
VeChain JavaScript SDK
Cryptography and Security Review

VECHAIN FOUNDATION SAN MARINO SRL
Version 1.2 – March 12, 2025

©2025 – NCC Group

Prepared by NCC Group Security Services, Inc. for VECHAIN FOUNDATION SAN MARINO SRL. Portions
of this document and the templates used in its production are the property of NCC Group and cannot be
copied (in full or in part) without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the
information contained herein. Use of NCC Group’s services does not guarantee the security of a system,
or that computer intrusions will not occur.

Prepared By
Paul Bottinelli
Gérald Doussot
Marie-Sarah Lacharité
Eli Sohl

Prepared For
Victor Bibiano
Luca Debiasi
Clayton Neal

1 Executive Summary
Synopsis
In December 2024, VeChain engaged NCC Group’s Cryptography Services team to conduct
a cryptography and security review of its JavaScript SDK. The SDK allows developers to
interact with the VeChain blockchain, and includes essential components such as
cryptography- and network-related functions. The review was delivered remotely by 4
consultants with a total effort of 15 person-days, and was followed by a gap and retesting
phase of 5 person-days.

The retest found that all findings had been properly acknowledged. A majority of the
findings have been fixed or partially fixed, and a few have been marked as risk accepted or
slated to fix in an upcoming release.

Scope
The assessment was performed on the vechain-sdk-js v1.0.0 rc4 SDK release. The scope
included the following portions of the SDK:

sdk-core/
vechain-sdk-js/packages/core/src/certificate

vechain-sdk-js/packages/core/src/hdkey

vechain-sdk-js/packages/core/src/keystore

vechain-sdk-js/packages/core/src/secp256k1

vechain-sdk-js/packages/core/src/vcdm/hash

vechain-sdk-js/packages/core/src/vcdm/Mnemonic.ts

sdk-network/
vechain-sdk-js/packages/network/src/signer/signers

vechain-sdk-js/packages/network/src/provider (with lower priority on the vechain-
sdk-js/packages/network/src/provider/utils/rpc-mapper subdirectory)

aws-kms/
vechain-sdk-js/packages/aws-kms-adapter/src/

In addition, a number of functions were flagged with the remark “Security auditable method”
within the code base. While some of these functions were not part of the original scope, the
NCC Group team included these functions in the review.

Limitations
The VeChain’s JavaScript SDK is a comprehensive project containing many functionalities.
The scope of the project was limited to the items explicitly listed above, and the consultants
did not attempt to review other portions of the SDK. Similarly, the SDK project
dependencies, including the implementation of several low-level cryptographic primitives,
were outside of the scope of this review and were not evaluated.

Key Findings
The NCC Group team uncovered a total of 7 findings, among which the most notable were:

Finding "Underspecified Delegation Process May Lead to Signature Forgery", in which
discrepancies between the implementation and the developer documentation may lead
to misunderstandings, and where signatures not covering the entirety of the transaction
could lead to subtle attacks on the system.

Finding "Transaction IDs May Collide", where transaction IDs of different transactions
may collide, which could lead to unexpected issues if applications expect them to be
unique.

•
◦

◦

◦

◦

◦

◦

•
◦

◦

•
◦

•

•

2 / 35 – Executive Summary

https://github.com/vechain/vechain-sdk-js
https://github.com/vechain/vechain-sdk-js/releases/tag/v1.0.0-rc.4

A number of informational notes were also captured in the appendix Engagement Notes.

Strategic Recommendations
The SDK release under review contained extensive code comments and function
documentation. However, a number of these comments were inaccurate, as noted in section
Engagement Notes. Additionally, the fee delegation process exhibited discrepancies and
confusion between the documentation and the actual implementation. Consider performing
a pass over the code base and the existing documentation to unify naming convention, and
to address outdated and inaccurate comments.

The SDK is written in Typescript, which is a statically-typed superset of JavaScript;
Typescript introduces a type system which is then checked at compile time. However, once
compiled, TypeScript produces plain JavaScript, and no type information remains. As such,
type mismatch errors may still occur when the code is executed. Ensure that the SDK
properly handles any potential type mismatch errors and consider adding more in-depth
parameter validation to SDK functions exposed to developers.

Finally, consider re-thinking the delegation process in order to address the potential
signature forgeries identified in finding "Underspecified Delegation Process May Lead to
Signature Forgery".

3 / 35 – Executive Summary

2 Dashboard
Target Data Engagement Data
Name vechain SDK Type Cryptography and Security

Assessment

Type Software Development Kit Method Code-assisted

Platforms TypeScript Dates 2024-12-11 to 2024-12-20

Environment Local Instance Consultants 4

Level of Effort 20 person-days

Targets
vechain
SDK

VeChain SDK repository containing several modules allowing developers to
interact with the blockchain. Review performed on v1.0.0 rc4.

Finding Breakdown
Critical issues 0

High issues 1

Medium issues 1

Low issues 4

Informational issues 1

Total issues 7

Category Breakdown
Cryptography 2

Data Exposure 1

Data Validation 1

Error Reporting 1

Other 1

Patching 1

 Critical High Medium Low Informational

4 / 35 – Dashboard

https://github.com/vechain/vechain-sdk-js
https://github.com/vechain/vechain-sdk-js/releases/tag/v1.0.0-rc.4

3 Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the
severity of the risk, application’s exposure and user population, technical difficulty of
exploitation, and other factors.

Title Status ID Risk

Underspecified Delegation Process May Lead to
Signature Forgery

Risk Accepted BNC High

Transaction IDs May Collide Risk Accepted RQY Medium

Outdated and Vulnerable Dependencies Partially Fixed 7A9 Low

Potentially Problematic Key Generation Function Fixed FR9 Low

Potential Private Key Leak Fixed 943 Low

Missing Parameter Check in inflatePublicKey()
Function

Risk Accepted GWF Low

Misleading Naming of the getAddress() Function Fixed NRD Info

5 / 35 – Table of Findings

4 Finding Details

Underspecified Delegation Process May Lead
to Signature Forgery
Overall Risk High

Impact High

Exploitability Medium

Finding ID NCC-E020944-BNC

Category Cryptography

Status Risk Accepted

Impact
Discrepancies between the implementation and the developer documentation may lead to
users misunderstanding the fee delegation process. Additionally, signatures do not cover
the entirety of the transaction, which could lead to subtle attacks on the system where
malicious users could forge delegated signatures.

Description
The VeChain ecosystem supports the concept of Fee Delegation, a process which allows a
user to submit a transaction without paying transactions fees; the fees are instead paid by
another entity, the gas payer. When the transaction is processed, the fees (i.e., the gas
costs) are taken from the gas payer’s balance instead of the user who originally submitted
the transaction.

This finding describes a number of concerns with the transaction delegation process.

Naming Confusion
There appears to be confusion around the definitions of the originator of the transaction and
the gas payer. The code base mostly uses the terms delegator and signer, evidenced for
example by the documentation preceding the function signWithDelegator()

Signs the transaction using both the signer and the delegator private keys.

However, some functions incorrectly refer to the signer’s address as the delegator’s. For
example, the getTransactionHash() function accepts an optional Address parameter, named
delegator and documented as “Optional delegator’s address to include in the hash
computation”. In practice, this argument is not (and should not be) the delegator’s address; it
is the signer’s.

The online developer resource VIP-191: Designated Gas Payer and the blog post guide How
to Setup Fee Delegation for Vechain further add to the confusion by using the terms
Designated Gas Payer (or sponsor) for the delegator and user or sender for the original
transaction signer.

As also discussed with the VeChain team, the naming convention used in the code base is
confusing. The term delegator, defined as being the entity who delegates, could be
understood as being the original signer, while in practice, the code base uses the term
delegator to refer to the gas payer.

Practical Discrepancies
In addition to these naming-related conventions, some confusion also exists with respect to
the order in which the two entities sign the transaction, as well as about the content of what
is signed.

The blog post guide How to Setup Fee Delegation for Vechain contains a figure aiming to
summarize this process. The figure does not accurately represent what the implementation

High

6 / 35 – Finding Details

https://docs.vechain.org/developer-resources/vip-191-designated-gas-payer
https://blog.vechain.energy/how-to-setup-fee-delegation-for-vechain-9ac9fef31455
https://blog.vechain.energy/how-to-setup-fee-delegation-for-vechain-9ac9fef31455
https://blog.vechain.energy/how-to-setup-fee-delegation-for-vechain-9ac9fef31455

performs. Specifically, the figure (provided below for reference) indicates that the gas payer
signs the transaction first, followed by the client.

