
NCC Group Whitepaper

AccessingPrivate FieldsOutsideofClasses
in Java
April 5, 2017

Prepared by
Robert C. Seacord

Abstract
Java developers are frequently unaware that the use of nested classes in Java pro-

grams weakens the accessibility guarantees of the language and allows private fields

to be accessed from outside the class, potentially violating developers' assumptions

and affecting overall security. The Java compiler weakens the accessibility of private

members of an outer class when a nested inner class is present to package-private

access. An attacker can create another class in the same package, which can access

package-private classes, methods, and fields in the same package. This is particularly

troublesome because of the increasing popularity of lambda expressions in Java 8

programming. This whitepaper describes the Java language mechanisms used in

these exploits, specifies the extent to which the compiler weakens the accessibility of

private fields, and identifies possible attack vectors.

Table of Contents

1 Introduction . 3

2 Java Language Mechanisms . 4

2.1 Access Level Modifiers . 4

2.2 Nested Classes . 6

3 Accessibility of Private Fields . 8

4 Attack Vectors . 10

5 Conclusion . 11

6 Acknowledgements . 12

7 Author Bio . 13

8 References . 14

2 | Accessing Private Fields Outside of Classes in Java NCC Group

1 Introduction

Java developers are frequently unaware that the use of nested classes in Java programs can weaken the

language's accessibility guarantees and allow private fields to be accessed from outside their classes. The

Java Language Specification [JLS 2015] allows classes and interfaces to be nested within each other. Within

the scope of a top-level declaration, any number of types can appear nested, for example, as member

types or inner classes. A top-level type along with all its nested types can be colloquially referred to as nest

mates. Nest mates have unrestricted access to each other. This includes access to private fields, methods,

and constructors. The private access is complete (undifferentiated, flat) within the entire declaration of the

containing package.

This weakening of Java language guarantees can violate developers' assumptions about the accessibility

of private fields, methods, and constructors within packages containing nested types, affecting higher-level

layers of security [Lai 2008]. As a result, it is critical to understand specifically when this occurs and the exact

risk. Rule ``OBJ08-J. Do not exposeprivatemembers of an outer class fromwithin a nested class'' of TheCERT

Oracle Secure Coding Standard for Java [Long 2012] attempted to do this, but contains some factual errors

and omissions. This whitepaper is an attempt to correct and extend this imperfect rule. The remainder of this

paper examines the Java language mechanisms involved in the overall language vulnerabilities, describes

how attackers can access private fields from outside of their classes, and provides some background as to

how this language vulnerability might be exploited before summarizing.

3 | Accessing Private Fields Outside of Classes in Java NCC Group

2 Java Language Mechanisms

This section describes the Java language mechanisms that allow private fields to be accessed from outside

their classes.

2.1 Access Level Modifiers

Access level modifiers determine whether other classes can use a particular field or invoke a particular

method. Every class member has an accessibility of public, protected, package-private (no modifier),1

or private. Table 1 enumerates the accessibility of class members. Private members can only be accessed

by methods in the same class. Package-private access allows access by any method in the same package,

but not by methods in different packages. Protected members are accessible by subclasses in the same

package or by subclasses in other packages. Public members are accessible everywhere. For members

of public classes, an increase in accessibility from package-private to protected is significant. A protected

member is part of the class's exported API and potentially exposes these members to malicious subclasses.

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

Table 1: Access levels

It is a recommended best practice [Bloch 2008, Long 2012] that developers make fields as inaccessible as

possibleby using themost restrictive access level available. In particular, fields shouldbeprivate unless there

is a good reason to do otherwise. Private fields allow classes to hide internal data and other implementation

details from other classes. This concept is known as information hiding or encapsulation and is one of the

fundamental tenets of software design [Parnas 1972]. Joshua Bloch [Bloch 2008] describes the rationale

for minimizing accessibility in Effective Java, 2nd edition, Item 13, ``Minimize the accessibility of classes and

members''.

While programmers use access level modifiers to implement common software design principles, it is less

clear how they help to improve the program's overall security. For example, private fields cannot prevent an

attacker from disassembling class files using the javap disassembler or decompiling these files into usable

Java source code. Almost any Java decompiler including Procyon,2 CFR,3 JD,4 Fernflower,5 Krakatau,6 or

Candle7 can accomplish this task. An attacker with access to the class and JAR (Java ARchive) files can easily

reconstruct the fields and logic of these classes. The ability to decompile Java classes, however, does not

mean that an attacker can access the data stored in private fields at runtime.

