

 iSEC Partners, Inc.

Secure Application Development on Facebook
March 2010

This document provides a basic outline/best practice for developing
secure applications on the Facebook platform. Facebook
applications are web, desktop, or mobile applications that make use
of the Facebook API to integrate tightly with the social network
experience.

This paper will cover the following topics

 Overview of the Facebook Platform
 Security Goals
 Important Rules to Follow
 Common Vulnerabilities and Protections

This document is designed for the Facebook developer, but it can
also be used as a reference for non-technical readers. Depending on
the reader’s level of technical understanding of security
vulnerability classes and the Facebook platform, sections of the
document may be skimmed or skipped.

Overview of the Facebook Platform
The Facebook application developer has many choices in how they
integrate into the Facebook platform with their application. It is
important to understand the basic elements of the platform before
diving into the details of Facebook application security, as each
method of integration has different security properties. If you are
already familiar with the Facebook platform components, feel free
to skip this section.

There are two main categories of Facebook applications: Platform
applications and Facebook Connect applications. Both types of
applications can use Facebook markup and scripting languages, as
well as a REST client to access the Facebook API. Facebook
Connect applications communicate with Facebook through
crossdomain communication channels. Platform applications
communicate directly with the Facebook servers. The following
terms will be referenced when discussing Facebook applications:

• Application canvas – The application canvas is the page on
Facebook servers where an application lives. Application
canvas pages are accessed through the apps.facebook.com
domain. For example, the application canvas URL for a
fictional game called “Goatworld” might look like this:
http://apps.facebook.com/goatworldgame/ . The application
canvas page will either be Facebook markup language or an
external site hosted within an IFRAME.

• Canvas callback URL – The canvas callback URL is the
file or directory on the developer’s application servers where
the application files are hosted. Facebook proxies the
content from the canvas callback URL to the application
canvas page.

• Post-Authorize callback URL – The callback URL is a

page on the developer’s servers which is pinged by
Facebook each time a user authorizes the application.

http://apps.facebook.com/goatworldgame/�

Platform applications

Platform applications run in a sandbox and are accessed through the
application canvas page. There are two types of platform
applications that use different methods for sandboxing, including
FBML and IFRAME.

• FBML – Applications written using the Facebook markup
and scripting languages instead of the traditional HTML and
JavaScript. When a user accesses the application canvas
page, the Facebook proxy pulls down the FBML from the
application servers and translates it into HTML before
rendering in the user’s browser. It follows that the
application code runs in the apps.facebook.com domain.
These applications can access Facebook user data directly
using FBML, but may also make calls to the Facebook
REST API servers.

• IFRAME – Applications that are written using traditional
web development languages such as HTML, JavaScript,
CSS, and run on the developer’s application servers in an
IFRAME hosted in the Facebook application canvas page.
These applications cannot use FBML directly, so they tend
to rely on components from Facebook Connect, such as
XFBML and the JavaScript client library, as well as the
Facebook REST API.

Facebook Connect Applications

Facebook Connect applications do not run directly on the Facebook
platform, but can access a set of powerful APIs to integrate closely
with Facebook. Facebook Connect applications can be web, mobile
or desktop applications. Connect applications use XFBML tags
(which are similar to FBML) as well as the JavaScript client library,
the Facebook PHP client or a Facebook REST client in any
language.

Security Goals
The first step in securing any application is to outline the required
security guarantees your application needs to make, and then to
select mechanisms that support those guarantees. For a Facebook
application, the security challenges are slightly different than a
regular application. The following is a non-exhaustive list of
important items that a Facebook application developer has to keep
in mind when thinking about security:

• Protect access to the Facebook user account.
When a user authorizes your Facebook application,
they have permitted your application to obtain access
to their Facebook account. The application is granted
read access to profile data, friend information, and
photo albums. The application can also be granted
write access to the user profile, status updates,
notifications, and the ability to send emails to the
user, when the user grants the application the
privilege to access restricted Facebook APIs. The
application must be as resilient as possible against
attacks which could compromise the application's
access to a user’s Facebook account through the trust
the user has granted the application.

• Respect the Facebook privacy policy. In order to
respect the user ’s trust in your application, as well as
to keep your application from being removed by
Facebook, it is very important to adhere to
Facebook’s privacy guidelines. Facebook denotes
what user data is allowed to be stored by your
application and for how long. When you do store
Facebook account data, use sufficient access controls
to guard this data from anyone but the legitimate,
authenticated user. More information about privacy
and storable user data can be found here:
http://wiki.developers.facebook.com/index.php/Unde
rstanding_User_Data_and_Privacy
http://wiki.developers.facebook.com/index.php/Stora
ble_Data

• Protect application-specific user account data and
state. Make sure you understand the differences
between how Facebook applications and traditional
applications approach authentication, authorization,
and access controls. The application relies on

http://wiki.developers.facebook.com/index.php/Understanding_User_Data_and_Privacy�
http://wiki.developers.facebook.com/index.php/Understanding_User_Data_and_Privacy�
http://wiki.developers.facebook.com/index.php/Storable_Data�
http://wiki.developers.facebook.com/index.php/Storable_Data�

Facebook to tell whether a user has been
authenticated, as well as other information about the
user’s session. It is your responsibility to ensure that
this information has not been forged or tampered
with, before calling Facebook APIs or returning
Facebook data for the user.