Figure 1: How to Setup Fee Delegation for Vechain

The approach outlined in the figure above could lead to potential misuse of the delegation
process. Indeed, with this approach, the gas payer does not explicitly agree to cover the
fees for a transaction from a specific transaction signer; the delegation signature could be
reused for transactions from other signers.

In the file Transaction.ts, two implementations supporting the fee delegation process are
provided:

the one-shot function signWithDelegator() , which takes in the signer and the delegator
private keys as arguments and signs the transaction, and

the two functions signForDelegator() and signAsDelegator() , which together are
functionally equivalent to the previous function.

In order to sign a transaction, the signWithDelegator() function computes the transaction
hash and the delegated transaction hash (which incorporates the original signer’s address in
the hash computation), signs the former with the original signer’s private key, and signs the
latter with the delegator’s private key. This can be seen in the code snippet below, which
was excerpted from the function signWithDelegator() .

•

•

660

661

662

663

664

665

666

667

668

669

const transactionHash = this.getTransactionHash().bytes;

const delegatedHash = this.getTransactionHash(

Address.ofPublicKey(

Secp256k1.derivePublicKey(signerPrivateKey)

)

).bytes;

// Return new signed transaction

return Transaction.of(

this.body,

nc_utils.concatBytes(

7 / 35 – Finding Details

https://blog.vechain.energy/how-to-setup-fee-delegation-for-vechain-9ac9fef31455

Hence, the implementation and the How to Setup Fee Delegation for Vechain article diverge
in the order in which the transaction is signed.

Delegated Signature Forgery
In order to make sense of what the implementation aims to achieve, the figure below was
created to summarize the delegated signature process and aims to highlight a potential
shortcoming of the current approach.

Figure 2: Delegated Signature Process

Importantly, we note that the original signer’s signature is not included in the hash
computation used for the delegator’s signature. This means that, in theory (and abstracting
away some practical details around transaction contents that might prevent this attack), the
current scheme might be vulnerable to the following attack scenario:

A malicious user creates a message .

The user signs this message 10 times, resulting in 10 different signed messages
, where .

The user submits one of these messages to be signed by the gas payer, say .

The gas payer signs the message and returns the signature, say .

Note, the message is a valid delegated message.

The malicious user can now duplicate the gas payer’s signature and append it to every
message; all these messages are going to be valid delegated messages. That is

 is a valid delegated message, for all .

670

671

672

673

• M

•
M ,… ,M0 9 M =i (M , σ)i

• M0

• Σ0
• M =0

′ (M , σ , Σ)0 0

•
M =i
′

(M , σ , Σ)i 0 i

Secp256k1.sign(transactionHash, signerPrivateKey),

Secp256k1.sign(delegatedHash, delegatorPrivateKey)

)

);

8 / 35 – Finding Details

This issue stems partially from the computation of the transaction hash, performed by the
function getTransactionHash() and provided below, for reference.

In the line highlighted above, the getTransactionHash() function encodes the transaction
using the encode() function, but does so by providing a false value to the isSigned
parameter of that function, even if the transaction already contains a signature. Providing a
false boolean parameter to the encoding function will essentially discard the signature
from the encoding process.

Interestingly, the Transaction.ts source file contains the function encoded() , which encodes
the transaction according to whether it was signed or not, see below.

Transaction Hash Computation Collision
The getTransactionHash() function excerpted above may also suffer from a vulnerability
allowing an attacker to forge a transaction by computing a transaction hash which collides
with a delegated transaction hash.

Specifically, the function computes the hash of a transaction as for a normal

transaction, and as for a delegated transaction, where
corresponds to the original signer’s address. Consider a delegated transaction that has been
signed by the gas payer, that is, a transaction and associated signature which was

computed on the quantity . Conceptually, the signature by the gas
payer on this delegated transaction is no different than a signature by the gas payer on an
encoded transaction which is equal to . Since the length of the quantity

 is equal to 52 bytes (32 bytes for the digest and 20 bytes for the address),
and that encoded transactions can be as small as 28 bytes1, an encoded transaction equal
to 52 bytes is well within the realm of possibilities.

390

391

392

393

394

395

396

397

398

216

217

218

219

220

221

222

223

224

225

226

tx H(tx)
H(H(tx)∣∣address) address

tx σ

H(H(tx)∣∣address)

tx′ H(tx)∣∣address
H(tx)∣∣address

public getTransactionHash(delegator?: Address): Blake2b256 {

const txHash = Blake2b256.of(this.encode(false));

if (delegator !== undefined) {

return Blake2b256.of(

nc_utils.concatBytes(txHash.bytes, delegator.bytes)

);

}

return txHash;

}

/**

* Get the encoded bytes as a Uint8Array.

* The encoding is determined by whether the data is signed.

*

* @return {Uint8Array} The encoded byte array.

*

* @see decode

*/

public get encoded(): Uint8Array {

return this.encode(this.isSigned);

}

1. This number was obtained experimentally by tweaking some existing transaction examples, though
it’s possible the RLP encoding of a transaction could be even smaller.

9 / 35 – Finding Details

As such, the current scheme might be vulnerable to the following attack scenario:

A malicious user repeatedly creates (potentially meaningless) transactions until

 looks like the encoding of a valid transaction.

Note, the user has some flexibility around their address; once a transaction has been
found, they can repeatedly generate private keys and derive addresses until one looks
like the encoding of something meaningful.

The user submits the transaction to the gas payer; the payer signs the payload
 and returns the signature .

Now, the transaction is a valid transaction under the signature ;

the malicious user essentially forged the transaction signed by the gas payer.

While arguably a little contrived, this attack scenario is not completely impossible and would
be serious. The likelihood of this attack hinges upon the probability that hashing a “random”
string results in a valid-looking transaction. However, it is amplified by the fact that neither
the original signer’s address nor the delegator’s address are contained in a transaction.

Recommendation
Addressing this finding will require updates to the existing implementation and
documentation.

Update the code and the documentation such that consistent naming conventions are
used for the different entities. Consider getting rid of the delegate/delegator terminology.

Update the implementation in packages/core/src/transaction/Transaction.ts to follow
the new naming convention, including the documentation and the variable names of
the function getTransactionHash() .

Also update the implementation under packages/network/src/signer/signers/ to reflect
the new naming convention.

Update the figure in the How to Setup Fee Delegation for Vechain article to reflect what
the implementation performs. Go over all existing documentation and developer guides
to update outdated terminology to the new naming convention.

Consider updating the getTransactionHash() function such that it incorporates the
signature of the original signer when the hash is computed for the delegated signature
process by leveraging the encoded() function, as follows.

Note that the impact of this change in the larger context of the VeChain ecosystem is
slightly unclear. As such, analyze the impact of this change, particularly with regards to
potential signature forgeries and hash collisions.

Consider adding the signer’s address, as well as the gas payer’s address, in the
transaction structure in order to fix the transaction hash collision computation issue, and
ensure the transaction verification process validates the originator of the transaction.

Additionally, prepending domain separators to the to-be-hashed data (and ensuring
these separators could not be interpreted as valid transaction prefixes) might prevent the
concern described under “Transaction Hash Computation Collision” above.

Location
VIP-191: Designated Gas Payer

How to Setup Fee Delegation for Vechain

• tx

H(tx)

•

•
H(tx)∣∣address σ

• tx =′ H(tx)∣∣address σ

tx′

•

◦

◦

•

•

•

•

•

•

const txHash = Blake2b256.of(this.encoded());

10 / 35 – Finding Details

https://docs.vechain.org/developer-resources/vip-191-designated-gas-payer
https://blog.vechain.energy/how-to-setup-fee-delegation-for-vechain-9ac9fef31455

packages/core/src/transaction/Transaction.ts

packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-
signer.ts

Retest Results
2025-02-24 – Partially Fixed
In a series of four commits, the VeChain team addressed the confusing naming of the
delegator by replacing instances of “delegator” with “gas payer”:

commit f5020f3 ,

commit 148d451 ,

commit 5728313 ,

commit 05fd293 .

