

© Copyright 2019 NCC Group

An NCC Group Publication

Common Security Issues in Financially-
Oriented Web Applications
A guideline for penetration testers

Prepared by:
Soroush Dalili

Version 2.0

NCC Group | Page 2 © Copyright 2019 NCC Group

Contents
1 Introduction .. 3
2 Common Vulnerability Classes in Financially-Oriented Web Applications 4

2.1 Time-of-Check-Time-of-Use (TOCTOU) and Race Condition Issues 4
2.1.1 Transferring Money or Points, or Buying Items Simultaneously................................ 4
2.1.2 Changing the Order upon Payment Completion ... 5
2.1.3 Changing the Order after Payment Completion .. 6

2.2 Parameter Manipulation ... 6
2.2.1 Price Manipulation ... 6
2.2.2 Currency Manipulation ... 6
2.2.3 Quantity Manipulation .. 7
2.2.4 Shipping Address and Post Method Manipulation ... 7
2.2.5 Additional Costs Manipulation ... 7
2.2.6 Response Manipulation ... 7
2.2.7 Repeating an Input Parameter Multiple Times .. 8
2.2.8 Omitting an Input Parameter or its Value .. 8
2.2.9 Mass Assignment, Autobinding, or Object Injection .. 8
2.2.10 Monitor the Behaviour while Changing Parameters to Detect Logical Flaws 8

2.3 Replay Attacks (Capture-Replay) ... 9
2.3.1 Replaying the Call-back Request .. 9
2.3.2 Replaying an Encrypted Parameter ... 10

2.4 Rounding Errors ... 10
2.4.1 Currency Rounding Issues .. 10
2.4.2 Generic Rounding Issues .. 11

2.5 Numerical Processing ... 12
2.5.1 Negative Numbers ... 12
2.5.2 Decimal Numbers .. 12
2.5.3 Large or Small Numbers .. 12
2.5.4 Overflows and Underflows ... 12
2.5.5 Zero, Null, or Subnormal Numbers .. 12
2.5.6 Exponential Notation .. 13
2.5.7 Reserved Words .. 13
2.5.8 Numbers in Different Formats ... 13

2.6 Card Number-Related Issues ... 15
2.6.1 Showing a Saved Card Number during the Payment Process................................ 15
2.6.2 Card Number Enumeration via Registering Duplicate Cards 15

2.7 Dynamic Prices, Prices with Tolerance, or Referral Schemes ... 15
2.8 Discount Codes, Vouchers, Offers, Reward Points, and Gift Cards 16

2.8.1 Enumeration and Guessing ... 16
2.8.2 Vouchers and Offers Stacking ... 16
2.8.3 Earning More Points or Cash Return than the Price when Buying an Item 16
2.8.4 Using Expired, Invalid, or Other Users’ Codes .. 16
2.8.5 State and Basket Manipulation .. 16
2.8.6 Refund Abuse .. 17
2.8.7 Buy-X-Get-Y-Free .. 17
2.8.8 Ordering Out of Stock or Unreleased Items .. 17
2.8.9 Bypassing Other Restrictions .. 17
2.8.10 Point Transfer .. 18

2.9 Cryptography Issues ... 18
2.10 Downloadable and Virtual Goods ... 18
2.11 Hidden and Insecure Backend APIs ... 18
2.12 Using Test Data in Production Environment .. 19
2.13 Currency Arbitrage in Deposit/Buy and Withdrawal/Refund .. 19

3 Conclusions ... 21
4 References and Further Reading .. 23

NCC Group | Page 3 © Copyright 2019 NCC Group

1 Introduction
Today it is often hard to find individuals who have not purchased something online or used online
financial services. Online services offer ease of use and provide other value-add properties such as
loyalty card schemes to attract and retain customers, thus ensuring market competiveness. Creating
new online commercial services is imperative for most organisations, but has to be done in a safe and
secure manner to meet client, regulatory, and legal expectations. E-commerce applications, due to
the value of the products and services they offer, are valuable targets for threat actors who are looking
for financial gain or wish to damage a company’s brand or reputation.

