto hardware.

From a security perspective, if you're going to use encryption, you need to be aware of what your threat model is.

When you decide to encrypt data, think about how it's going to be decrypted — and who is going to have

the ability to do it. It is a common fallacy that encrypted and protected are the same thing.

4.5 TOKENIZATION

Much noise has been made about tokenization. It's arguably the newest approach to protecting stored data, and

numerous vendors have popped up to take advantage of this new market. Like any other new trend, there's a lot of

conflicting and often inaccurate information.

Broadly speaking, there are two models of tokenization:

1. Tokens sent to you via a third party such as a payment processor

2. In-house tokenization.

In the first model, a third party is responsible for storing the card number, and they give you a token to represent

that card. Ideally, it's not actually generated from the card number directly, but is a reference (like an index). That

index will be tied to that specific processor and to you, so the loss of that token is limited in how it could be abused.

This is a very effective control in scenarios like payment redirects and hosted checkouts. You never need to see the

card number, so you never do, and the compliance obligations are shifted to the payment processor. They give you

a token that you can use to reference the card number, both internally and when processing transactions, and you

don't need to worry (much) about losing it.

In the second model, you develop, or usually buy, an application that converts card numbers into tokens. Some

vendors are claiming that this provides huge scope reductions because tokens aren't in scope for PCI DSS and their

appliance is hardened so it can't be broken into. Be wary of these.

https://www.isecpartners.com 7/8

https://www.isecpartners.com

There is no PCI DSS certification for a hardened appliance. If a vendor's hardware or software is installed in

your environment, your QSA is going to audit it. Frequently, because these appliances are locked down, they are

also unable to receive patches from your centralized management, and they may not have been hardened to your

standards. Ask your vendor what ability you have to maintain the appliance, and then bear in mind that having to

manage the security of an appliance is no less onerous during an audit than doing so for a server.

As for scope reduction, you need to understand how the tokenization product generates tokens. For a third party

model, this is irrelevant — their auditor will check this during their assessment. For in-house tokenization, the

tokens are either an index value of a card number stored on the appliance, or they're an encrypted value using some

proprietary encryption or obfuscation scheme. Either way, you need to understand how the PCI requirements in sec-

tion 3 are being met. If the appliance performs encryption of any sort, you or your vendor will need to demonstrate

to your auditor how the encryption is performed, how it's secure, and how the keys are managed.

Another problem with in-house tokenization is that a token that can be converted to a card number is still treated

as a card number, until it moves to an environment where it cannot be converted to a card number. Again, for a

third party token provider, this is fine — just make sure the third party doesn't give you a mechanism for retrieving

PAN. When it's in-house, though, usually the appliance will give you a mechanism for requesting PAN. Any user or

application that can use this mechanism is in scope for your audit, and represents a security risk.

To re-iterate that point: if your tokens can be converted back to credit card numbers, it doesn't matter how

theywere generated orwho generated them—they are back in scope to some extent, and so are the systems

that store and process them. They might not all be in scope for applying all controls, but they will be in scope for

assessing which controls should apply.

One of the great uses for in-house tokenization is a hub/spoke model. If you have a central datacenter that provides

services to dozens of branch offices, you may be able to keep the branches out of scope by only sending them

tokens while keeping the PAN protected in the datacenter. Just bear in mind that this is functionally not different

to encryption— it's just sold to you in a neatly packaged bundle that will hopefully already have its security proven,

but don't assume that it has. The device that performs tokenization will always be in scope for assessment,

unless the SSC releases a special certification.

5 CONCLUSION

There are a number of ways to meet requirement 3.4, but some of them are poorly understood. The most important

consideration is not what is the easiest, but what you are defending against.

A reminder of your options:

• If you don't need card data, don't store card data. You'll save time andmoney, and you'll sleep better.

• Hash the data if you need to compare two cards to each other, but question whether you really need to, and

remember that it will always be vulnerable.

• If you're relying on a secret value, you're using encryption, and you'll need to meet the key management

requirements.

• If you do encrypt cards, think about where the encryption and decryption takes place, and how that does or

does not defend against various threats.

• Tokenization performed by someone else is great. Tokenization performed in-house is great if you have a

distributed infrastructure. Be wary of vendors with the Next Big Thing, and have your engineers or your QSA

speak to them to figure out what the ``tokenization'' process actually is. It should not be a secret.

https://www.isecpartners.com 8/8

https://www.isecpartners.com

6 ACKNOWLEDGEMENT

Thanks to Jeremi Gosney of Sagitta HPC, who not only ran some hashing benchmarks for me on one of their hash-

cracking machines (a Sagitta Brutalis, with 8 x GTX 980 cards), but has for some time been answering my questions

on hash-cracking and letting me run my own tests on some of their other hardware. This document would be

significantly less accurate without his input.

https://www.isecpartners.com 9/8

https://www.isecpartners.com

	Version History
	The Requirement
	The Point
	Types of Cardholder Data Protection
	Truncation
	One-Time Pads
	One-way hashes
	Why MD5 is really broken
	Why the alternatives are broken as well
	What ISN'T broken?
	Storing hashes with cleartext

	Encryption
	Tokenization

	Conclusion
	Acknowledgement