This addresses the concerns around “Naming Confusion” listed above.

However, the other matters outlined in this finding, particularly around the “Delegated
Signature Forgery” described above, were not addressed. As a result, this finding was
marked Risk Accepted.

•

•

•

•

•

•

11 / 35 – Finding Details

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/transaction/Transaction.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/transaction/Transaction.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts
https://github.com/vechain/vechain-sdk-js/commit/f5020f362e9ee361c099399095b59c63f7d92717
https://github.com/vechain/vechain-sdk-js/commit/f5020f362e9ee361c099399095b59c63f7d92717
https://github.com/vechain/vechain-sdk-js/commit/f5020f362e9ee361c099399095b59c63f7d92717
https://github.com/vechain/vechain-sdk-js/commit/148d451ce0d7b06eddfcce97b3b836263a8c9231
https://github.com/vechain/vechain-sdk-js/commit/148d451ce0d7b06eddfcce97b3b836263a8c9231
https://github.com/vechain/vechain-sdk-js/commit/148d451ce0d7b06eddfcce97b3b836263a8c9231
https://github.com/vechain/vechain-sdk-js/commit/57283134942bfd032af97e8b18a100bf66e3535c
https://github.com/vechain/vechain-sdk-js/commit/57283134942bfd032af97e8b18a100bf66e3535c
https://github.com/vechain/vechain-sdk-js/commit/57283134942bfd032af97e8b18a100bf66e3535c
https://github.com/vechain/vechain-sdk-js/commit/05fd293f7c2c7a863afb91e0f5d5e43dbab31367
https://github.com/vechain/vechain-sdk-js/commit/05fd293f7c2c7a863afb91e0f5d5e43dbab31367
https://github.com/vechain/vechain-sdk-js/commit/05fd293f7c2c7a863afb91e0f5d5e43dbab31367

Transaction IDs May Collide
Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E020944-RQY

Category Cryptography

Status Risk Accepted

Impact
The transaction ID of different transactions may collide, which could lead to unexpected
issues if applications expect them to be unique.

Description
The file packages/core/src/transaction/Transaction.ts contains functions to operate on
transactions. Among them, the id() function is defined to compute the transaction ID,
which the documentation describes as being the “Blake2b256 hash of the transaction’s
signature concatenated with the origin’s address”. The function is provided below, for
reference.

A few comments can be made about this function and the documentation preceding it.

The function does not actually compute the “Blake2b256 hash of the transaction’s
signature concatenated with the origin’s address”. The transaction signature is not
incorporated into the hash computation; only the transaction hash as well as the
originator’s address are taken into account.

Medium

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

1.

/**

* Get transaction ID.

*

* The ID is the Blake2b256 hash of the transaction's signature

* concatenated with the origin's address.

* If the transaction is not signed,

* it throws an UnavailableTransactionField error.

*

* @return {Blake2b256} The concatenated hash of the signature

* and origin if the transaction is signed.

* @throws {UnavailableTransactionField} If the transaction is not signed.

*

* @remarks Security auditable method, depends on

* - {@link Blake2b256.of}

*/

public get id(): Blake2b256 {

if (this.isSigned) {

return Blake2b256.of(

nc_utils.concatBytes(

this.getTransactionHash().bytes,

this.origin.bytes

)

);

}

throw new UnavailableTransactionField(

'Transaction.id()',

'not signed transaction: id unavailable',

{ fieldName: 'id' }

);

}

12 / 35 – Finding Details

In the case of delegated transactions, the function above also fails to take the gas
payer’s (aka delegator’s) signature and address into account.

Arguably, IDs should be unique for a given transaction and its associated signature(s).
However, if a transaction was signed by a signer multiple times (or in case of different
transactions with colliding getTransactionHash()), the resulting signed transactions would
have the same ID. Even more concerning, if a given to-be-delegated transaction were
signed by multiple different gas payers, the resulting IDs would all be equal.

While it initially appeared that this delegated transaction ID would also be equal to the ID of
a non-delegated transaction, the VeChain team indicated that this was not the case in
practice, since the body of these two types of transactions is slightly different; a reserved
field is always included in delegated transactions.

As a separate observation, note that the computation of the ID produces the same hash
value as the transaction hash computed during the delegated signature process.
Specifically, for a given delegated transaction tx , tx.id() ===
tx.getTransactionHash(this.origin) , as substantiated by the code excerpt below, from the
function getTransactionHash() .

Given that nature of the project under review (an SDK), it is unclear whether this last
observation may be problematic in practice, but it was deemed worth reporting nonetheless.

Recommendation
Consider modifying the id() function such that it includes the signer’s signature, and the
delegator’s address and signature, if the transaction is delegated. Update the
documentation to reflect the changes introduced to the function.

Additionally, reflect on whether the id() function should product a different digest than the
getTransactionHash() of a delegated transaction. If the recommendation above is followed,
the output of the two functions should be different. If not, consider the potential
implications of this type of collision and address it if it has any impact. At the very least,
document this behavior.

Location
packages/core/src/transaction/Transaction.ts

Retest Results
2025-02-24 – Not Fixed
The VeChain team indicated:

We’ve decided to acknowledge the sub-optimal choice. It’s acceptable as
duplicated transaction ID would be rejected by every blockchain node.

As such, this finding was marked Risk Accepted.

2.

392

393

394

395

396

if (delegator !== undefined) {

return Blake2b256.of(

nc_utils.concatBytes(txHash.bytes, delegator.bytes)

);

}

13 / 35 – Finding Details

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/transaction/Transaction.ts#L228
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/transaction/Transaction.ts#L228

Outdated and Vulnerable Dependencies
Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E020944-7A9

Category Patching

Status Partially Fixed

Impact
An attacker may attempt to identify and utilize vulnerabilities in outdated dependencies to
exploit the application.

Description
Incorporating outdated dependencies is one of the most common, serious and exploited
application vulnerabilities. The yarn audit command can be used to identify potentially
vulnerable dependencies in the project. Running this tool on the vechain-sdk-js repository
outlined 29 vulnerabilities, including one Moderate. A truncated output is provided below,
which outlines the Moderate issue identified.

Additionally, the SDK contains a number of outdated dependencies. Similar to the tool
above, the yarn outdated command identifies dependencies that are out-of-date. The
truncated output below (from which we also trimmed the Package Type and the URL
columns for better visibility) contains a list of the dependencies with “Major Update
backward-incompatible updates” and some “Minor Update backward-compatible features”.

Low

yarn audit v1.22.22

...

┌───────────────┬──┐

│ moderate │ Unpatched `path-to-regexp` ReDoS in 0.1.x │

├───────────────┼──┤

│ Package │ path-to-regexp │

├───────────────┼──┤

│ Patched in │ >=0.1.12 │

├───────────────┼──┤

│ Dependency of │ @vechain/sdk-rpc-proxy │

├───────────────┼──┤

│ Path │ @vechain/sdk-rpc-proxy > express > path-to-regexp │

├───────────────┼──┤

│ More info │ https://www.npmjs.com/advisories/1101081 │

└───────────────┴──┘

...

29 vulnerabilities found - Packages audited: 1557

Severity: 28 Low | 1 Moderate

Done in 1.07s.

yarn outdated v1.22.22

...

Package Current Wanted Latest Workspace

...

@noble/curves 1.6.0 1.7.0 1.7.0 @vechain/sdk-network

@noble/hashes 1.5.0 1.6.1 1.6.1 @vechain/sdk-core

@nomicfoundation/hardhat-toolbox 4.0.0 4.0.0 5.0.0 sdk-hardhat-integration

14 / 35 – Finding Details

A change in the major version number typically signifies breaking changes and may increase
the effort to upgrade. As time progresses, the team may be unable to react quickly if issues
were to arise.

Recommendation
Update all dependencies to the latest version recommended for production deployment.
Add a gating milestone to the development process that involves reviewing all
dependencies for outdated or vulnerable versions. Provide instructions on how to build the
SDK for a production setting.

Retest Results
2025-02-25 – Partially Fixed
In commit cbfbac5 and commit c5834a4 , a number of dependencies were updated and
running the yarn audit tool only highlights 4 vulnerabilities (3 Low and 1 Moderate), which
do not appear to meaningfully impact the codebase.