• Protect against common web application
vulnerabilities that put application specific data
and servers at risk. The Facebook sandboxing of
platform applications can sometimes be confused as
a protection mechanism for the application.
However, Facebook sandboxing only provides
protection to Facebook servers. Application servers
can be attacked directly, and the minor protection
mechanisms the platform sandboxing provides can
sometimes be bypassed. It is therefore just as crucial
to guard your Facebook application against the same
common vulnerabilities you would in a traditional
application.

• Maintain confidentiality and integrity guarantees

when integrating Facebook with HTTPS sites.
When integrating an HTTPS site with the Facebook
platform it is important to maintain the
confidentiality and integrity guarantees offered by
the protocol, in spite of the fact that Facebook does
not serve its own content over SSL. The application
canvas page is not served over SSL, which implies
that it is impossible to provide support for SSL
communication in an FBML application. Facebook
Connect does provide support for SSL. This will be
important to take into account when deciding on your
method of integration with the Facebook platform.

Important Rules to Follow
Before delving into the specifics, consider the following list of
important rules for secure development on the Facebook platform.
The remainder of this document will provide further detail on the
vulnerabilities and protections referred to in each of these rules.

• Your Facebook Application secret must be kept secret!
The Facebook Application secret is given to you upon
registering your application, and it is used to authenticate
requests to and from the application. If the secret is revealed
to an attacker then they can forge requests to and from the
application. Store the secret in a secure place (i.e. not
hardcoded in the source or in source control repositories,
such as SVN) and make it available to as few people as
possible, such as net ops and dev leads.

• Do not hardcode FB application secret or any other
secrets in SWFs, JavaScript, or any other client side code
such as iPhone and Desktop applications. Attackers can
easily decompile SWFs to discover their secrets. The
strings(1) program can be used to identify secrets in other
client binaries. Instead, use the session secret to call many
sensitive APIs, or a server side relay proxy to call APIs
which require the application secret.

• Check the Facebook signatures. The Facebook signatures
that are sent with requests should always be checked in order
to verify that the request has not been tampered with and
was sent legitimately by Facebook. The signature is created
by an MD5 hash of the request parameters concatenated
with the application secret, which should only be known to
the application developer and Facebook. This signature can
in some cases also be checked to provide protection from
Cross-Site Request Forgery (CSRF) attacks when it is sent
in the GET or POST parameters.

• Provide additional CSRF protection mechanisms,
especially with Facebook Connect sites. It is
recommended to implement a separate CSRF protection
mechanism that is designed specifically to mitigate this
vulnerability class. In Facebook Connect sites, the signature
and parameters are sent as cookie values rather than as URL
parameters. Therefore, these sites need additional CSRF
protection as the signature will be automatically sent with
the request, even if the request was forged by an attacker.

This applies to platform applications which make use of
features of Facebook Connect. In this case, the signatures
will sometimes be sent as request parameters, and
sometimes as cookie values.

• Validate and perform output encoding of user controlled
data (as usual) and beware of XSS vulnerabilities in
FBML applications. In FBML applications, Facebook will
translate any JavaScript to FBJS, which makes traditional
XSS attacks that use JavaScript difficult (Facebook would
hope this is impossible). However, the attacker can still
inject FBML. If the attacker is able to inject into the
application canvas, they can use the FB:SWF tag to inject a
SWF from arbitrary domains. Facebook automatically
passes any SWFs loaded in the application canvas all user
specific secrets (such as the session key and session secret
which must be passed with more sensitive API calls). This
has an equivalent effect to XSS attacks on traditional
applications that steal the user session cookies. Other types
of FBML tags can also be injected, which allow an attacker
to abuse the user’s trust in allowing the application to have
access to their Facebook account, or maliciously redirect
them to other sites.

• Configure restrictive crossdomain.xml policy file. The
crossdomain.xml policy file must be restrictive in order to
keep attackers from changing the flashvars passed to the
SWF, potentially subverting verification of the Facebook
parameters passed. The crossdomain.xml policy file should
be as restrictive as possible to allow access only from the
trusted domains that are necessary.

• Lock down administrative functionality. Keep
administrative functionality on an entirely separate domain,
preferably available only internally. A common flaw in
Facebook applications is that they allow access to the
administrative functionality based on a white list of
hardcoded Facebook IDs, and is accessible from the same
domain as the application. This allows for XSS attacks to
have an even more devastating effect and could make it
easier to discover the structure of requests for CSRF attacks.
Also, because Facebook does not use HTTPS, sessions of
administrators may be hijacked and used to access the
administrative functionality. Require additional
authentication mechanisms for administrative functionality.

