

© Copyright 2017 NCC Group

An NCC Group publication

Securing the continuous integration process

Prepared by:
Irene Michlin

NCC Group | Page 2 © Copyright 2017 NCC Group

Contents
1 Introduction .. 3
2 Basic continuous integration cycle ... 3
3 Security implications – technology ... 4

3.1 Development environment .. 4
3.1.1 Protecting development from the corporate network .. 4
3.1.2 Protecting the corporate network from development .. 5
3.1.3 Remote work ... 5

3.2 Version control .. 5
3.3 Integration build server ... 6
3.4 Dashboards & gadgets ... 7
3.5 Feedback mechanism security ... 7
3.6 Summary ... 7

4 Security implications - beyond technology .. 8
4.1 Review all things ... 8
4.2 Code review .. 9
4.3 Chain of custody ... 9

5 Detour: How continuous integration relates to Agile development 10
6 Putting it all together ... 12

6.1 Root-Cause Analysis (RCA) ... 13
6.2 Unified bug tracker .. 13
6.3 Coding standards .. 13
6.4 Unsafe functions blacklist ... 14
6.5 Security-focused testing .. 14
6.6 Signed binaries ... 14
6.7 Key management .. 15
6.8 Incremental threat modelling & attack surface review (ASR) ... 15
6.9 Dynamic analysis .. 15
6.10 Fuzzing .. 15
6.11 Static analysis ... 16
6.12 Third party code inventory & vulnerability management ... 16

7 Conclusion ... 17
8 References & further reading ... 17

NCC Group | Page 3 © Copyright 2017 NCC Group

1 Introduction

Continuous integration (CI) has long left the stage of experimental practices and moved into
mainstream software development. It is used everywhere from start-ups to large organisations, in a
variety of technology stacks and problem domains, from web applications to embedded software.

However, the security implications of introducing CI are often overlooked or underestimated. There
are whitepapers and advisories on this topic, but most are sales-oriented, promoting a specific tool or
another form of silver bullet that will solve all of your security problems.

This paper intentionally avoids recommending a specific solution or vendor. Instead, it focuses on
technology and process changes involved in setting up a CI environment and aims to provide best
practice guidance for introducing CI in to your secure software development life cycle (SDLC).

The choice of tools in various steps of CI is enormous (see: The Ultimate DevOps Tools Ecosystem
Tutorial [14] for the illustration of the choice available). This paper does not discuss their relative
merits from a functionality point of view, but specifies which features are necessary to allow secure
integration of the tools.

After considering the requirements for building CI in a way that does not compromise your
organisation’s security, this paper lists the techniques for leveraging the CI setup to improve the
security of the developed software.

2 Basic continuous integration cycle

Specifics of CI can differ between various implementations, but the basics can be summarised in the
following flowchart:

(1) A developer writes code or modifies existing code, usually with corresponding tests.

(2) The developer pulls the latest version to the development machine in case it has changed since
the development starting point.

(3) The developer builds the code on the development machine and runs the tests locally. This step
is optional, but popular in many CI implementations. If there are any conflicts or broken tests, the

NCC Group | Page 4 © Copyright 2017 NCC Group

developer repeats steps (1) and (2) until everything is resolved.

(4) The developer commits the changes to version control.

(5) The continuous integration server periodically polls the version control repository, and picks the
change from step (4). The CI server builds the code at the very least. Most implementations of CI will
also include running a test suite as part of this step and a variety of additional tools can be integrated
here.

(6) The CI server generates feedback which is visible on a shared dashboard. Many teams get
creative with the dashboard and there are gadgets which visually reflect the state of the build for
users and admins to view.

(7) The developer receives the feedback. This can be implemented as a Pull pattern, where
developers are expected to observe the dashboard after committing a change, but the Push pattern
is more reliable. In the case of negative feedback (broken build), the process restarts from step (1).
Depending on the overall length of the cycle and other factors, some teams choose to implement an
automatic revert or rollback to the last good state. If the feedback is positive, the CI server can be
connected to the deployment pipe and trigger the next steps in continuous deployment (CD). The
deployment pipe and CD in general are out of scope for this paper.

The exact details of the implementation depend on your technology stack, SDLC and other
organisational specifics. If you need guidance on the choices available, Continuous Integration:
Improving Software Quality and Reducing Risk [1] is an excellent overview book.

The following chapters of the paper look at the steps above in detail, providing recommendations on
securing them.