However, a number of dependencies are still outdated. Specifically, many dependencies
with “Major Update backward-incompatible updates” flagged above were not updated.
However, the VeChain indicated that they are all related to dev-dependencies and the fact
that they are slightly out-of-date is not a concern at the moment. This finding was marked
Partially Fixed as a result.

...

@types/chai 4.3.20 4.3.20 5.0.1 sdk-hardhat-integration

...

@types/react 18.3.11 18.3.16 19.0.1 sdk-nextjs-integration

@types/react 18.3.12 18.3.16 19.0.1 sdk-vite-integration

@types/react-dom 18.3.1 18.3.5 19.0.2 sdk-nextjs-integration

@types/react-dom 18.3.1 18.3.5 19.0.2 sdk-vite-integration

@vechain/vebetterdao-contracts 4.0.0 4.1.0 4.1.0 @vechain/sdk-network

...

chai 4.5.0 4.5.0 5.1.2 sdk-hardhat-integration

...

eslint-plugin-sonarjs 2.0.2 2.0.2 3.0.1 vechain-sdk

...

glob 10.4.5 10.4.5 11.0.0 vechain-sdk

...

hardhat-gas-reporter 1.0.10 1.0.10 2.2.2 sdk-hardhat-integration

...

react 18.3.1 18.3.1 19.0.0 sdk-nextjs-integration

react 18.3.1 18.3.1 19.0.0 sdk-vite-integration

react-dom 18.3.1 18.3.1 19.0.0 sdk-nextjs-integration

react-dom 18.3.1 18.3.1 19.0.0 sdk-vite-integration

react-router-dom 6.27.0 6.28.0 7.0.2 sdk-vite-integration

...

typedoc 0.26.8 0.26.11 0.27.4 vechain-sdk

typedoc-plugin-missing-exports 3.0.0 3.1.0 3.1.0 vechain-sdk

typescript 5.6.3 5.7.2 5.7.2 vechain-sdk

...

vite 5.4.11 5.4.11 6.0.3 sdk-vite-integration

...

vitest-browser-react 0.0.3 0.0.3 0.0.4 sdk-vite-integration

wrangler 3.84.1 3.95.0 3.95.0 sdk-cloudflare-

integration

Done in 2.77s.

15 / 35 – Finding Details

https://github.com/vechain/vechain-sdk-js/commit/cbfbac5b7c63fa25f2197b76f5d17e08af14d58c
https://github.com/vechain/vechain-sdk-js/commit/cbfbac5b7c63fa25f2197b76f5d17e08af14d58c
https://github.com/vechain/vechain-sdk-js/commit/cbfbac5b7c63fa25f2197b76f5d17e08af14d58c
https://github.com/vechain/vechain-sdk-js/commit/c5834a4b986ce3513ffb90da8ce5c5b8437f478d
https://github.com/vechain/vechain-sdk-js/commit/c5834a4b986ce3513ffb90da8ce5c5b8437f478d
https://github.com/vechain/vechain-sdk-js/commit/c5834a4b986ce3513ffb90da8ce5c5b8437f478d

Potentially Problematic Key Generation
Function
Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E020944-FR9

Category Error Reporting

Status Fixed

Impact
Generating a key for an algorithm different than the one documented in case of an exception
might lead to subtle issues and might obscure problems with the underlying dependency.

Description
The file packages/core/src/secp256k1/Secp256k1.ts contains a number of elliptic curve
related functionalities, allowing users to generate keys, compress and decompress public
keys, etc. The function generatePrivateKey() , excerpted below for convenience, generates
a random private key. This function leverages the underlying nc_secp256k1 dependency to
generate this key. Upon encountering an exception during the key generation process, the
function falls back to the SubtleCrypto interface of the Web Crypto API. However, the
process in this case generates a 256-bit AES-GCM key, as can be seen highlighted below.

Low

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

/**

* Generates a new random private key.

* If an error occurs during generation using

* [nc_secp256k1](https://github.com/paulmillr/noble-secp256k1),

* an AES-GCM key is generated as a fallback in runtimes not supported

* by `nc_secp256k1`, if those support {@link {@link global.crypto}.

*

* @return {Promise<Uint8Array>} The generated private key as a Uint8Array.

*

* @remarks Security auditable method, depends on

* * {@link global.crypto.subtle.exportKey};

* * {@link global.crypto.subtle.generateKey};

* * [nc_secp256k1.utils.randomPrivateKey](https://github.com/paulmillr/noble-

secp256k1).

*/

public static async generatePrivateKey(): Promise<Uint8Array> {

try {

return nc_secp256k1.utils.randomPrivateKey();

} catch (e) {

// Generate an ECDSA key pair

const cryptoKey = await global.crypto.subtle.generateKey(

{

name: 'AES-GCM',

length: 256

},

true,

['encrypt', 'decrypt']

);

// Export the private key to raw format

const rawKey = await global.crypto.subtle.exportKey(

'raw',

cryptoKey

16 / 35 – Finding Details

In principle, returning a key for a different algorithm than the one requested is a breach of
the API contract and can lead to serious issues. However, in the function above, the raw key
bytes are exported and eventually returned as a byte array, which is functionally
indistinguishable from an ECC private key.

The main issue therefore lies in the fact that a caller would not realize that an exception was
ever encountered during key generation. If this exception had occurred because of a failure
to locate the necessary dependency, then it is likely that other functions of the SDK
leveraging the same dependency might fail as well.

Recommendation
Consider propagating the exception to the caller of the generatePrivateKey() in case the
underlying dependency fails to generate a private key instead of returning another key.
Alternatively, heavily document why the fallback solution works, delete the Generate an
ECDSA key pair comment, and test the fallback solution with all the other related functions
in the SDK.

Location
packages/core/src/secp256k1/Secp256k1.ts

Retest Results
2025-02-24 – Fixed
In commit dfaa20a , the function generatePrivateKey() was updated according to the
recommendation above; it now throws an InvalidSecp256k1PrivateKey exception in case
there’s an issue during the key generation procedure. This finding was marked Fixed as a
result.

128

129

130

131

132

133

);

// Convert the ArrayBuffer to Uint8Array

return new Uint8Array(rawKey);

}

}

17 / 35 – Finding Details

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/secp256k1/Secp256k1.ts#L96-L133
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/secp256k1/Secp256k1.ts#L96-L133
https://github.com/vechain/vechain-sdk-js/commit/dfaa20a74ae8dc4e1596fb1dac131e5a25dfc371
https://github.com/vechain/vechain-sdk-js/commit/dfaa20a74ae8dc4e1596fb1dac131e5a25dfc371
https://github.com/vechain/vechain-sdk-js/commit/dfaa20a74ae8dc4e1596fb1dac131e5a25dfc371

Potential Private Key Leak
Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E020944-943

Category Data Exposure

Status Fixed

Impact
An attacker with access to the logs or a stack trace of the SDK execution may obtain the
private key material.

Description
The function ofPrivateKey() defined in the file packages/core/src/vcdm/Address.ts creates
an Address from the private key provided as parameter. Upon encountering a generic error
during the public key derivation and address computation processes, the function throws an
exception and populates the body of the exception with the content of the private key, as
can be seen in the highlighted line of the below excerpt.

This might allow an attacker to obtain sensitive key material.

In comparison, the function sign() in packages/core/src/secp256k1/Secp256k1.ts is careful
not to disclose the private key content when encountering an invalid key, as can be seen
below.

Low

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

284

285

286

287

288

289

290

291

public static ofPrivateKey(

privateKey: Uint8Array,

isCompressed: boolean = true

): Address {

try {

return Address.ofPublicKey(

Secp256k1.derivePublicKey(privateKey, isCompressed)

);

} catch (error) {

if (error instanceof InvalidSecp256k1PrivateKey) {

throw error;

}

throw new InvalidDataType(

'Address.ofPrivateKey',

'not a valid private key',

{ privateKey: `${privateKey}` },

error

);

}

}

// Check if the private key is valid.

if (!Secp256k1.isValidPrivateKey(privateKey)) {

throw new InvalidSecp256k1PrivateKey(

'Secp256k1.sign',

'Invalid private key given as input. Ensure it is a valid 32-byte secp256k1

private key.',

undefined

);

}

18 / 35 – Finding Details

Recommendation
Update the content of the exception in the function ofPrivateKey() such that it does not
include the private key content.