If an attacker can create a malicious class in a package, that class can access package-private classes, meth-

ods, and fields in that same package. In packages containing nested classes, the information in private fields

can be accessed using the Java Reflection API [API 2014], as demonstrated in Section 3. Reading private

fields might allow information such as private keys, passwords, or credit card information to be leaked.

Writing to private fields could break class invariants with unpredictable results.

1A.K.A, package access or default access
2https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
3http://www.benf.org/other/cfr/
4http://jd.benow.ca/
5https://github.com/fesh0r/fernflower
6https://github.com/Storyyeller/Krakatau
7https://github.com/bradsdavis/candle-decompiler

4 | Accessing Private Fields Outside of Classes in Java NCC Group

https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
http://www.benf.org/other/cfr/
http://jd.benow.ca/
https://github.com/fesh0r/fernflower
https://github.com/Storyyeller/Krakatau
https://github.com/bradsdavis/candle-decompiler

The Java Reflection API includes the getDeclaredFields() method that allows a caller to access public,

protected, package-private, and private fields but not inherited fields. This mechanism allows attackers to

enumerate the private fields in a class using the following code:

// Returns an array of Field objects reflecting

// all the fields declared by the class (including private)

final Field fields[] = FieldTest.class.getDeclaredFields();

// Enumerate fields

for (int i = 0; i < fields.length; ++i) {

System.out.println("Field: " + fields[i]);

}

Limited information leakage occurs in that the names of the fields are visible. Attackersmay focus their atten-

tion on fields with suspect names such as SecretPrivateKey. In the following code snippet, a developer

is leaking runtime data by naming the fields according to the data they contain, possibly in a misguided

attempt to avoid the use of magic numbers that lack meaningful names:

public class Leak {

private static final int Bx41 = 0x41;

private static final int Bx42 = 0x42;

private static final int Bx43 = 0x43;

private static final int Bx44 = 0x44;

private static byte[] keyBytes = new byte[] {Bx41, Bx42, Bx43, Bx44};

private static SecretKeySpec key;

private static Cipher cipher;

}

Code running in the same package with an installed security manager [JSO 2016] can discern a number of

details of this implementation using reflection.

The following code,

final Field fields[] = Leak.class.getDeclaredFields();

// Enumerate fields

for (int i = 0; i < fields.length; ++i) {

System.out.println("Field: " + fields[i]);

}

will output the following information about class Leak:

Field: private static final int Leak.Bx41

Field: private static final int Leak.Bx42

Field: private static final int Leak.Bx43

Field: private static final int Leak.Bx44

Field: private static byte[] Leak.keyBytes

Field: private static javax.crypto.spec.SecretKeySpec Leak.key

Field: private static javax.crypto.Cipher Leak.cipher

Note that the actual bytes stored in keyBytes and their order can be discerned inspecting the Java .class

using javap or a Java decompiler, when the .class or .jar file is available.

5 | Accessing Private Fields Outside of Classes in Java NCC Group

Assuming that the developer makes no such mistakes and that a security manager is installed, trying to

access a private field through reflection will result in an IllegalAccesException. To avoid this exception,

the attacker must change the accessibility of the private field by calling the setAccessible() method for

the field. Doing so invokes the security manager's checkPermission() method for the ReflectPermis-

sion("suppressAccessChecks") permission, which throws a SecurityException if the request is denied.

Enabling this permission in this situation is a vulnerability; a well-configured application must not permit

untrusted code to suppress access checks.

2.2 Nested Classes

The Java programming language allows a class to be defined within another class. These nested classes

can be static or non-static. There are four kinds of non-static nested classes: inner classes, local classes,

anonymous classes, and lambda expressions.

Inner Classes

Non-static nested classes are called inner classes. Inner classes have access to other members of their

enclosing classes, including private members. Objects that are instances of an inner class exist within an

instance of the outer class. Consider the following classes:

class OuterClass {

...

class InnerClass {

...