Common Vulnerabilities and Protections
The following section will cover a few common web application
vulnerabilities where specific care needs to be taken in order to
protect Facebook applications. The overview will include the
following items:

- Authentication and Authorization
- Signature Verification
- Signature Generation
- Cross Site Request Forgery
- Cross Site Scripting
- Considerations for F lash Applications
- Secure Transport using SSL
- Administrative Functionality

Authentication and Authorization

In order for any Facebook application to make use of the API, the
user must first authorize the application and establish a session.
After a user authorizes the application, a session is created by
Facebook. The session information is then passed by Facebook to
the post-authorize URL as request parameters, or it is set in cookies
scoped to the application domain using JavaScript. Facebook
Connect applications rely only on cross-domain communication
between Facebook and the application to process API calls. Both
Facebook servers and the application servers must authenticate
these communications. Otherwise, attackers could spoof or tamper
with requests from either party.

Important elements of the Authentication and Authorization

• The API key – The API key is given to you when you setup
your Facebook application. Facebook uses this unique key
to identify your application. The key is public, and will be
sent in the clear with requests sent by Facebook to your
application, and can be included in client side code such as
JavaScript and Flash.

• The application secret – The application secret is also
distributed during application setup. This secret is used to
authenticate the communication between Facebook and your
application. The secret is private to your application and
must never be revealed.

• The session key – The session key is the key to a temporary
session which expires after an hour or when the user logs out
of Facebook. The session key is set by Facebook when a
user authorizes the application. The session key is used to
call API methods that require an active session. For
example, and calls to friends.get require a session key to
determine which user to retrieve the friends for.

• The session secret - The session secret is a user-specific
secret that can be used in place of the application secret
when generating a signature for making sensitive API calls.
The session secret is unique per user and short lived, and is
thus much less sensitive than the application secret. The
session secret should always be used instead of the
application secret in any client side code like JavaScript,
Flash, mobile or desktop applications. This keeps the
application secret from being revealed either directly or
through reverse engineering of client side binaries. The list
of APIs which can be called using the session secret can be
found here:
http://wiki.developers.facebook.com/index.php/Session_Sec
ret_and_API_Methods

• The Facebook parameters – Facebook passes parameters to
the application with any requests that include the API key
and the session key, as well as other values which provide
information about the user and session. Facebook sends the
parameters as part of GET requests for IFRAME
applications and as part of the POST body for FBML
applications. Different parameters will be set depending on
the type of Facebook application and what the user is doing
with the application.

• The Facebook signature – One value included in the
Facebook parameters is the signature, which is an MD5 hash
of all the parameters concatenated with the application
secret. The application uses this value to verify that the
parameters were not tampered with and were really sent by
Facebook. Conversely, the signature allows for Facebook to
verify that API requests have not been tampered with and
were legitimately sent by the application identified by the
given API key.

http://wiki.developers.facebook.com/index.php/Session_Secret_and_API_Methods�
http://wiki.developers.facebook.com/index.php/Session_Secret_and_API_Methods�

Authenticating Communications from Facebook

Authenticate any information received from Facebook.
Authenticating information will ensure it was legitimately sent by
Facebook and not spoofed or tampered with. When Facebook
passes information about the user and session to your application in
the Facebook request parameters or cookies, it may be tempting to
use that information directly from the request. However, attackers
can control this data to forge or tamper with all of the Facebook
parameters sent in the request, excluding the signature. The
signature cannot be forged, as it is generated with the application
secret key which the attacker should not know. Before using the
values of any of the parameters received from Facebook, re-
calculate the expected signature and verify that it matches the
signature sent with the request. In the event of a mismatch, reject
the request entirely. Some of the functions in the PHP client do this
automatically. For example, the function get_valid_fb_params from
the Facebook PHP library will return the validated parameters.

Verifying and Generating Facebook Signatures

The chosen client library should have built in functions to verify
and generate the signature, but it can also be preformed manually.

Detailed information on the signature verification process can be
found here:
http://wiki.developers.facebook.com/index.php/Verifying_The_Sign
ature.

Signature Verification
Signature verification using the application secret must never be
done on the client side, as this would expose the secret. Always
perform signature verification using server code.

The signature verification process is different depending on the type
of Facebook application:

• Platform applications – In platform applications, Facebook
will send the signature and other parameters as part of the
GET or POST request. The application should grab the
Facebook parameters from the request parameters, and
recalculate the expected signature value using the signature
generation algorithm, or the built in function from the
Facebook client in use.

http://wiki.developers.facebook.com/index.php/Verifying_The_Signature�
http://wiki.developers.facebook.com/index.php/Verifying_The_Signature�

• Facebook Connect Applications – For Facebook Connect
applications the Facebook parameters are sent as cookies.
To verify these parameters, the application must extract the
values from the cookies and perform the verification using
the signature algorithm. The Facebook PHP client supports
cookie based signature verification and is well-tested. The
verification method must be checked in any unofficial
libraries you may decide to use. Facebook Connect
applications do not need to verify the signature very often.
The most common scenario which requires verification of
the Facebook cookies is when the session is being
transferred from the client side to use server side libraries.
When this occurs, the application must verify the cookies
sent with the session transfer request. Otherwise, a
malicious user could tamper with their cookies in order to
trick the server into believing they were another user. More
information on server side integration with Facebook
Connect applications can be found here:
http://wiki.developers.facebook.com/index.php/Using_Faceb
ook_Connect_with_Server-Side_Libraries .