Location
packages/core/src/vcdm/Address.ts

Retest Results
2025-02-24 – Fixed
In commit b3576a3 , the error message provided in the exception body was modified and no
longer includes the private key. This finding was marked Fixed as a result.

•

19 / 35 – Finding Details

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Address.ts#L103
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Address.ts#L103
https://github.com/vechain/vechain-sdk-js/commit/b3576a35e91f49d33a75bb223819aef65453f346
https://github.com/vechain/vechain-sdk-js/commit/b3576a35e91f49d33a75bb223819aef65453f346
https://github.com/vechain/vechain-sdk-js/commit/b3576a35e91f49d33a75bb223819aef65453f346

Missing Parameter Check in
inflatePublicKey() Function

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E020944-GWF

Category Data Validation

Status Risk Accepted

Impact
Encoded public keys with an incorrect length might not be detected by the SDK, which may
result in behavior that is difficult to understand and debug and/or potentially undefined.

Description
The function inflatePublicKey() in Secp256k1.ts is used to “inflate” (i.e., decompress) a
compressed Secp256k1 public key to its uncompressed form. The function is excerpted
below, for reference.

This function, used for example to derive an address from a compressed public key, does
not ensure that the public key provided as parameter is of expected length. The function
only checks the first byte of the byte array argument to determine whether the key is in
compressed or uncompressed form, but does not actually ensure there are enough bytes to
make up a key (nor does it actually ensure the first byte is correct; it only checks whether it
is different than 4). If the parameter were of incorrect length, this function might not be able
to detect it, which could lead to unexpected issues during execution.

While the entire noble-secp256k1 dependency was not audited, the NCC Group consultants
performed a cursory review of a few key functions used by the Vechain SDK and noted that
the functions used in the function above appear to perform the necessary checks on the
length and the value of the elliptic curve point passed as parameter. Hence, the problematic
edge cases appear to only be able to be triggered when the first byte of the publicKey
argument is 4 .

Low

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

public static inflatePublicKey(publicKey: Uint8Array): Uint8Array {

const prefix = publicKey.at(0);

if (prefix !== Secp256k1.UNCOMPRESS_PREFIX) {

// To inflate.

const x = publicKey.slice(0, 33);

const p = nc_secp256k1.ProjectivePoint.fromAffine(

nc_secp256k1.ProjectivePoint.fromHex(

HexUInt.of(x).digits

).toAffine()

);

return p.toRawBytes(false);

} else {

// Inflated.

return publicKey;

}

}

20 / 35 – Finding Details

An interesting outcome of the cursory review of noble-secp256k1 is that the point-at-infinity
can be exported to hexadecimal, but not imported from hexadecimal. Namely, the following
line will produce an error.

This highlights an edge case that may be triggered in the underlying library, which may not
be expected behavior.

Similarly, the function ofPublicKey() in packages/core/src/vcdm/Address.ts (which calls the
inflatePublicKey() function above) does not check the validity of the public key argument.
For defense in depth, consider also validating the public key length in that function.

Recommendation
Add appropriate length checks to the inflatePublicKey() function above. That is, ensure
the key is 33 bytes long when compressed and 65 when uncompressed, and throw an error
otherwise. Consider adding similar length checks in the function ofPublicKey() in
Address.ts.

Location
packages/core/src/secp256k1/Secp256k1.ts

packages/core/src/vcdm/Address.ts

Retest Results
2025-02-24 – Not Fixed
The VeChain team indicated:

Issue acknowledged, will be addressed in next release.

As such, this finding was marked Risk Accepted.

•

•

const point = Point.fromHex(Point.ZERO.toHex(false));

21 / 35 – Finding Details

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Address.ts#L134
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Address.ts#L134
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/secp256k1/Secp256k1.ts#L148-L163
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/secp256k1/Secp256k1.ts#L148-L163
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Address.ts#L134
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Address.ts#L134

Misleading Naming of the getAddress()
Function
Overall Risk Informational

Impact Low

Exploitability Low

Finding ID NCC-E020944-NRD

Category Other

Status Fixed

Impact
Function names and code comments, in particular the ones documenting functions,
represent a form of contract between API developers and end users of these functions.
Misleading or incorrect naming may lead to uncaught errors which could break the integrity
and correctness of the system.

Description
In packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-
signer.ts, a function named getAddress() is defined; this function is excerpted below, for
reference.

Unlike its name suggests (and unlike the documentation preceding the function states) that
function returns the address’ checksum, i.e., the Keccak256 digest of an address, and not
the address itself.

Recommendation
Update the function name and preceding documentation to indicate that the function
returns the address checksum.

Location
packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-
signer.ts

Retest Results
2025-02-24 – Fixed
In commit 15e6db1 , the documentation preceding the getAddress() function was updated to
indicate that the function returned the “address checksum of the Signer”, which is a
standard Ethereum address format. This finding was marked Fixed as a result.

Info

74

75

76

77

78

79

80

81

82

83

84

85

86

87

/**

* Get the address of the Signer.

*

* @returns the address of the signer

*/

async getAddress(): Promise<string> {

return Address.checksum(

HexUInt.of(

await Promise.resolve(

Address.ofPrivateKey(this.privateKey).toString()

)

)

);

}

22 / 35 – Finding Details

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts#L79
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts#L79
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts#L79
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts#L79
https://github.com/vechain/vechain-sdk-js/commit/15e6db1c763a23d688961c832fcd48039f536e74
https://github.com/vechain/vechain-sdk-js/commit/15e6db1c763a23d688961c832fcd48039f536e74
https://github.com/vechain/vechain-sdk-js/commit/15e6db1c763a23d688961c832fcd48039f536e74

5 Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group
identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,
application’s exposure and user population, technical difficulty of exploitation, and other
factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.
Every organization has a different risk sensitivity, so to some extent these recommendations
are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target
system or systems. It takes into account the impact of the finding, the difficulty of
exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily
accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a
small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for
application improvement, functional issues with the application, or
conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or
systems. It takes into account potential losses of confidentiality, integrity and availability, as
well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on
the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny
access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly
degrade system performance. May have a negative public perception of
security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into
account the level of access required, availability of exploitation information, requirements
relating to social engineering, race conditions, brute forcing, etc, and other impediments to
exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or
significant roadblocks.

23 / 35 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,
exploit a race condition, already have privileged access, or otherwise
overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,
guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.
This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or
software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

24 / 35 – Finding Field Definitions

6 Engagement Notes
This informational section highlights a number of observations that the NCC Group team
gathered during the engagement and that do not warrant security-related findings on their
own.

Misleading Documentation
In the file packages/network/src/signer/signers/vechain-private-key-signer/vechain-
private-key-signer.ts, the documentation preceding the function sendTransaction()
mentions that the function populateTransaction() is called first within the function. This
does not appear to be the case. The function populateTransaction() does eventually get
called, but only later on, in the function _signFlow() .

In the file packages/core/src/transaction/Transaction.ts, the function isSignatureValid()
is documented to return “true if the signature is valid, otherwise false”. In practice, this
function only checks that the signature length is equal to an expected length, but it never
actually verifies the signature. The fact that this function does not verify the signature in
a cryptographic sense could be more clearly documented.

In the file packages/core/src/vcdm/hash/Keccak256.ts (and in the corresponding
documentation file packages/core/dist/index.d.ts), the comment preceding the

•

116

117

118

119

120

121

122

123

124

125

126

127

•

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

•

/**

* Sends %%transactionToSend%% to the Network. The

``signer.populateTransaction(transactionToSend)``

* is called first to ensure all necessary properties for the

* transaction to be valid have been populated first.

*

* @param transactionToSend - The transaction to send

* @returns The transaction response

* @throws {JSONRPCInvalidParams}

*/

async sendTransaction(

transactionToSend: TransactionRequestInput

): Promise<string> {

/**

* Return Returns true if the signature is valid, otherwise false.

*

* @param {TransactionBody} body - The transaction body to be checked.

* @param {Uint8Array} signature - The signature to validate.

* @return {boolean} - Returns true if the signature is valid, otherwise false.