}

}

An instance of InnerClass can exist only within an instance of OuterClass and has direct access to the

methods and fields of its enclosing instance.

Local Classes

There are two special kinds of inner classes: local classes and anonymous classes. Local classes are classes

that are defined in a block, typically within the body of a method. Inner classes declared within the body of

a method, without naming the class, are known as anonymous classes.

A local class has access to the members of its enclosing class. When a local class accesses a local variable

or parameter of the enclosing block, it captures that variable or parameter. (A captured variable is one that

has been copied so it can be used in a nested class. It must be copied because it may outlive the current

context.) In addition, a local class declared in a method has access to local variables that are declared final.

Starting in Java SE 8, a local class declared in a method can also access the method's parameters and any

local variables that are effectively final (that is, their values are not changed after initialization).

Anonymous Classes

Anonymous classes exist to make codemore concise by declaring and instantiating a class at the same time.

They are similar to local classes except that they are unnamed. While local classes are class declarations,

anonymous classes are expressions that are defined within other expressions. The following example from

The Java Tutorials [Tutorials 2016] uses anonymous classes in the initialization statements of the local variable

spanishGreeting:

6 | Accessing Private Fields Outside of Classes in Java NCC Group

HelloWorld spanishGreeting = new HelloWorld() {

String name = "mundo";

public void greet() {

greetSomeone("mundo");

}

public void greetSomeone(String someone) {

name = someone;

System.out.println("Hola, " + name);

}

};

Similar to local classes, anonymous classes can capture variables and have the same access to local variables

of the enclosing scope. An anonymous class has access to themembers of its enclosing class, but it can only

access local variables in its enclosing scope that are final or effectively final.

Lambda Expressions

The syntax of anonymous classes can be unwieldy in cases where the interface contains only one method.

Lambda expressions are nested classes that allow functionality to be passed as an argument to another

method (that is, to treat functionality as a method argument or code as data). Lambda expressions can

also capture variables; they have the same access to local variables of the enclosing scope as local and

anonymous classes. Lambda expressions are lexically scoped, meaning that they do not inherit any names

from a supertype or introduce a new level of scoping. Declarations in a lambda expression are interpreted

in the same manner as in the enclosing environment. Consequently, fields, methods, and local variables of

the enclosing scope can be accessed directly. Similar to local and anonymous classes, a lambda expression

can only access local variables and parameters of the enclosing block that are final or effectively final.

7 | Accessing Private Fields Outside of Classes in Java NCC Group

3 Accessibility of Private Fields

When the Java compiler compiles nested classes, it creates classes, methods, fields, and other constructs

that do not have a corresponding construct in the source code. The Java documentation for Member.isSyn-

thetic() states that it returns ``true if and only if this member was introduced by the compiler.'' Synthetic

constructs enable Java compilers to implement new Java language features without changes to the Java

virtual machine (JVM). Synthetic constructs, and their corresponding class files, vary among Java compiler

implementations.

The following definition for class Coordinates from Rule ``OBJ08-J. Do not expose private members of an

outer class from within a nested class'' of The CERT Oracle Secure Coding Standard for Java [Long 2012]

defines two private fields x and y and a private inner class Point containing a single private method get-

Point():

class Coordinates {

private int x;

private int y;

private class Point {

private void getPoint() {

System.out.println("(" + x + "," + y + ")");

}

}

}

The Java compiler compiles a group of nested types into a corresponding group of class files. Each nested

type is flattened during compilation into a package member with an encoded name called its binary name

[JLS 2015]. The encoding is unambiguously reversible with the help of the InnerClasses and Enclosing-

Method class file attributes, as defined in the JVM Specification [JVMS 2015]. At the JVM level, the package-

private access protection is the closest approximation to private access protection that is allowed between

package members. Because nest mates are compiled to package members, the compiler must provide

access to private names (outside of a single class) by creating various wrapper methods. These wrapper

methods are synthetic and package-private. Decompiling the Coordinates class file with the javap class

file dissembler reveals two synthetic methods:

$ javap -c Coordinates

static int access$000(OBJ08J.Coordinates);

flags: ACC_STATIC, ACC_SYNTHETIC

Code:

0: aload_0

1: getfield #2 // Field x:I

4: ireturn

static int access$100(OBJ08J.Coordinates);

flags: ACC_STATIC, ACC_SYNTHETIC

Code:

0: aload_0

1: getfield #1 // Field y:I

4: ireturn

The Java compiler generates two synthetic methods: access$000 returns the value of field x, and ac-

cess$100 returns the value of field y. The Java compiler introduces synthetic methods on an as-needed

basis. When only one of the enclosing class's private fields is accessed by the nested class, only one synthetic

method (access$000) is created by the compiler. However, when both private fields are accessed, two

corresponding synthetic methods are generated by the compiler (access$000, access$100).