Signature Generation
Signatures must be generated in order to call sensitive APIs and in
order to re-calculate the signature as part of the verification process.
The Facebook PHP library includes functions for performing
signature generation. For server side code, the application should
generate the signature using these API functions or by re-
implementing the signature generation algorithm.

For client side code such as Flash, JavaScript, mobile and desktop
applications, which cannot use the application secret directly, there
is an alternate secret used to generate the signature: the session
secret. The session secret can be used to call many APIs, but there
are some API functions that can only be called with the application
secret. In this case, the client side application should create a
simple, server-hosted proxy which makes the necessary API calls
and relays the result back to the client side application. Depending
on the type of application, there are several different options for
retrieving the session secret.

• Desktop and iPhone Applications – Desktop and iPhone
applications should either use a Session proxy
(http://wiki.developers.facebook.com/index.php/Session_Pro
xy) to create a session and retrieve the session secret, or
embed a Web browser in the application in order to use
Facebook Connect to start the session. In order to obtain the

http://wiki.developers.facebook.com/index.php/Using_Facebook_Connect_with_Server-Side_Libraries�
http://wiki.developers.facebook.com/index.php/Using_Facebook_Connect_with_Server-Side_Libraries�
http://wiki.developers.facebook.com/index.php/Session_Proxy�
http://wiki.developers.facebook.com/index.php/Session_Proxy�

user session in the traditional manner, an iPhone or Desktop
application would have to call auth.getSession. However,
calls to auth.getSession must be signed with the application
secret. The application secret must never be hardcoded in
the source of an iPhone application. Attackers can easily
decompile Objective C and thus the secret can be discovered
by anyone who downloads the application. Therefore, this
API method is not safe for direct use in iPhone applications.
The same is true for Desktop applications using Adobe Air
or .NET.

The session proxy is simply a callback to an application
server which then makes the auth.getSession call on the
server and returns the resulting session variables back to the
iPhone application. Ensure that the call to auth.getSession
is made at an HTTPS endpoint, as this is required to protect
the session secret from being revealed to network attackers
when it is sent back to the application.

The other option is use the Facebook Connect API via a Web
browser embedded in the application. In this case, the
application developer must direct the embedded browser to
Facebook login pages with specific URL parameters which
direct Facebook to return the session information. One of
these parameters contains the URL to which the user will be
redirected after they successfully login. The session secret
can then be retrieved from this URL and passed back to the
application. The session secret can then be safely stored on
the user’s system until they close the application. More
detailed information can be found at
http://wiki.developers.facebook.com/index.php/Authorizatio
n_and_Authentication_for_Desktop_Applications

• Facebook Connect Websites – When making API calls
using the JavaScript client library, Facebook Connect web
applications should generate the signature for API calls
using the session secret, in much the same way that desktop
applications do. The session secret will be passed to the
application callback URL after the user has authorized the
application. More detailed information on this process can
be found here:
http://wiki.developers.facebook.com/index.php/Authorizatio
n_and_Authentication_for_Desktop_Applications

http://wiki.developers.facebook.com/index.php/Authorization_and_Authentication_for_Desktop_Applications�
http://wiki.developers.facebook.com/index.php/Authorization_and_Authentication_for_Desktop_Applications�
http://wiki.developers.facebook.com/index.php/Authorization_and_Authentication_for_Desktop_Applications�
http://wiki.developers.facebook.com/index.php/Authorization_and_Authentication_for_Desktop_Applications�

• Flash – Flash applications will be passed the Facebook
parameters as flashvars from their hosting page. The hosting
page must validate the signature on the server side before
passing it to the SWF object, as the application secret cannot
be safely stored in the SWF. This is due to the fact that
SWFs can be downloaded by an attacker and easily
decompiled in order to retrieve any secrets used in the
ActionScript. The ActionScript API can then use the session
secret passed in these variables to generate signatures for
further API calls.

 Cross Site Request Forgery (CSRF)

CSRF vulnerabilities exist when an application sends predictably
structured requests which update server side state. When such a
request contains no unpredictable parameters, an attacker can create
a forged version of the request and send it on behalf of arbitrary
users, without their knowledge. . CSRF attacks and defense are
described in detail in the following CSRF whitepaper:
https://www.isecpartners.com/files/CSRF_Paper.pdf.