*/

private static isSignatureValid(

body: TransactionBody,

signature: Uint8Array

): boolean {

// Verify signature length

const expectedSignatureLength = this.isDelegated(body)

? Secp256k1.SIGNATURE_LENGTH * 2

: Secp256k1.SIGNATURE_LENGTH;

return signature.length === expectedSignatureLength;

}

}

25 / 35 – Engagement Notes

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts#L116-L127
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts#L116-L127
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts#L116-L127
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/network/src/signer/signers/vechain-private-key-signer/vechain-private-key-signer.ts#L116-L127
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/transaction/Transaction.ts#L870-L888
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/transaction/Transaction.ts#L870-L888
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/hash/Keccak256.ts#L17
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/hash/Keccak256.ts#L17

computation of the Keccak256 hash is inaccurate; it purports to compute the SHA256
hash, as can be seen below.

A similar comment applies to the header comment for Blake2b256.of() (in packages/
core/src/vcdm/hash/Blake2b256.ts), which incorrectly claims its return type as Sha256 .

Unnecessary isCompressed Argument
The function ofPrivateKey() in packages/core/src/vcdm/Address.ts converts a private key
to an address. In addition to the private key parameter, the function also takes in a boolean
flag isCompressed to “indicate if the derived public key should be compressed”, as can be
seen in the excerpt below.

This argument is unnecessary here, since the public key is never actually returned; it is
computed from the private key, but then is used to derive the address, which is eventually
returned by the function. Consider removing this argument and providing a literal boolean
value to the derivePublicKey() function call above.

Hexadecimal Value Representation
The file packages/core/src/vcdm/Hex.ts defines a class representing hexadecimal values, as
well as associated methods to operate on these values. The regular expressions REGEX_HEX
(equal to /^-?(0x)?[0-9a-f]*$/i) and REGEX_HEX_PREFIX (equal to /^-?0x/i), deem the
empty value 0x valid. This may be slightly confusing in the context of the isValid0x()
function, which claims that it “Determines whether the given string is a valid hexadecimal
number prefixed with ‘0x’.”, and would thus consider 0x valid.

17

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

245

246

247

248

249

* @returns {Sha256} - The [KECCAK 256](https://keccak.team/keccak.html) hash of the

input value.

public static ofPrivateKey(

privateKey: Uint8Array,

isCompressed: boolean = true

): Address {

try {

return Address.ofPublicKey(

Secp256k1.derivePublicKey(privateKey, isCompressed)

);

} catch (error) {

if (error instanceof InvalidSecp256k1PrivateKey) {

throw error;

}

throw new InvalidDataType(

'Address.ofPrivateKey',

'not a valid private key',

{ privateKey: `${privateKey}` },

error

);

}

}

/**

* Determines whether the given string is a valid hexadecimal number prefixed with

'0x'.

*

* @param {string} exp - The string to be evaluated.

* @return {boolean} - True if the string is a valid hexadecimal number prefixed with

'0x', otherwise false.

26 / 35 – Engagement Notes

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Address.ts#L103-L122
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Address.ts#L103-L122
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Hex.ts#L245-L253
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Hex.ts#L245-L253

Ineffective Memory Zeroization
The code contains several attempts to clear secret data from memory after it is used, for
example, privateKey.fill(0) in packages/core/src/hdkey/HDkey.ts.

Memory zeroization is also not used consistently. In the function fromPrivateKey() in
packages/core/src/hdkey/HDKey.ts the function argument privateKey is zeroed out after
being copied to a new string, the header variable in the code excerpt below. However, that
header variable is then copied to yet another string (the expandedPrivateKey variable) and
the portion of header containing the private key is never zeroed out after this subsequent
copy.

Finally, it should be noted that the zeroization of cryptographic secrets in JavaScript (or
TypeScript) is not guaranteed to be effective due to the nature of the language and runtime
environment. In JavaScript, the memory is managed by the JavaScript engine; one cannot
control the memory in the same way as with lower-level languages. Temporary copies of
variables may be made by the runtime, which cannot be controlled by the user and sensitive
data might thus remain in memory until garbage collection occurs.

Unused Code
Several functions do not appear to be used or documented. Consider removing them.

The functions isDerivationPathValid() in packages/core/src/hdkey/HDKey.ts, as well as
the function isDerivationPathComponentValid() , which is used only by the former
function.

The Bloom filter implementation also appears to be currently unused.

TypeScript Compiler Options
Several compiler options in tsconfig.json do not follow best practices. Consider updating
them as described.

"target" : The value "ESNext" refers to the highest ECMAScript version the local version
of TypeScript supports. The tsconfig documentation states the following:

_The special ESNext value refers to the highest version your version of
TypeScript supports. This setting should be used with caution, since it doesn’t
mean the same thing between different TypeScript versions and can make
upgrades less predictable.

250

251

252

253

122

123

124

125

126

127

128

129

130

131

132

133

•

•

•

*/

public static isValid0x(exp: string): boolean {

return Hex.REGEX_HEX_PREFIX.test(exp) && Hex.isValid(exp);

}

const header = nc_utils.concatBytes(

this.EXTENDED_PRIVATE_KEY_PREFIX,

chainCode,

Uint8Array.of(0),

privateKey

);

privateKey.fill(0); // Clear the private key from memory.

const checksum = Sha256.of(Sha256.of(header).bytes).bytes.subarray(

0,

4

);

const expandedPrivateKey = nc_utils.concatBytes(header, checksum);

27 / 35 – Engagement Notes

https://github.com/vechain/vechain-sdk-js/blob/v1.0.0-rc.4/packages/core/src/hdkey/HDKey.ts#L128
https://github.com/vechain/vechain-sdk-js/blob/v1.0.0-rc.4/packages/core/src/hdkey/HDKey.ts#L128
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/hdkey/HDKey.ts#L117
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/hdkey/HDKey.ts#L117
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/hdkey/HDKey.ts#L243
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/hdkey/HDKey.ts#L243
https://github.com/vechain/vechain-sdk-js/blob/v1.0.0-rc.4/tsconfig.json
https://github.com/vechain/vechain-sdk-js/blob/v1.0.0-rc.4/tsconfig.json
https://www.typescriptlang.org/tsconfig/#target

Consider setting a specific target version, such as es2016 or es2023 .

"moduleResolution" : The node module resolution strategy (also called node10) should no
longer be used, according to the TypeScript Handbook:

--moduleResolution node was renamed to node10 (keeping node as an alias for
backward compatibility) in TypeScript 5.0. It reflects the CommonJS module
resolution algorithm as it existed in Node.js versions earlier than v12. It should
no longer be used.

Instead, consider node16 (which is the current value of nodenext).

The tsconfig file in packages/rpc-proxy also sets moduleResolution to node .

Certificate Data and Validation
The SDK file packages/core/src/certificate/index.ts provides an API to create, sign, and
verify self-signed certificates. The verify() method validates only the signature of the
certificate data and does not perform (or exposes facilities to perform) contextual validation,
such as ensuring that the domain field matches expected values. It is the responsibility of
the application using the SDK to validate the certificate’s contextual data after the signature
is verified. It is recommended to document this requirement explicitly to ensure callers
perform their own certificate content validation.

Furthermore, if the certificate format is expected to change in the future, consider including
a version field. This may enable robust validation by ensuring that the certificate adheres to
the expected format for its version, but at the cost of additional complexity (and security
bugs if not implemented correctly).

Additionally, certificates are encoded using the function fastJsonStableStringify() function
prior to being hashed and signed. This function sorts the fields in ascending alphabetic
order prior to encoding them. Thus, if the certificate format were ever to change, the results
obtained from the encoding process would diverge and lead to interoperability issues due to
incorrect signature verification.

It should also be highlighted again that certificates are self-signed; they are not actually
signed by a trusted entity (such as a CA). Thus, the security they provide is limited and in
the absence of a secure public key distribution method, receiving entities cannot assume
the authenticity of the sender. A more descriptive name could be used instead, such as
“self-signed certificate”.

Mnemonic Usage of Custom Random Number Generator
The Mnemonic class of() method (located at packages/core/src/vcdm/Mnemonic.ts)
generates BIP39 mnemonic words. It allows SDK users to optionally use a random number
generator function parameter, instead of the default one. The method documentation states
the following:

It does not specify a method signature, return type and failure mode for this random number
generator function. This information should be provided to minimize risk of misuse by
callers. In this case, it should accept a byte count with a type domain in WordListRandomGener
atorSizeInBytes , and return an Uint8Array of requested size in case of success. In case of
failure, it should throw an exception.