This document summarises NCC Group’s experience of assessing e-commerce and financial services
applications, providing a checklist of common security issues seen in financial services web
applications.

Security assessments of e-commerce applications and financial services require specific security-
minded test cases to be developed. These tests have to cover logical security issues or rare
vulnerabilities that are usually not found through conventional security penetration or functional testing.
Vulnerabilities such as price manipulation, buying items at a reduced price or even for free, or earning
free money are the most interesting; however, these vulnerabilities don’t represent all possible attacks.
Unfortunately, many application-specific e-commerce security issues cannot be identified by static or
dynamic automated security scanners, or even in a manual source code review, if the reviewer does
not have a complete understanding of the application rules, business logic and processes, and threat
scenarios.

In NCC Group’s experience, one of the best ways to identify the business logic and application-specific
security issues early in the development lifecycle is to write down all the rules (do’s and don’ts) both
for the business processes and the supporting software and systems. These rules can then be used
to create a threat model. Specific security-focused test cases, scenarios, or checklists can then be
designed based on this threat model, and used to identify vulnerabilities and verify the correctness of
the implementation. Security-focused code reviewers and penetration testers benefit from these
documents, as they provide information about the expected behaviour of the system and the thought
patterns that guided its design. Automated security scanners (especially static analysis tools) can also
have their performance improved, by defining new rules to detect specific issues once a detection
pattern has been developed.

This whitepaper discusses the commonly-seen security issues that NCC Group has found over the
last fifteen years of performing security assessments of real e-commerce and financial service web
applications. The resulting checklist can be used as an additional tool for penetration testers when
assessing e-commerce applications.

NCC Group | Page 4 © Copyright 2019 NCC Group

2 Common Vulnerability Classes in Financially-Oriented Web Applications
In this section we introduce you to the vulnerability classes, providing an overview of each and
examples of how to test for their presence.

We have omitted generic web application issues, such as those involving authentication, authorisation,
and input validation; instead the issues discussed in the following sections are those that have specific
relevance to financially-oriented web applications. Where possible we have mapped these into the
categories used in the Common Weakness Enumeration. [10]

2.1 Time-of-Check-Time-of-Use (TOCTOU) and Race Condition Issues

CWE: 367 and 557

TOCTOU is a software bug that occurs when an application checks the state of a resource before
using it, but the resource's state changes between the check and the use in a way that invalidates or
changes the results of the check.

Time and order sequence are crucial to correct financial software operations. Many financial
transactions rely on checking balances and values (sometimes in real time) before processing. If there
is latency, delay, or opportunity to modify values between these checks, or if resource coordination is
not properly implemented around multi-threaded solutions, then there may be scope for manipulating
application logic, perhaps for financial gain.

2.1.1 Transferring Money or Points, or Buying Items Simultaneously
This is a common flaw within e-commerce applications that keep users’ balances and allow money
transfer or simultaneous purchases.

Consider the following example, commonly seen by NCC Group [1]. A user is authenticated to a
financial application from two different devices. A transaction is performed seeking to transfer money
from bank account number 1019 to bank account number 9823 for the amount of £100.

Suppose the server-side code is as follows, and that the user’s account balance is £100:

1: if (amount <= account_balance) {
2: account_balance = account_balance – amount
3: }

Figure 1: Using concurrent sessions to exploit a race condition issue

If the transfer request can be fired twice into the web application at the same time, there is the potential
that line 1 in the code to be executed twice before line 2 is executed. If this occurs, then the first check
that £100 is <= £100 holds true twice, and so when the if statement block executes, the
account_balance value is decremented by £100 twice, meaning that the user has been able to
transfer more money than allowed (as dictated by the if statement in the source code).

This problem can be exploited by writing a simple piece of multithreaded code that uses multiple valid
sessions for the same user (for example by simulating concurrent logins on multiple devices). In some
cases, it is even possible to exploit it using the same session when they can be processed by the
application at the same time. The implications of this could be severe, depending on the nature of the

NCC Group | Page 5 © Copyright 2019 NCC Group

application, as it opens up the potential for theft or use of unauthorised amounts of money, and
provides a potential mechanism for fraud and other laundering activities.