This vulnerability class can be difficult to understand. One common
example of a CSRF vulnerability and protection mechanism that we
are all used to is the password update feature of many web
applications. It is a common requirement that the user enter their
current password as well as their new password in a password
update form. This requirement is in fact a CSRF protection
mechanism (as well as adherence to other design principles).
Consider the case where the current password is not required when
performing the update. In this case, an attacker could forge the
request which updates the user password. If the attacker can get the
victim to load the forged request in a browser with an active session
on the site, the browser will send along the victim’s session cookies
with the request. This can be done by placing the forged request as
the source of an IMG tag or an invisible IFRAME in a place where
users of the application are likely to browse to, or as link disguised
with a tinyURL service in a Facebook status message or comment
box. When the server receives the request, it will have no way of
distinguishing the forged request from a request sent purposefully
by the user. The server will thus perform the password update action
and update the user account with the attacker supplied password.
The victim will then be locked out of their account. Fortunately,
most applications require the current password to be sent with
password update requests. This way, if an attacker attempts to send
a forged request on behalf of their victim, the request will fail
because the attacker will not have the victim’s current password.

https://www.isecpartners.com/files/CSRF_Paper.pdf�

While the user password can act as a CSRF protection mechanism,
it would be unreasonable to require the user to enter their password
each time they make a request which updates server side state.
Fortunately, there are other ways to provide protection from this
attack.

General protection from CSRF attacks (recommended solution)

To provide protection against request forgery, the application should
include and require a CSRF prevention token in the request that is
both unpredictable and uniquely tied to the user session and action.
This token will be sent with every request which updates server side
state. When the server receives a request, it can check for the
appropriate token value. If the token is incorrect or does not exist,
the request will fail. One way such a token can be generated is
through the following algorithm: HMAC_sha1(action_name +
secret, session_id). More CSRF token generation techniques can be
found in the whitepaper referenced at the beginning of this section.
This token can be sent in a hidden form field with each request. The
server can then perform the calculation upon receiving the request
and verify that the token sent with the request matches. Because the
secret exists only on the server side, the attacker will have no way
of formulating the token for use in a forged request. This is the
recommended protection mechanism for CSRF attacks. However,
in some cases the Facebook signatures can also provide protection
from this attack.

Protecting against CSRF attacks using the Facebook Signatures

The Facebook signatures can provide protection from CSRF attacks,
but they cannot be relied upon in all circumstances. The Facebook
signatures are computed in a similar way to the recommended
CSRF protection token algorithm; the signature is a cryptographic
hash of the request parameters and a server side secret. Note that the
use of the HMAC_sha1 hashing algorithm is significantly stronger
than the MD5 hashing algorithm used by Facebook, which has been
proven to be vulnerable to some attacks 1

. While the signature is an
adequate CSRF protection token, there are a couple very important
caveats to keep in mind if the Facebook signature is used as a CSRF
protection mechanism:

• Facebook signatures cannot protect against CSRF
attacks when sent as cookie values. CSRF protection
tokens provide no protection when sent as cookie values.

1 http://www.win.tue.nl/hashclash/rogue-ca/

http://www.win.tue.nl/hashclash/rogue-ca/�

The browser will automatically send cookie values with the
request, thus the attacker does not need to guess the value,
and the structure of the request remains predictable.
Facebook Connect applications send the signatures as cookie
values, rather than request parameters. It is important to
remember that these applications will have to provide a
separate CSRF protection mechanism. This caveat highlights
one of the reasons to implement a separate CSRF protection
system that is designed specifically for this class of
vulnerabilities. This way, code can be ported to different
types of Facebook (and non-Facebook) applications and will
still be protected from this class of attack.

• The Facebook signature is not sent with all requests. The
Facebook signature is not always available for use as a
CSRF protection token. If this is your chosen method to
provide CSRF protection, you must analyze your application
you must analyze your application for areas where the server
side state is being updated, but the Facebook signature is not
sent with the request parameters. These requests will have
to be protected through a separate CSRF protection
mechanism.

Cross Site Scripting (XSS)

XSS attacks are one of the most common and dangerous web
application vulnerabilities. An XSS vulnerability exists when user
controlled data is written directly to the page source without
sufficient input validation or output encoding applied. A common
example of this vulnerability is a web page which takes values from
request parameters and includes them directly in HTML or
JavaScript without validation or sanitization. Consider an example
PHP page from an application which displays a username passed in
via GET request parameters. The source of this page contains the
following code:

<?php
echo(“Your username is:”.$_GET[“username”]);
?>

Now imagine that a malicious user tampers with the request
parameters and enters the following string in the username field:

<script>alert(document.cookie);</script>

The source of the resulting page will then contain:

Your username is:
<script>alert(document.cookie);</script>

When the browser renders this page, the script tag that was entered
as the username will be written to the source of the page. The
browser will parse it as HTML and the script will be executed. The
malicious user can then exploit this vulnerability against other users
by creating a request such as the following:

http://example.com/displayUserName.php?username=<script>alert(
document.cookie);</script>

The attacker must then convince their victims to load the malicious
request in a browser with an active session on the vulnerable site.
The attacker may do this by disguising the link with a tinyURL
service and putting it in a place logged in users are likely to visit,
such as a forum, or by posting it on a Facebook page. When victims
load the malicious request in their browser, the attacker injected
script will execute and the user’s session cookie will be revealed to
the attacker (in a real world scenario the script would contain
something much more malicious than an alert box). For example,
the SAMY MySpace worm was propagated by exploiting an XSS
vulnerability2

. The attacker could also use an XSS vulnerability to
rewrite the source of the page so that it becomes a convincing
phishing page, or a page which prompts users to install malware.
Even cautious users may be tricked, as the page originates from a
domain which they trust. This attack can be used in many different
ways to compromise the user’s browser and session, and is also
usually very easy to exploit.