3 Security implications – technology

3.1 Development environment

Whether the developers work on physical or virtual machines, individually or using pair programming,
these machines need to be isolated from the rest of the corporate network. Many compliance
standards mention segregated environments, but even if your organisation does not have a
compliance obligation, you should still do it.

3.1.1 Protecting development from the corporate network

Presumably, the organisation develops software to affect the bottom line either directly, by selling the
products, or indirectly, if internal applications support other business processes. Regardless, it is an
asset - an intellectual property - and needs to be protected. Access control to the development
machines can be much more efficient if the machines reside on a dedicated network.

Corporate applications such as email can be used for social engineering, for example, sending
phishing links which, if clicked on, will result in the installation of a keylogger or remote access tools.
Not having these applications on the development machines reduces the likelihood of an attacker
stealing the intellectual property.

NCC Group | Page 7 © Copyright 2017 NCC Group

If you use a cloud-based solution, review the authentication and authorisation available. For hosted
solutions you are also responsible for keeping the operating system (OS) and any installed software
up-to-date. Containers are becoming popular technology in this area. See [6] and [7] for our research
on Linux containers security.

The rest of this section considers additional activities which can be done by the CI server, in the
order of increasing maturity required for their implementation.

3.4 Dashboards & gadgets

One of the major functions of a continuous integration server is to provide quick feedback to the
developers. It is best practice to provide the output of all the tools installed on the CI server on a
unified dashboard, or information radiator.

As the number of tools installed on a CI server increases, the complexity of the dashboard grows
with it. Many teams choose to use a programmatically controlled gadget that visually shows a current
state of the build. Gadgets are more fun than physically carrying a mop or a wooden spoon to the
desk of the build-breaker. However, electronic toys which are part of the Internet of Things (IoT) are
notoriously insecure. Before installing one, make sure it cannot be used by an attacker as an entry
point into your network.

Dashboards often require custom integration scripts. Make sure that these scripts are treated with
the same respect as the rest of the code: they need to be reviewed and stored under version control.

3.5 Feedback mechanism security

Unless it is a low-tech mechanism - all the developers are in the same room and they look at a
physical dashboard when they feel like it - you have to consider the security of the mechanism.

Can the mail application or SMS-gateway be abused? Does it run with higher privilege than
necessary? Does the feedback mechanism leak information and allow bypassing of access controls?

3.6 Summary

Continuous integration environments are rarely planned upfront. Tools are most likely introduced one
by one as the team’s practices mature and the technology landscape is usually heterogeneous, with
ad hoc scripts that hold everything together. In addition, development organisations frequently need
to move at a significantly faster pace than the overall enterprise architecture, so the tools and
servers added would be exempt from the risk assessment usually performed by an IT department.

A responsible development organisation has to take care of the following:

• Assessment of the new components. The process can be as informal as your overall risk
appetite dictates, but at the very least it has to capture the decision to introduce a new
application or infrastructure component. Many organisations only discover what they have as
a result of an audit.

• Installation and configuration. Some tools will have lots of optional features but do not
install and enable features that are not required. Review all the default accounts and keep
only those that are necessary, protecting them with passwords that conform to your overall
password policy.

• Integration with existing components. If new scripts are required, they need to be added
to source control. Any adjustments to internal firewall rules or IDS configuration need to be
documented and reviewed to ensure that the isolation of the development network is not

NCC Group | Page 9 © Copyright 2017 NCC Group

A feature that did not have secure requirements, was not designed with secure design principles in
mind, skipped threat modelling and attack surface reduction, will be prohibitively expensive or even
impossible to secure at the integration point.

These pre-development activities are out of scope of this paper. However, it is worth noting that they
do not have to be expensive or slow down rapid development lifecycles. Even within extreme
programming (XP) practices, a pair that picks up a story with the goal of completing it the same day,
starts with having a conversation about this story. Developers with secure design training would be
able to catch violation of secure design principles or changes to the overall threat model as part of
this conversation.

4.2 Code review

Manual code review normally happens after step (1) and before step (4) in the flowchart.

A well-disciplined team can get away with doing a code review after step (4) if there are additional
gateways on the way to continuous deployment.

Assuming that trivially-automated coding rules are checked before investing the expensive human
effort, the following principles are useful for security-oriented code review:

• Coding standards need to be kept up to date with security recommendations specific to the
technology stack. If there is an industry-accepted secure coding standard for the languages
used in development, it is best to adopt it (see CERT standards for an example [15]).

• No change is too small to be reviewed. Sometimes, teams have a policy to only manually
review risky changes, but you do not know if something is risky until it has been reviewed.