This issue can be found in many financial applications, such as a banking application that allows
money transfer between multiple accounts, a shopping website in which a user can buy multiple items
at the same time, or a commercial website that allows its users to earn and transfer their reward points.

Some applications may even prevent a user from having a negative value in their account by replacing
negative values with 0. If the application in the above example had this feature, the user could
potentially gain £100.

Concurrency issues may also affect discount voucher codes which can only be used once or twice. As
a result, it might be possible to use a one-time promotion code multiple times by exploiting this issue.

2.1.2 Changing the Order upon Payment Completion
Applications that allow users to change their order while paying for an item can also be vulnerable
when there is no verification at the end of the process. Although race conditions in changing the
shopping basket while payment is being processed seem a little tricky, often there is no need for this,
especially if the payment page is not part of the application but is a third-party website or an external
module. In this case, the order can be changed while the user is on the payment page and before
clicking the “pay” button to complete the payment. Changing items in the basket, shipping method and
posting address, quantity of items and so forth can affect the final price while the application still uses
the initial cheaper price.

The following case shows an example of this vulnerability which was seen in a production website:

A cheap item was selected and added to the basket. The user then went to the checkout page to pay
for the selected item. At this stage, without closing the payment page, the user opened the main
website in a new browser tab (to use the same session token) and added other and more expensive
items to the basket. After doing this, the user went to the initial checkout page, which was open in the
previous browser tab, to complete payment for the initial item. When the order was completed, all items
in the basket were shown as paid in the final receipt. The user could buy additional items for free, while
only paying for the initial item.

Figure 2: An example of changing the order upon payment completion

This vulnerability may also exist in the deposit process when an application can hold user balances.

NCC Group has also encountered a rare scenario in which an application validated the input values
and stored them in the session regardless of the validation result. In this case, the application did not
go to the next stage when an input value was invalid. However, if a user went to the next stage by
providing valid values, and then replayed the previous request with invalid values, the application
stored the invalid values in the session and did not validate them any more as the user had already
passed that stage. This caused severe logical issues for the application.

NCC Group | Page 6 © Copyright 2019 NCC Group

2.1.3 Changing the Order after Payment Completion
Updating details in a completed order, a generated invoice or quote can lead to financial loss. This can
happen when an application does not verify the status of a completed transaction.

As a result, it might be possible to add more items to an already completed order, modify existing items
to abuse an existing offer, or change other details without paying an additional fee.

The following case shows an example of this vulnerability which was seen in a production website:

An insurance certificate was generated for a cheap vehicle with wrong details to reduce the insurance
cost. After the order was completed, the previously sent requests were modified and replayed to
bypass checks that were applied in order to identify the status of an insurance application. As a result,
it was possible to change details within a paid insurance certificate to include more expensive vehicles
or to change the expiry time without paying an additional fee.

2.2 Parameter Manipulation

CWE: 20 , 691 , 693 , 179 , 345 , 807 , 115 , 133 , 166 , 167 , 168 , 171, 915

Parameter manipulation is a key technique for exploiting many of the security issues outlined in this
paper. Below we discuss the most interesting parameters that should be considered and tested during
an assessment of a financial application.

2.2.1 Price Manipulation
Price manipulation is an important test for any e-commerce applications in which the user can
purchase a product. Applications normally send the price data to the payment pages, especially when
the payment module is not part of the web application and therefore does not have access to user
sessions or the database. It is also possible to find applications that send the price data upon selecting
an item to add it to the basket.

Sometimes it is possible to buy the same item cheaper or even for free by manipulating its price.
Although nowadays it is very rare to find an application that accepts negative numbers via the price
fields, this always needs to be tested as it may change the application flow completely.

The following interesting example has been seen by NCC Group in recent years:

The e-commerce site’s “add to basket” mechanism contained a “price” parameter in a hidden field, but
the application ignored a manipulated price in the request and used the correct value instead.
However, it was found later that by adding a number of sale items (items with additional discounts) to
the basket, the application started using the price parameter within the request, and allowed price
manipulation and negative values (see the “Dynamic Prices, Prices with Tolerance, or Referral
Schemes” section for more information).