So how should the developer have prevented this vulnerability?
The developer should have validated and sanitized the value before
writing it to the source of the page. The corrected code would look
as follows:

<?php
if(ctype_alnum($username)) ($_GET[“username”])){
 $username = htmlentities($username);
 echo(“Your username is:”.$username);
} else {
 echo(“The username you entered contains invalid
characters”);
}

?>

2 http://en.wikipedia.org/wiki/Samy_%28XSS%29

http://example.com/displayUserName.php?username=%3cscript%3ealert(document.cookie);%3c/script�
http://example.com/displayUserName.php?username=%3cscript%3ealert(document.cookie);%3c/script�
http://en.wikipedia.org/wiki/Samy_%28XSS%29�

The conditional statement use the built in PHP function
ctype_alnum to verify that the string entered contains only
alphanumeric characters. The htmlentities function is a built in PHP
function which output encodes un-trusted data so that it is safe to
use in the HTML context, so “<” becomes “<” and “>” becomes
“>”. The user controlled data from the GET request is now safe
to write to the source of the page.

Prevent XSS attacks by using a combination of input validation and
output encoding. Most class libraries include functions for
performing output encoding. While output encoding provides
strong protection against XSS, it is best to perform data validation
before encoding. The validation and encoding should always be
performed on the server side, and should be done using a whitelist
of known good data. Instead of searching the data for bad
characters, check that the string matches the expected format based
on the type of input. For example, if the user controlled data is a
postal zip code, validate that the data is numeric, rather than
searching the data for “<” characters. It is always harder to
enumerate the possible bad data, than to enumerate the possible
good data. Validating user controlled data before use is simply the
correct way to write code, and along with helping to prevent XSS
vulnerabilities, will make the application run more smoothly as a
whole. Output encoding can then be used for further protection,
catching any data that could not be cleaned during input validation.

Cross Site Flashing (XSF)

Flash applications can also be vulnerable to a similar issue to XSS.
When your Flash application uses functions which invoke
JavaScript or retrieve URLs, you must check the data you pass to
these functions. If the data is user controlled, than an attacker can
enter malicious JavaScript or pass a malicious URL. Sometimes,
the attacker may be able to load their own malicious SWF inside of
the application due to such dangerous use of the loadMovie
function. A common mistake is to pass data from flashvars to these
dangerous functions. For more information see the following
resource:
http://www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.
html

XSS in Facebook Applications

XSS attacks in Facebook applications are unusual due to the use of
FBML, FBJS, XFBML, and the Facebook proxy.

http://www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html�
http://www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html�

• XSS in Facebook iFrame applications. In an XSS attack,
the injection occurs in the domain of your application. If the
injection is possible due to a lack of input validation and
output encoding in the application code, then the attacker
can execute arbitrary HTML and JavaScript; and in some
cases XFBML. The injected code can be used to steal any
Facebook cookies which are set when using Facebook
Connect code. These cookies reveal the user session key.

• FBML/FBJS applications. In an XSS attack on FBML
applications, the injected data will be written directly to the
source of the page in the apps.facebook.com domain.
However, as part of the Facebook sandboxing method for
FBML applications, any injected script will be translated to
FBJS. This means that an attacker cannot send the
traditional XSS payload which, for example, uses JavaScript
to access the user session. However, the attacker can still
easily inject arbitrary FBML tags. When an attacker can
inject FBML, they can do things like inject an FB:SWF tag
(<fb:swf />), which embeds a SWF in the application
canvas page. Whenever a SWF is loaded in the application
canvas, Facebook will automatically pass it all of the
Facebook parameters, including the session secret, as
flashvars. The attacker can then send the flashvars back to
their server and then use this information to access the
application and perform actions on behalf of the user.

Considerations for Flash Applications

There are a few things to keep in mind when creating Facebook
applications with Flash. Some of the information in this section
may overlap with other sections, but is presented from the
perspective of Flash applications.

To better understand the issues facing Flash applications, let us
consider a fictional Flash based iFrame platform application called
“Goatworld”, which is a game where players build teams of goat
buddies with their Facebook friends. Users can send goat buddy
requests to their Facebook friends, and the more goat buddies the
user has, the higher level they obtain in the game.