• Checklists derived from the coding standard can be very useful.
• In Agile development, do not have a separate task for code review of a story. Instead, add

code review to your “definition of done” (see Agile Alliance definition [10]).
• Continuous integration is all about quick feedback – do not save up code reviews until the

end of the project/iteration/week.
• Have a defined process for the “reject and rework” cycle – it is part of normal development,

not somebody’s exceptional personal failure.
• If tools allow (e.g., JIRA or TFS), make code review an explicit mandatory step of a story

workflow.

It is important to record evidence of the code review. Some tools used for code review management
can be integrated with version control and the name of the reviewer is recorded as part of the commit
information. Alternatively, the evidence can be kept in a workflow management/storyboard type of
tool.

Pair programming can serve as a continuous code review if there is a safety net to catch and review
the cases where a “trivial” change was done without using pair programming.

4.3 Chain of custody

Whether you release every change that successfully passes integration checks, or collect multiple
changes together to be released on a different cadence, it is extremely important to have a precise
control over what is going to be released.

Your process and your tool chain must support the ability to inspect exactly which units of work (such
as tasks, stories, change lists etc.) are going into the release and to validate that each of these units
did not bypass any of the CI checks and was not modified since passing the checks. Without

NCC Group | Page 11 © Copyright 2017 NCC Group

before the Quality Assessment (QA) handover. Therefore, QA only ever found a handful of bugs
which could be fixed in time for the release, without descending into the infinite loop of rework-retest
which kills most waterfall projects.

So, to summarise – CI has a place in non-Agile lifecycles as it has a positive impact on the software
quality, regardless of the frequency of the releases.

What is the area on the left, then? An Agile environment without CI? It has to be a shrinking space,
no doubt. Any organisation that is serious about being Agile and actually applying Agile principles -
rather than just decorating the walls with cards and charts - will find itself moving fast towards CI.
This would, at the very least, be through self-organising teams improving their process, if not through
upfront organisational decision.

Therefore, if you are working in an Agile environment, but not yet doing continuous integration, you
should be aware that it is coming your way, ready or not. It would be better to be ready and to pay
attention to the security of your CI from the beginning.

For more information on securing Agile SDLC, see Microsoft guidance [17] or OWASP resources
([18] and [19]).

NCC Group | Page 12 © Copyright 2017 NCC Group

6 Putting it all together

NCC Group | Page 13 © Copyright 2017 NCC Group

The figure above is based on several popular maturity matrices for continuous integration, as well as
NCC Group experience with a variety of clients.

There is now an understanding in the software development industry that security features are not
enough for building a secure product. To achieve an acceptable level of overall security, the product
needs all features to be secure; the whole attack surface of the product must be considered from a
security point of view, not only features that are directly security related, such as login functionality.

The same is true for securing continuous integration. In the matrix above, the dedicated ‘Security’
row lists explicit security related activities that must happen at some point towards CI maturity.
However, every cell on the other rows needs to be evaluated for the security of its tools and
processes as well.

This paper has so far concentrated on securing the CI environment, rather than adapting the
environment to contribute to the security of the developed software. In this section the focus will be
on the practices which can help to deliver secure software, i.e. the dedicated ‘Security’ row.

6.1 Root-Cause Analysis (RCA)

If you are at the very beginning of your security journey, the best feedback loop you can introduce at
this stage is root cause analysis for externally reported security issues. Each of these should be
discussed from the point of view of the progress gap: what was missing in our process to allow this
issue to slip all the internal checks and be released?

After this is understood, you can close the gap straight away, or add it to your security roadmap if it
is impossible to fix on the current maturity level. In many cases, closing the gap will involve adding
tests to the ones running as part of CI.

6.2 Unified bug tracker

In the early days of a security roadmap when your CI server does nothing apart from the build - it is a
good idea to get into the practice of handling all the bugs in one place. Start adding security issues to
the same tracker where your functional bugs are, instead of keeping them in a separate tool or,
worse, a spreadsheet. Otherwise, when other CI practices start to mature and additional tools show
up, your team will find itself not only juggling multiple bug sources, but also having separate triage
meetings for each source.

If it looks like the current bug tracker will not cope, consider moving to a better one. A useful feature
in a bug tracker is an ability to define custom fields. At the very least, you will want to be able to
select all the security-related issues. Other custom fields might become useful later, such as a
specific class of security bug, or method of discovery. Do not take a shortcut of trying to express
these through a keyword in the issue description, or a phantom software component, as whatever
time will be saved by it you will have to repay with interest later when it becomes impossible to use
the tracker for deriving quality metrics or just searching older issues.