Sometimes, when the application is badly implemented, it is possible to change the price value on the
callback from the payment server (which goes through the user’s browser and not via the backend
APIs). In this case, the user can alter the price before going to the payment page, and after completing
the transaction the price in the callback URL will be changed to reflect its initial value. The user could
later ask for a refund and gain this money. Although it is rare to see a vulnerable application like this
nowadays, it is always worth checking for this type of vulnerability.

2.2.2 Currency Manipulation
Although an e-commerce website may not accept different currencies, payment applications normally
accept them, and they generally require the currency parameter to be specified in the initial request. If
a website does not validate the currency parameter upon completion of a transaction, a user can cheat
by depositing money in a currency which has a much lower value than the requested currency. The
following example shows a badly-implemented PayPal payment method that could be exploited:

A user makes a payment of £20 to a website, using the PayPal payment option. The request that the
website sent to the PayPal website was intercepted and the currency parameter was changed to “INR”
(Indian Rupee) from “GBP” (British Pound). After completing the transaction on the PayPal website

NCC Group | Page 7 © Copyright 2019 NCC Group

with 20 Indian Rupees, the website authorised the transaction without checking the currency, and £20
was deposited in the user’s account while only £0.22 was withdrawn from the PayPal account.

Figure 3: Paying less by currency manipulation

2.2.3 Quantity Manipulation
Websites calculate a final price based on the quantity of items purchased. Therefore, it may be possible
for this parameter to be manipulated to contain small or negative values, to affect the price on the final
payment page.

The website may remove items that have zero or negative values within the quantity parameters. In
this case, decimal values such as “0.01”, “0.51”, or “0.996” can be tested to see if they have any effects
on the final price. This method can be more dangerous when used on items which are not normally
manually reviewed.

2.2.4 Shipping Address and Post Method Manipulation
Changing the shipping address and the posting method may change the cost of items. Therefore, it is
important to test this manipulation during the last stage of the payment process to check whether it
changes the cost. It is sometimes possible to change the shipping address after placing an order and
before receiving the invoice, by changing the user’s profile address, so this needs to be tested as well.
This can also be a TOCTOU issue – see the section above.

The tax value can also be based on the address. This should be tested to ensure that it is not easy for
an attacker to avoid required taxes, such as VAT or import fees, by manipulating the address in the
process.

2.2.5 Additional Costs Manipulation
Any additional parameter that can affect the final cost of a product, such as delivery at a specific time
or adding a gift wrap should also be tested, to ensure it is not possible to add them for free at any
stage of the payment process.

2.2.6 Response Manipulation
Sometimes application payment processes, application license checks, or in-app asset purchases can
also be bypassed by manipulating the server’s response. This threat normally occurs when the
application does not verify the response of a third party and the response has not been
cryptographically signed.

NCC Group | Page 8 © Copyright 2019 NCC Group

As an example, there are applications with a time-restricted trial version which do not cryptographically
validate the server’s response upon purchasing a license. As a result, it is possible to activate the
application without paying any money, by intercepting and manipulating its server’s response to a
license purchase request.

Other examples include mobile games which download user settings from a server after opening an
app. For vulnerable applications it can be possible to manipulate the server’s response to use non-
free or locked items without paying any money.

2.2.7 Repeating an Input Parameter Multiple Times
This is very rare, but repeating an input parameter within a request that goes to the application or to
the payment gateway may cause logical issues, especially when the application uses different
codebases or different technology to parse the inputs on the server side.

Different technologies may behave differently when they receive repetitive input parameters. This
becomes especially important when the application sends server-side requests to other applications
with different technologies, or when customised code to identify the inputs is in place.

For example, the “amount” parameter was repeated in the following URL:

/page.extension?amount=2&amount=3&amount[]=4

This has different meaning for code written in ASP, ASP.Net, or PHP, as shown below:

ASP  amount = 2, 3
ASP.Net  amount = 2,3
PHP (Apache)  amount = Array

This test shows a classic example of HTTP parameter pollution [10]. However, repeating input
parameters is not only limited to normal GET or POST parameters, and could be used in other
scenarios such as repeating a number of XML tags and attributes in an XML request, or another JSON
object within the original JSON objects.