8 | Accessing Private Fields Outside of Classes in Java NCC Group

The Coordinates outer class and Point inner class are compiled to package members, and the synthetic

accessor methods are used by the Point inner class to read the values of the two private fields from within

the Coordinates class.

The compiler enforces proper access controls at compile time. Attempts to access fields private to Co-

ordinates from classes other than Coordinates and Point results in a compilation error. However, the

compiler-generated class files result in a different set of access controls being enforced at runtime. There

is consequently no risk of trusted classes unintentionally accessing the newly designated package-private

members. (While not a security risk, this could otherwise break encapsulation.) However, any package-

private member is vulnerable if attacker-supplied code can infiltrate the package. A package attack involves

adding new classes to a package, replacing existing classes in a package, or both. Such attacks are possible

if trusted code is hosted in a JVM alongside untrusted code.

Even in the presence of an installed and operational securitymanager, attacker-supplied code running in the

same package can retrieve the values of the private fields using the getDeclaredMethod() method from

the Java Reflection API [API 2014] to invoke the synthetic accessor methods:

Coordinates ic = new Coordinates();

Method m = Coordinates.class.getDeclaredMethod(

"access$000", Coordinates.class

);

Integer x = (Integer) m.invoke(null, ic);

m = Coordinates.class.getDeclaredMethod("access$100", Coordinates.class);

Integer y = (Integer) m.invoke(null, ic);

9 | Accessing Private Fields Outside of Classes in Java NCC Group

4 Attack Vectors

Classes loaded by different loaders do not have package-private access to one another even if they have

the same package name. Classes in the same package loaded by the same class loader must either share

the same code signing certificate or not have a certificate at all. In the JVM, class loaders are responsible

for defining packages. Consequently, packages should be sealed in the JAR file manifest [SCG 2015] to

ensure that new classes are not added to them. Without sealing, attacker-supplied code could create a class

and define it to be a member of another package. The attacker-supplied software would consequently gain

access to package-protected members in the vulnerable, unsealed package.

A JAR is sealed by adding the Sealed header to themanifest of the JAR file containing the package. A sealed

JAR specifies that all packages defined by that JAR are sealed unless overridden specifically for a package.

Individual packages are sealed by associating a Sealed header with the package's Name header. A Sealed

header not associated with an individual package in the archive signals that all packages are sealed. These

Sealed headers are overridden by any Sealed headers associated with individual packages. The value

associated with the Sealed header is either true or false. If a package is sealed, all classes defined in that

package must originate from a single JAR file or a SecurityException is thrown.

Attackers can exploit deserialization to create an arbitrary object, provided that the object's class is available

on the classpath specified for the JVM. This problem is described by Rule ``SER12-J Prevent deserialization

of untrusted data'' and related rules in The CERT Oracle Secure Coding Standard for Java and the Java

Coding Guidelines [Long 2013]. The closest CWE is ``CWE-502: Deserialization of Untrusted Data.'' Java

deserialization vulnerabilities are a serious problem, but not the topic of this whitepaper. The ability of

attackers to access a class's private fields from attacker-created objects exacerbates this problem. However,

eliminating the ability of an attacker to access a class's private fields does not eliminate the threat posed

by Java deserialization vulnerabilities. Consequently, dealing with potential deserialization vulnerabilities

should be a priority, but developers should also be on the lookout for situations in which the use of nested

classes violates their security assumptions.

10 | Accessing Private Fields Outside of Classes in Java NCC Group

5 Conclusion

The use of nested classes in Java programs weakens the accessibility guarantees of the language and al-

lows private fields to be accessed from outside the class, potentially violating developers' assumptions and

affecting overall security. The Java compiler weakens the accessibility of private members of an outer class

when a nested inner class is present to package-private access. An attacker can create another class in the

same package, which can access package-private classes, methods, and fields in the same package. This

is particularly troublesome because of the increasing popularity of lambda expressions in Java 8 program-

ming.