6.3 Coding standards

Many languages have tools that allow automated coding standards checks to be performed. The
tools usually come with a pre-defined rule set and allow the addition of custom rules. The automated
check does not replace code review, but it leaves human reviewers more time to deal with complex
and non-trivial issues by automating the trivial checks.

CERT has secure coding standards for several popular languages [15].

NCC Group | Page 14 © Copyright 2017 NCC Group

Code complexity checks are possible for most languages and can be complementary to the coding
standard. Another family of tools that can be applied here is searching for duplicate code; on the
basis that code reuse through copy/paste is typically a breeding ground for unfixed security
vulnerabilities.

6.4 Unsafe functions blacklist

Sometimes, a popular library or function dates from before the modern era of security awareness.
The most famous example is Microsoft’s CRT library, but there are lists for Java, JavaScript and
other languages. It is good CI practice to keep an up-to-date blacklist on the integration server, to
ensure the code base stays in line with the latest recommendations.

Note that this advice is certainly applicable to newly developed code, but a legacy codebase needs
to be approached with care. There were cases where automated (or almost automated) replacement
of insecure functions with their recommended modern versions caused security bugs, as the
replacement did not preserve the intended semantics of the original code.

6.5 Security-focused testing

This is a large area of software development and covering it fully is out of scope for the paper.
OWASP provide a good overall guide (see [11]).

A popular entry-level practice, especially in Agile environments, is to introduce an “evil user” role and
add some stories about stopping this user from achieving a compromise. It may also be easier to
concentrate new testing practices on security specific features initially (e.g., authentication) and
extend to all the features as QA engineers get more proficient.

At the highest level of maturity you will extend the testing to third party code, because an attacker
does not care whether the weakest link in your product was written by you, or just included from a
supplier or open source.

No matter what your test suite composition in terms of unit tests/functional tests/component
tests/system integration tests, as much as possible it needs to be automated. Automation allows
mutating unit tests and functional level tests to support dynamic analysis.

Many teams have a tool that measures percentage of code covered by the automated tests and after
achieving a reasonable overall coverage, they introduce a threshold for minimum test coverage of
the new code commits. A useful threshold depends on the actual code base, but tends to be
between 60 and 80 per cent. It might be that in your circumstances it is possible to aim for coverage
closer to 100 per cent, but for many teams chasing that last per cent would not be worthwhile.

A frequent action point to come out of RCA (6.1) is creating a regression test case. This should also
be used to apply some proactive analysis to find additional issues belonging to the same class of
vulnerabilities. Repeated occurrences of related vulnerabilities may signal systemic weaknesses in
the SDLC and require actions beyond what is required to deal with a single instance, e.g. introducing
additional training or a specialised tool.

6.6 Signed binaries

All externally released binaries need to be digitally signed (see Wikipedia “Code signing” [12] for
available tools on various platforms).

If your software needs to be installed by your customers, and especially if it can self-update, it is

NCC Group | Page 15 © Copyright 2017 NCC Group

essential that all the components are signed and the signature is validated before using an update.

Some specialised use cases require source code to be signed. ISO/IEC standard [16] describes a
language-neutral methodology.

6.7 Key management

Introducing the practice of digital signing will require the organisation to manage the keys in a secure
manner, otherwise the benefit is lost. Another use case that will bring the problem of key
management into a CI environment is the software itself having encryption/decryption functionality.

OWASP has key management guidance [23], and additional information can be found in tech target
report [22].

Guidance that is particularly relevant to CI:

• Do not use production keys in any other environment
• Do not embed keys in code or scripts
• Have a plan to deal with compromised keys

An excellent overview of best practices for secret management [24] considers pros and cons of
several tools providing this functionality.

6.8 Incremental threat modelling & attack surface review (ASR)

This practice is often perceived as time consuming and therefore unsuitable for a CI process.
However, it is the most efficient way to find design-level security issues, which, if missed at this
stage, are very unlikely to be caught by any other means before the software is released. After the
investment in training and building the initial model, each feature or story can go through incremental
modelling and ASR without slowing down the development process.

An example of a successful adoption of this practice in an aggressively Agile environment was a
team dedicating 15 minutes in one hour-long planning meeting to incremental threat modelling of the
features going into the next iteration. Achieving good familiarity with the overall model and
proficiency in the modelling techniques allowed the team to concentrate on the changes required by
each feature and identify associated threats and increased attack surface in this timeframe.