The application is built using Flash, and runs from a SWF hosted in
an iFrame on the application canvas page. The Facebook
parameters are automatically passed to the application in the GET
request which retrieves the hosting iFrame. The hosting page takes
these Facebook parameters and passes them to the Flash application

as flashvars. The Flash application then uses these parameters to
make calls to Facebook using the ActionScript API. When the
game loads, the SWF uses the fb_sig_user parameter to discover the
current user’s goat buddies, and then sets the player’s level
accordingly. Unfortunately, the hosting page does not validate the
Facebook parameters before passing them to the Flash application.
This allows an attacker to intercept the request to the hosting page,
and change the fb_sig_user parameter to that of a different
Facebook user, who has many goat buddies. Then, when the Flash
application makes the call to retrieve the user’s goat buddies, it will
retrieve the list of the other user’s friends. This allows the attacker
to discover the Facebook friends of other users, in addition to
providing them with a way to cheat in the game. This exemplifies
that the Facebook signature must always be verified when trusting
the Facebook parameters. However, there are also other ways that
an attacker can manipulate the flashvars passed to a SWF. This has
to do with the crossdomain communication policy configuration.

• Crossdomain Policy – By default, the Flash runtime
enforces the same origin policy and SWFs are only allowed
to connect back to their domain of origin. If the SWF needs
to communicate to servers other than its domain of origin,
the crossdomain.xml policy file must be in place to grant
access. The crossdomain.xml policy will grant
communication to that server from SWFs hosted on the
domains specified. When a SWF attempts to make the
connection, it will check for the crossdomain.xml file in the
web root of the domain it is attempting to connect to. It is
very important to properly configure this policy file so that it
restricts the access it allows.

A dangerously configured crossdomain.xml is as follows:

<cross-domain-policy>
<allow-access-from domain="*"/>
</cross-domain-policy>

This dangerous configuration allows access from any
domain, effectively enabling Flash content on any site to
attack your application. This would allow an attacker to
host your SWF on their site, and although the SWF’s
domain of origin is now the attacker’s, the SWF can still
make calls back to its original domain because of the badly
configured crossdomain.xml file in place. This gives the
attacker control of the flashvars the SWF uses, and would
allow the attacker to, for example, provide a different value
for the fb_sig_user parameter and other Facebook

parameters passed to the SWF. This also allows any domain
to make crossdomain AJAX calls to your server, read data,
and send custom headers with requests. This can lead to a
whole host of serious issues.

Only configure a crossdomain.xml file that grants access
only the specific, trusted, domains the SWF needs to connect
from.

For example, consider a SWF whose domain of origin is
sometimes foo.example.com, and sometimes
bar.example.com, but it always needs to call back to code on
example.com. The policy file hosted at example.com should
then look like this:

<cross-domain-policy>
<allow-access-from domain="foo.example.com"/>
<allow-access-from domain="bar.example.com"/>
</cross-domain-policy>

This will allow the SWF to be hosted at either the foo or bar
sub domains, but will not allow it to be hosted at the
attacker’s site. Furthermore, it will not allow arbitrary
domains access to the server through crossdomain requests.

More detail on crossdomain.xml policy files can be found
here:
http://www.adobe.com/devnet/articles/crossdomain_policy_f
ile_spec.html .

More information on development using Flash can be found
at http://www.adobe.com/devnet/facebook/ .

Secure transport using SSL

The HTTPS protocol provides the ability to transport information
securely over the network using public key cryptography. The
protocol provides confidentiality and integrity guarantees. When
communicating over HTTPS, one can have some confidence on
who they are talking to and that the data sent cannot be successfully
tampered with. Without using HTTPS there can be no such
guarantee. Facebook does not serve its own content over HTTPS.
However, it is still possible to leverage the security benefits of an
HTTPS site using Facebook Connect. The following guide
discusses how to use Facebook Connect with an SSL site:
http://wiki.developers.facebook.com/index.php/Facebook_Connect_
Via_SSL .

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html�
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html�
http://www.adobe.com/devnet/facebook/�
http://wiki.developers.facebook.com/index.php/Facebook_Connect_Via_SSL�
http://wiki.developers.facebook.com/index.php/Facebook_Connect_Via_SSL�

Areas of an application which deal with financial transactions, such
as online payments, must use HTTPS to protect their
communications. If you are writing a Facebook application that has
a payments component, consider the following recommendations
for integrating securely with Facebook.

• Ensure that all sensitive API calls use HTTPS endpoints
for client side applications. When making sensitive API
calls, ensure that they are sent over HTTPS by calling them
from an HTTPS endpoint. For example, the function
auth.getSession returns the user’s session secret, which can
be used to make sensitive API calls on behalf of the user.
For client side applications, the session secret is used in
place of the application secret, and therefore must be
guarded carefully. Calls to auth.getSession should be made
to an HTTPS endpoint, so that it will be returned to the
client application over a secure connection. The same
applies for other sensitive server side APIs.