2.2.8 Omitting an Input Parameter or its Value
Similar to repeating input parameters, omitting parameters may also cause logical issues when the
application cannot find an input or sees a null character as the value.

The following cases can be tested for sensitive inputs to bypass certain protection mechanisms:

 Removing the value
 Replacing the value by a null character
 Removing the equals-sign character after the input parameter
 Removing the input parameter completely from the request

2.2.9 Mass Assignment, Autobinding, or Object Injection
This occurs when an application accepts additional parameters when they are included in a request.
This can occur in a number of languages or frameworks such as Ruby on Rails, NodeJS, Spring MVC,
ASP NET MVC, and PHP.

This can be problematic for a financial application when cost-related data can be manipulated.

As an example, this was exploited on a real website in order to change the shipping address and the
“due to” date of an invoice to make it almost unpayable as it was set to date that was far in the future.

2.2.10 Monitor the Behaviour while Changing Parameters to Detect Logical Flaws
Just as when testing non-financial applications, all input parameters within the payment process should
be tested separately in order to detect logical flaws. In the example below, the payment process flow
could be changed by manipulating certain parameters:

NCC Group | Page 9 © Copyright 2019 NCC Group

In a web application, there was a parameter which was used to tell the server to use the 3D-Secure
mechanism, which could be manipulated to circumvent this checking process.

Sometimes web applications contain a parameter which shows the current page number or stage. A
user may be able to bypass certain stages or pages by manipulating this parameter in the next request.

It is not normally recommended to change more than one parameter during a limited time frame of
testing; however, some logical flaws can be found only by changing more than one parameter at a
time. This is useful when an application detects parameter manipulation for parameters such as the
price field. Although it may not be feasible to test different combinations of all input parameters, it is
recommended to modify at least a couple of the interesting inputs at the same time. In order to
automate this test, the target field such as the price or the quantity parameter can be set to a specific
amount that is not normally allowed, and then other parameters can be changed one by one to detect
any possible bypass of current validation mechanisms when the application accepts the manipulated
items.

The following shows an example of this kind of vulnerability.

Suppose the server-side code is as follows:

1: Try
2: ' Delivery type should be an integer
3: deliveryType = Int(deliveryType)
4: ' Quantity should be an integer
5: quantity = Int(quantity)
6: Catch ex As Exception
7: ' Empty catch!
8: End Try
9: ' Continue ...

This code makes sure that the “deliveryType” variable contains an integer number, then does the same
thing for the “quantity” variable. Therefore, if decimal numbers are sent, they will be converted to
integer values to prevent a security issue in which a user may pay less by changing the “quantity”
parameter to a decimal value such as “0.1”. However, due to an empty Catch section in line 7, the
“quantity” parameter can still contain a decimal number such as “0.1” when the “deliveryType”
parameter contains a string such as “foobar”. In this case, the application jumps to the Catch section
due to an error in converting a string value to an integer in line 3, before converting the “quantity”
parameter to an integer.

2.3 Replay Attacks (Capture-Replay)

A replay attack occurs when all or part of a message between the client and the server are copied and
replayed later. The parameters can also be changed when no parameter manipulation prevention
technique such as message signature validation is present on the server side. Although a message
can be signed or encrypted to prevent parameter manipulation, this will not stop replay of a message
which was originally created by a trusted party.

An application can be vulnerable to serious security issues when it trusts replayed requests without
performing any further validation to check whether they have already been received or sent in the right
order.

2.3.1 Replaying the Call-back Request
It is quite normal for payment systems to redirect the user to a specific page when a payment has
successfully been processed or failed. Sometimes it is possible to replay a request which was for a
successful payment, to authorise a transaction which has not yet been processed.

For example, a website signed all the input parameters except the “transaction-id” parameter in a
successful callback request. This parameter could be replaced with a new transaction-id to complete
a payment without spending any money.