•

* * `randomGenerator` - **Must provide a cryptographic secure source of entropy

* else any secure audit certification related with this software is invalid.**

28 / 35 – Engagement Notes

https://www.typescriptlang.org/docs/handbook/modules/reference.html#node10-formerly-known-as-node
https://github.com/vechain/vechain-sdk-js/blame/v1.0.0-rc.4/packages/rpc-proxy/tsconfig.json
https://github.com/vechain/vechain-sdk-js/blame/v1.0.0-rc.4/packages/rpc-proxy/tsconfig.json
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/certificate/index.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/certificate/index.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Mnemonic.ts#L188
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Mnemonic.ts#L188

Pervasive Timing Side-Channels
Most of the cryptographic primitives used by the SDK are implemented by third-party
libraries or runtime environments (e.g., the V8 JavaScript engine), which were not in scope
for this assessment. During the review, NCC Group observed multiple instances where the
SDK, directly or indirectly, invokes code paths whose execution trace may depend on secret
values (e.g., mnemonics, private keys). Such data-dependent execution can, in principle, be
exploited by an attacker through timing-based side-channel attacks.

Common processors use caches to speed up access to resources such as data and code.
Attackers who can monitor the cache may observe changes in speed and cache behavior,
when resources that depend on sensitive information are used. This attack can reveal the
locations where the victim is accessing data (data flow) , or the code the victim is running
(control flow).

While these timing side-channels may not be a concern for all use cases, they could be
relevant to SDK users with certain threat models. Therefore, it is advisable to document
these potential risks clearly in the SDK’s API documentation.

Below is a non-exhaustive list of examples of potentially non-constant-time code identified
during the review:

Keystore MAC Key Example
In file packages/core/src/keystore/cryptography/experimental/keystore.ts, function
encryptKeystore() , macPrefix is the MAC key (Uint8Array) that was derived from the user
password. It is concatenated with the ciphertext , and the result passed to function
Keccak256.of() :

This function will ultimately call bytesToHex() in library noble-curves on the secret MAC key
data. bytesToHex() uses an array (hexes) to map the MAC key bytes to an hexadecimal
string, which is not constant-time:

function encryptKeystore(

privateKey: Uint8Array,

password: Uint8Array,

options: EncryptOptions

): Keystore {

// SNIP

const macPrefix = key.slice(16, 32);

// Encrypt the private key: 32 bytes for the Web3 Secret Storage (derivedKey,

macPrefix)

// SNIP

},

// Compute the message authentication code, used to check the password.

mac: Keccak256.of(n_utils.concatBytes(macPrefix, ciphertext))

.digits

// SNIP

}

export function bytesToHex(bytes: Uint8Array): string {

abytes(bytes);

// pre-caching improves the speed 6x

let hex = '';

for (let i = 0; i < bytes.length; i++) {

29 / 35 – Engagement Notes

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/keystore/cryptography/experimental/keystore.ts#L329
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/keystore/cryptography/experimental/keystore.ts#L329

String ’s toLowerCase() JavaScript Runtime Example
In file packages/core/src/vcdm/Mnemonic.ts function toPrivateKey() calls HDKey.fromMnemon
ic(words) , where words is a list of secret words:

Function fromMnemonic() calls JavaScript’s toLowerCase() :

In the V8 engine, this is implemented as follows:

ConvertCase() performs table-based conversion, and caching, which is not constant-time.

Base58 Encoding of Private Key
In file packages/core/src/hdkey/HDKey.ts, function fromPrivateKey() performs base58
encoding of secret keys using lookup values, which is not constant-time:

The base58 encoding is implemented in third-party library scure-base .

IV is not Included in MAC Computation
In file packages/core/src/keystore/cryptography/experimental/keystore.ts, functions
encryptKeystore() and decryptKeystore() respectively compute and verify a message
authentication code (MAC) derived from the user password. The MAC is used to validate
that the encrypted ciphertext has not been tampered with. However, the IV (Initialization
Vector) is not included in the MAC computation. This omission allows an attacker to tamper
with the IV, potentially causing the decryption to produce a different plaintext that still
passes MAC verification. However, the decrypted value is then compared against a hash of

151

152

153

154

155

69

70

71

72

73

74

75

76

77

133

134

135

136

137

hex += hexes[bytes[i]];

}

return hex;

}

public static toPrivateKey(

words: string[],

path: string = 'm/0'

): Uint8Array {

const root = HDKey.fromMnemonic(words);

public static fromMnemonic(

words: string[],

path: string = this.VET_DERIVATION_PATH

): HDKey {

let master: s_bip32.HDKey;

try {

master = s_bip32.HDKey.fromMasterSeed(

s_bip39.mnemonicToSeedSync(words.join(' ').toLowerCase())

);

BUILTIN(StringPrototypeToLowerCase) {

HandleScope scope(isolate);

TO_THIS_STRING(string, "String.prototype.toLowerCase");

return ConvertCase(string, isolate,

isolate->runtime_state()->to_lower_mapping());

}

const expandedPrivateKey = nc_utils.concatBytes(header, checksum);

try {

return s_bip32.HDKey.fromExtendedKey(

base58.encode(expandedPrivateKey)

) as HDKey;

30 / 35 – Engagement Notes

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Mnemonic.ts#L155
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/Mnemonic.ts#L155
https://github.com/vechain/vechain-sdk-js/blob/v1.0.0-rc.4/packages/core/src/hdkey/HDKey.ts#L133
https://github.com/vechain/vechain-sdk-js/blob/v1.0.0-rc.4/packages/core/src/hdkey/HDKey.ts#L133
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/keystore/cryptography/experimental/keystore.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/keystore/cryptography/experimental/keystore.ts

the keystore address, a large value as illustrated in the code snippet below. It would be
computationally infeasible for an attacker to guess an IV that results in a correct match for
the expected hash, given the same ciphertext. Nevertheless, this may open other avenues
of attacks, and it would be preferable to compute the MAC over the concatenation of the IV
and ciphertext to further strengthen the implementation:

Suboptimal Bloom Filter Implementation
The file packages/core/src/vcdm/BloomFilter.ts provides a basic implementation of a Bloom
filter. A number of notes were collected regarding this implementation, and are presented
below in no particular order.

Hash Function Usage
Traditionally, a Bloom filter is defined with k independent hash functions. This
implementation has instead chosen to use a single hash function, Blake2b256 . This hash is
invoked, and the first four bytes of its output are used; the other 28 bytes are discarded. To

function decryptKeystore(

keystore: Keystore,

password: Uint8Array

): KeystoreAccount {

// SNIP

const kdf = decodeScryptParams(keystore);

const key = scrypt(password, kdf.salt, {

N: kdf.N,

r: kdf.r,

p: kdf.p,

dkLen: kdf.dkLen

});

const ciphertext = n_utils.hexToBytes(keystore.crypto.ciphertext);

if (

keystore.crypto.mac !==

Keccak256.of(n_utils.concatBytes(key.slice(16, 32), ciphertext))

.digits

) {

// SNIP

}

const privateKey = ctr(

key.slice(0, 16),

n_utils.hexToBytes(keystore.crypto.cipherparams.iv)

).decrypt(ciphertext);

const address = Address.ofPrivateKey(privateKey).toString();

if (

keystore.address !== '' &&

address !== Address.checksum(Hex.of(keystore.address))

) {

throw new InvalidKeystoreParams(

'(EXPERIMENTAL) keystore.decryptKeystore()',

'Decryption failed: address/password mismatch.',

{ keystoreAddress: keystore.address }

);

}

// SNIP

}

}

31 / 35 – Engagement Notes

generate additional “hash” values, this initial value is run through a variant of a linear
congruential generator (excerpted from packages/core/src/vcdm/BloomFilter.ts):

In this snippet, a linear offset named delta is derived from hash using bitshifts. Notably, if
hash is zero then delta will be zero as well. The odds of hash being zero by chance are
low, but not impossibly low; an attacker could search for inputs with this property easily
enough. Under modulo reduction, several further degenerate properties emerge, as we will
see.