• Ensure that sessions with the secure site are initiated
over HTTPS. When a Facebook platform application
which is served over HTTP needs to direct the user to a
secure site (for example to start a financial transaction), it is
crucial that the session be initiated over HTTPS. A common
mistake is to direct the user to the secure site using HTTP,
and then internally redirect to the HTTPS connection after,
without changing the session identifier. This is dangerous as
it reveals the session identifier in the clear, before
redirecting to the HTTPS site. In the best case, the secure
site should not be accessible over HTTP at all.

• Set the Secure flag on all sensitive cookies. Setting the
Secure flag on cookies tells the browser to only send the
cookie over an HTTPS connection. This will keep sensitive
cookies from being revealed to network attackers. Not
setting the Secure flag severely undermines the protections
provided by HTTPS, as the secure session can still be
compromised.

Administrative Functionality
Because the Facebook platform is different than traditional
application platform, securing administrative functionality can be
confusing, and some compromises have to be made. Developers of
a Facebook application can set certain users to be administrators and
moderators of the application. There are certain API functions that

can only be called by administrators. These functions provide the
ability to perform administrative actions for the Facebook
application, such as banning and unbanning users, setting
application properties, and retrieving information about the
applications usage statistics. It is tempting to include these
functions in the same application canvas as the normal user
functionality. Unfortunately, this design goes against the principle
of least privilege. It is a best practice to keep the administrative
functionality as separate as possible from the normal user
application. For Facebook applications, the following
recommendations should be considered in order to secure
administrative functionality.

• Require HTTPS. Any administrative pages must be served
only over HTTPS in order to protect from local network
attackers. This should be followed even if the administrative
portion of the application is served only internally, to protect
from rogue insider attacks. The application can still use the
Facebook API by using Facebook Connect with SSL to
authenticate and then transferring the session to the server
side in order to make admin API calls which require the
application secret. The session transfer process is described
in detail here:
http://wiki.developers.facebook.com/index.php/Using_Faceb
ook_Connect_with_Server-Side_Libraries.

• Host administrative functionality on a different domain
than the normal application. It can be tempting to host the
administrative portion of the application on the same domain
as the rest of the application. One common scenario is to
check if the Facebook ID sent with the request is an
administrator’s ID and then to display the corresponding
administrative functionality in the same Facebook canvas
page as the rest of the application. This is not recommended
as it can allow for XSS attacks to have a more devastating
effect, and can make it easier for an attacker to discover the
administrative pages in order to perform CSRF attacks.
Instead, the administrative functionality should be hosted on
an entirely separate domain. The application can still use
the Facebook API by using Facebook Connect and
transferring the session to the server side API for calls which
require the application secret.

http://wiki.developers.facebook.com/index.php/Using_Facebook_Connect_with_Server-Side_Libraries�
http://wiki.developers.facebook.com/index.php/Using_Facebook_Connect_with_Server-Side_Libraries�

• Make endpoints available internally only. The application
should only be available on the internal network. As a rule,
administrative interfaces should never be available from the
internet. Internal only hosting will greatly increase the
difficulty of attacking the application, as the attacker will
first have to gain access to the internal network.

• Require additional authentication – The administrative
portion of the application can use Facebook Connect to log
into the application via Facebook credentials. However,
Facebook sessions are not secured over HTTP, so there is a
potential for hijacking an administrators session. If an
administrator’s session is hijacked by an attacker, they may
be able to use that session to access the administrative
functionality. In order to provide further protection, require
administrators to log into the application using separate
credentials.

 iSEC Partners, Inc.

Author: Justine Osborne

Justine Osborne is a Security Consultant/Researcher at iSEC
Partners, an information security organization. At iSEC, Justine
specializes in application security, focusing on web application
penetration testing, code review, and secure coding guidelines. She
also performs independent security research, and has presented at
security conferences such as Blackhat, Defcon and DeepSec. Her
research interests include emerging web application technologies,
dynamic vulnerability assessment tools, Rich Internet Applications
(RIA), and mobile device security.

 iSEC Partners, Inc.

iSEC Partners, Inc.

iSEC Partners is a proven full-service security consulting firm,
dedicated to making Software Secure. Our focus areas include:
 Mobile Application Security
 Web Application Security
 Client/Server Security
 Continuous Web Application Scanning (Automated/Manual)

Published Books

Notable Presentations

Whitepaper, Tools, Advisories, & SDL Products

 12 Published Whitepapers

o Including the first whitepaper on CSRF
 38 Free Security Tools

o Application, Infrastructure, Mobile, VoIP, & Storage
 8 Advisories

o Including products from Apple, Adobe, and Lenovo
 Free SDL Products

o SecurityQA Toolbar (Automated Web Application Testing)
o Code Coach (Secure Code Enforcement and Scanning)
o Computer Based Training (Java & WebApp Security)

	Overview of the Facebook Platform
	Security Goals
	Important Rules to Follow
	Common Vulnerabilities and Protections
	Authentication and Authorization
	Signature Verification
	Signature Generation
	Cross Site Request Forgery (CSRF)
	Cross Site Scripting (XSS)
	Considerations for Flash Applications
	Secure transport using SSL
	Administrative Functionality