Minimally, developers should understand that inner classes can weaken the accessibility of private fields. If

the security of an application depends on these fields remaining private, it may be necessary to eliminate the

use of inner classes or otherwise redesign the application so the risk of accessing these fields from untrusted

code is eliminated. It would be beneficial if the JVM checks were better alignedwith the Java language rules

for nested classes.8

8http://openjdk.java.net/jeps/181

11 | Accessing Private Fields Outside of Classes in Java NCC Group

http://openjdk.java.net/jeps/181

6 Acknowledgements

Thanks to Jeremy Brandt-Young, David Goldsmith, Andy Grant, Heather Overcash, Audrey Saunders, for

supporting this effort. Thanks tomy technical reviewers Rennie deGraaf, JakeHeath, Fred Long (Aberystwyth

University), Steve Park, Milton Smith (Oracle), and Justin Taft.

12 | Accessing Private Fields Outside of Classes in Java NCC Group

7 Author Bio

Robert C. Seacord, a renowned computer scientist and author, known as the ``father

of secure coding.'' Robert is a Principal Security Consultant with NCC Group where he

works with software developers and software development organizations to eliminate

vulnerabilities resulting from coding errors before they are deployed. Previously,

Robert led the secure coding initiative in the CERT Division of Carnegie Mellon

University's Software Engineering Institute (SEI). Robert is also an adjunct professor in

the School of Computer Science and the Information Networking Institute at Carnegie

Mellon University. Robert is the author of six books, including The CERT C Coding

Standard, Second Edition (Addison-Wesley, 2014), Secure Coding in C and C++,

Second Edition (Addison-Wesley, 2013), The CERT Oracle Secure Coding Standard for

Java (Addison-Wesley, 2012), and Java Coding Guidelines: 75 Recommendations for Reliable and Secure

Programs (Addison-Wesley, 2014). Robert is on the Advisory Board for the Linux Foundation and an expert

on the ISO/IEC JTC1/SC22/WG14 international standardization working group for the C programming

language.

13 | Accessing Private Fields Outside of Classes in Java NCC Group

8 References

[API 2014] Java Platform, Standard Edition 8 API Specification, Oracle (2014).

[Bloch 2008] Bloch, Joshua. Effective Java, 2nd ed. Upper Saddle River, NJ: Addison-Wesley (2008).

[JSO 2016] Java Security Overview, Oracle (2016).

[JLS 2015] Gosling, James, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. Java Language

Specification: Java SE 8 Edition. Oracle America (2016).

[JVMS 2015] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley. The Java Virtual Machine Specifi-

cation: Java SE 8 Edition. Oracle America (2015).

[Lai 2008] C. Lai, ` J̀ava Insecurity: Accounting for Subtleties That Can Compromise Code,'' in IEEE

Software, vol. 25, no. 1, pp. 13-19, Jan.-Feb. 2008. doi: 10.1109/MS.2008.9

[Long 2012] Long, Fred, DhruvMohindra, Robert C. Seacord, Dean F. Sutherland, andDavid Svoboda.

The CERT Oracle Secure Coding Standard for Java, SEI Series in Software Engineering.

Boston: Addison-Wesley (2012).

[Long 2013] Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, and David Svoboda.

2013. Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs

(1st ed.). Addison-Wesley Professional.

[Parnas 1972] Parnas, D. L. On the Criteria to Be Used in Decomposing Systems into Modules. In Com-

munications of the ACM 15 (1972): 1053–1058.

[SCG 2015] Secure Coding Guidelines for Java SE, version 5.1 Oracle (2015).

[Tutorials 2016] The Java Tutorials. Oracle (2016).

14 | Accessing Private Fields Outside of Classes in Java NCC Group

http://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
http://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://docs.oracle.com/javase/tutorial/index.html

	Introduction
	Java Language Mechanisms
	Access Level Modifiers
	Nested Classes

	Accessibility of Private Fields
	Attack Vectors
	Conclusion
	Acknowledgements
	Author Bio
	References