Moving on, hash and delta are added together modulo . The result, at each step, is
further reduced modulo the buffer size in bits, and the result is used as an index. The series
of indices generated in this way are used in place of the independent hash function outputs
that a Bloom filter would typically use.

Unfortunately, these indices are not close to being independent, violating the formal
analysis that Bloom filters benefit from. This can degrade the filters’ performance in
practice.

Given that Blake2b256 generates 32 bytes of high-quality, effectively independent hash
output, a clear solution would be to use more of these bytes rather than discarding them,
and possibly to take additional domain-separated hashes of the input key if more bytes of
hash data are needed.

Inefficiencies in Bloom Filter Generation and Storage
It is trivial to update a Bloom filter in-place. However, in the implementation given here,
Bloom filters are immutable. To make up for this, a separate class, BloomFilterBuilder , is
used to generate these immutable filters. This class keeps track of keys to be inserted by
storing them in a Map<number, boolean> where each key is mapped to true - functioning
essentially as a hash set (with extra steps).

As long as an instance of the BloomFilterBuilder is preserved, updated versions of a Bloom
filter can be generated; however, requiring this parallel data structure seems to fail to
leverage the appealingly low storage overhead of the Bloom filter. An additional
complication: if the Bloom filter outlives its builder, then further updates would have to be
performed through inconvenient means such as merges with new Bloom filters.

Furthermore, each updated version of a Bloom filter generated by a Builder is generated
from scratch, rather than reusing the partial results that have already been generated. If the
implementation is concerned with performance and minimizing hash calls, then this is a
potential area for improvement.

Incorrect Calculations of “Best” Parameterizations
The Bloom filter implementation claims the following:

Mathematically, m is approximated as (k / ln(2))

Mathematically, k is approximated as (m * ln(2))

355

356

357

358

359

360

361

362

363

232

const delta = ((hash >>> 17) | (hash << 15)) >>> 0;

for (let i = 0; i < k; i++) {

const bitPos = hash % m;

if (!collision(Math.floor(bitPos / 8), 1 << bitPos % 8)) {

return false;

}

hash = addAndWrapAsUInt32(hash, delta);

}

return true;

32 / 35 – Engagement Notes

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/BloomFilter.ts#L355
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/core/src/vcdm/BloomFilter.ts#L355

These equations are incorrect as they ignore the expected number of inserted keys. The
value of which minimizes the false probability chance, for a given size and for
inserted keys, would be:

Rounded, of course, to the nearest integer. In other words, the implemented approximation
overestimates ’s optimal value by a factor of .

Pervasive Pattern of Silent Failover Within AWS KMS Adapter
Throughout KMSVeChainProvider.ts and KMSVeChainSigner.ts, a design pattern of silent
fail-over on failure is used. This may result in behavior that is unexpected, surprising, or even
problematic to the user. A pair of examples are excerpted below for clarity.

KMS Client Configuration
One clear example is in KMSVeChainProvider ’s constructor:

In this snippet, a few cases are handled: The case where params.endpoint is defined, the
case where it is undefined but params.credentials is defined, and the case where neither of
these are defined.

We first note in passing that there is no adequate handling for the case where
params.endpoint is defined but params.credentials is not; in this case, params.credentials
would be passed as undefined; this is precisely the case that the following conditionals
attempt to prevent, and it could cause issues within KMSClient.

Furthermore, and potentially more severely, this type of system has poor outcomes under
misconfiguration. For instance, if a user intends to provide custom credentials but fails to

k m n

k ≈ ln 2
n

m

k n

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

/**

* Creates a new instance of KMSVeChainProvider.

* @param thorClient The thor client instance to use.

* @param params The parameters to configure the KMS client and the keyId.

* @param enableDelegation Whether to enable delegation or not.

**/

public constructor(

thorClient: ThorClient,

params: KMSClientParameters,

enableDelegation: boolean = false

) {

super(thorClient, undefined, enableDelegation);

this.keyId = params.keyId;

this.kmsClient =

params.endpoint !== undefined

? new KMSClient({

region: params.region,

endpoint: params.endpoint,

credentials: params.credentials

})

: params.credentials !== undefined

? new KMSClient({

region: params.region,

credentials: params.credentials

})

: new KMSClient({ region: params.region });

}

33 / 35 – Engagement Notes

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/aws-kms-adapter/src/KMSVeChainProvider.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/aws-kms-adapter/src/KMSVeChainProvider.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/aws-kms-adapter/src/KMSVeChainSigner.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/aws-kms-adapter/src/KMSVeChainSigner.ts

provide them properly, then rather than encountering an error, the system may simply load
default credentials instead and proceed as if nothing is wrong, with the user none the wiser.
This could result in issues such as transactions being sent from improper addresses; this
could potentially also leak social graph data if the intended and actual addresses in use
were not intended to be publicly associated with each other.

Delegator Signature Generation
Within KMSVeChainSigner.ts, the signTransaction() method is provided. This method
accepts a transaction to sign, and either returns a signature or an error. The case of
delegate signing is handled by a private helper method:

This helper method works roughly as follows (abridged for clarity):

In this code, we first attempt to use this.kmsVeChainDelegatorProvider , and then fall back to
this.kmsVeChainDelegatorUrl if the former is not available. If neither of these is available, we
simply return a single signature, without any delegate signature. Aside from the length of the
returned value, the caller receives no indication of which option was chosen.

This is suboptimal in several ways, and again leads to real risks under misconfiguration.

One might wonder what would happen if both kmsVeChainDelegatorProvider and kmsVeChainD
elegatorUrl are defined. In fact, the constructor only defines the ...Url attribute if the
...Provider attribute is not defined, but this precedence is undocumented. The user is not
alerted to the fact that they have provided a redundant configuration option, and there is no
support for using the delegator URL as a fallback if the delegator provider fails for any
reason.

Furthermore, if this.provider is undefined (which is allowed; the constructor checks for this
case and does not throw an error when it happens), then requests to
kmsVeChainDelegatorProvider would still go through but requests to kmsVeChainDelegatorUrl

298

299

const signature =

await this.concatSignatureIfDelegation(transaction);

private async concatSignatureIfDelegation(

transaction: Transaction

): Promise<Uint8Array> {

// Get the transaction hash

const transactionHash = transaction.getTransactionHash().bytes;

// Sign the transaction hash using origin key

const originSignature =

await this.buildVeChainSignatureFromPayload(transactionHash);

// We try first in case there is a delegator provider

if (this.kmsVeChainDelegatorProvider !== undefined) {

/* SNIP: Generate the signature using this.kmsVeChainDelegatorProvider */

return concatBytes(originSignature, delegatorSignature);

} else if (

// If not, we try with the delegator URL

this.kmsVeChainDelegatorUrl !== undefined &&

this.provider !== undefined

) {

/* SNIP: Generate the signature using this.kmsVeChainDelegatorUrl and

this.provider.thorClient.httpClient */

return concatBytes(originSignature, delegatorSignature);

}

return originSignature;

}

34 / 35 – Engagement Notes

https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/aws-kms-adapter/src/KMSVeChainSigner.ts
https://github.com/vechain/vechain-sdk-js/blob/d7154ceb414f4ffbb60a97d78304131f97642146/packages/aws-kms-adapter/src/KMSVeChainSigner.ts

would not. Thus, a user might provide a Delegator URL and end up with the signer failing to
delegate as expected, possibly incurring unexpected fees for the user.

35 / 35 – Engagement Notes

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Underspecified Delegation Process May Lead to Signature Forgery
	Transaction IDs May Collide
	Outdated and Vulnerable Dependencies
	Potentially Problematic Key Generation Function
	Potential Private Key Leak
	Missing Parameter Check in inflatePublicKey() Function
	Misleading Naming of the getAddress() Function

	Finding Field Definitions
	Risk Scale
	Category

	Engagement Notes
	Misleading Documentation
	Unnecessary isCompressed Argument
	Hexadecimal Value Representation
	Ineffective Memory Zeroization
	Unused Code
	TypeScript Compiler Options
	Certificate Data and Validation
	Mnemonic Usage of Custom Random Number Generator
	Pervasive Timing Side-Channels
	IV is not Included in MAC Computation
	Suboptimal Bloom Filter Implementation
	Pervasive Pattern of Silent Failover Within AWS KMS Adapter