6.9 Dynamic analysis

Whole books are written on the automated testing strategy and it would be out of scope for this
paper to cover the various testing approaches.

From a security point of view, the following points need to be considered when introducing dynamic
analysis to the CI environment:

• Usage of production data in tests
• The configuration of the installed tools
• Access privileges of the cloud-based tools

6.10 Fuzzing

Fuzzing is used to search for vulnerabilities in input processing by providing randomised data across

NCC Group | Page 16 © Copyright 2017 NCC Group

the entry points (network, file I/O, simulated user interaction etc.)

Fuzzing is a very useful technique and will almost always deliver some great initial results when
introduced. However, it is subject to the problem of diminishing returns: as you find and fix the bugs
found by fuzzing, the average time to find the next bug goes up, but the time for a motivated human
attacker to find this next bug does not grow at the same scale.

To keep it useful beyond the initial quick wins from dumb fuzzing, you will have to invest time into
providing better input templates and configuring more sophisticated fuzzing tools. Randomisation of
initialisation values for the fuzzer is more likely to find additional issues, but care must be taken to
preserve the data used on each test as it may be required to understand why a build failed testing.

It is computationally intensive and almost always will be done on a separate server. As you have
probably realised by now, it means additional attack surface: how are the binaries transferred
between the servers? Is sensitive information used in data seeds? Will the amount of data generated
create self-inflicted DoS conditions?

6.11 Static analysis

Using static analysis in a way that aids rather than impedes development is not a trivial problem.

NCC Group has a whitepaper with recommendations on effective integration of Static Application
Security Testing (SAST) tools [4].

Keep in mind that an installation can be effective in terms of helping the teams to improve the
security of developed software and yet it may be insecure due to configuration mistakes or weak
access controls.

6.12 Third party code inventory & vulnerability management

This practice requires the highest level of maturity and involves maintaining an up-to-date inventory
of all third party inclusions (commercial and open source) and monitoring their security status.

When a vendor or security researcher releases a security advisory, you need a rapid process of
evaluating the versions affected, making a risk-based decision and mitigating if necessary. This
practice is usually implemented at a high level of process maturity.

As a starting point, make a list of what components are currently in use and introduce a process for
keeping the list up to date with the correct version of each third party code item. Investigate if there is
a practice of modifying or customising third party code. Even if the licence allows such
customisations, it is not recommended from security point of view, as it prevents rapid transition to
the latest version.

If your architecture requires third party code to be modified, it is better to build a wrapper layer
around this code, therefore retaining the ability to perform drop-in upgrades when the vendor
releases a critical fix.

The good news is that a mature CI environment, with high coverage by automated tests, allows quick
and reliable validation of such updates.

If various components are used across multiple projects, a central repository of dependencies is
vital; otherwise, a forest of dependency trees per project will get out of control. This does not
preclude different projects using different versions or different upgrade processes.

NCC Group | Page 18 © Copyright 2017 NCC Group

[12] Code signing, Wikipedia https://en.wikipedia.org/wiki/Code signing

[13] Building a Vulnerability Management Programe – A project management approach, Wylie
Shanks https://www.sans.org/reading-room/whitepapers/projectmanagement/building-vulnerability-
management-program-project-management-approach-35932

[14] The Ultimate DevOps Tools Ecosystem Tutorial, Noga Cohen
https://www.blazemeter.com/blog/ultimate-devops-tools-ecosystem-tutorial-part-1

[15] SEI CERT Coding Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards

[16] ISO/IEC 17960:2015
http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.htm?csnumber=61133

[17] SDL for Agile https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx

[18] Secure SDLC Cheat Sheet, OWASP
https://www.owasp.org/index.php/Secure SDLC Cheat Sheet

[19] Secure Development Lifecycle, Eoin Keary & Jim Manico
https://www.owasp.org/images/7/76/Jim Manico (Hamburg) - Securiing the SDLC.pdf

[20] Signing commits using GPG https://help.github.com/articles/signing-commits-using-gpg/

[21] GPG signature verification https://github.com/blog/2144-gpg-signature-verification

[22] How to manage encryption keys http://searchdatabackup.techtarget.com/report/How-to-manage-
encryption-keys

[23] Key Management Cheat Sheet, OWASP
https://www.owasp.org/index.php/Key Management Cheat Sheet

[24] Secrets and LIE-abilities: The State of Modern Secret Management (2017), Jeff Nickoloff
https://medium.com/on-docker/secrets-and-lie-abilities-the-state-of-modern-secret-management-
2017-c82ec9136a3d#.tkcdd8hf3