NCC Group | Page 10 © Copyright 2019 NCC Group

2.3.2 Replaying an Encrypted Parameter
Sometimes websites encrypt some of the important parameters without creating a mechanism to
detect replay attacks. For example, there was a website which encrypted price values on the server
side to include them in hidden input fields. Although direct price manipulation was not possible when
price parameters were encrypted, it was still possible to use the encrypted price parameter of cheaper
items to buy more expensive items (individual prices were encrypted, but not the entire request).

2.4 Rounding Errors

CWE: 187 and 681

Numerical values can be stored in integer or float variables. Although float variables can contain
numbers with some digits after the decimal point, the number of digits is still finite and based on the
variable type and its precision. Integer variables can only contain numerical values which do not have
any digits after the decimal point.

When a mathematical value is stored in a numerical variable, it needs to be rounded based on the
precision of the variable type. As a result, the new stored number can be slightly greater or smaller
than the original value. This normal behaviour can sometimes be abused by attackers.

2.4.1 Currency Rounding Issues
The following images show an example of exchange rates (USD to/from GBP) in Google at one time:

Figure 4: Exchange rate from USD to GBP in Google (rounded by two digits after the decimal point)

Figure 5: Exchange rate from GBP to USD in Google (rounded by two digits after the decimal point)

As Google rounds the numbers to two digits after the decimal point, someone could convert $0.20 to
£0.14 (something like £0.1352 before rounding) and then convert £0.14 to $0.21 (something like
£0.2070 before rounding) with a profit of $0.01. By doing this a hundred times, a dollar could be
created. However, the following images show the exchange rate with four digits after the decimal point
in another website at the same time (LikeForex.com):

NCC Group | Page 11 © Copyright 2019 NCC Group

Figure 6: Exchange rate from USD to GBP in LikeForex (rounded by four digits after the decimal point)

Figure 7: Exchange rate from GBP to USD in LikeForex (rounded by four digits after the decimal point)

Figure 8: Exchange rate from GBP to USD in LikeForex (rounded by four digits after the decimal point)

In this case, someone could exchange $0.20 for £0.1352 and then exchange £0.1352 for $0.2004,
giving a small profit of $0.0004. These exchanges need to be executed 2500 times to create one dollar.

If a real financial application converts different currencies to each other without a commission fee or
without different buy and sell rates in favour of the company, this can lead to a financial gain for an
attacker [2].

Shopping applications that support multiple currencies can also become victims of currency rounding
issues, when a user can buy an item with one currency and refund it with another.

In addition, applications in which users can deposit money into their accounts (such as banks,
international calling card companies, or gambling websites), can become vulnerable if they support
multiple currencies with different exchange rates and a user can withdraw the deposited money from
their accounts immediately without any cost. Changing the currency of the account after the first
deposit can also lead to this vulnerability. This can be more problematic when the application uses a
different exchange rate than the payment gateway (see the “Currency Arbitrage in Deposit/Buy and
Withdrawal/Refund” section).

2.4.2 Generic Rounding Issues
Rounding issues are not always limited to currency exchange. Even shopping applications which only
support one type of currency can be affected by inconsistencies between different parts of the
application.

The following is an example of this type of inconsistency, which should be tested:

The user chooses to deposit £10.0049 to a website that can hold the user’s balance; the website keeps
this money in the database to authorise it and adds it to the user’s balance when the money transfer
from the bank is completed. However, the banking API only accepts numbers with two digits after the
decimal pointer based on its standard. Therefore, the application converts the money to £10.00 and
waits for the user and the payment gateway to complete this transaction. After the transaction is
completed, £10.00 will be deducted from the user’s bank account but £10.0049 will be deposited into
the site’s balance. After repeating this process 205 times, the user can gain £1.00.

The same problem arises when the monetary calculation within the same application is done by
different applications or different codes. One example can be the use of database stored procedures

NCC Group | Page 12 © Copyright 2019 NCC Group

for some of the calculations (for example money transfer) and C# code with different rules for other
monetary calculations (such as money withdrawal or cancelling the money transfer).

2.5 Numerical Processing

CWE: 189

Obviously numbers play an important role in financial systems [4]. Manipulating numbers for e-
commerce applications can lead to different logical issues and money loss in severe cases. Therefore,
different test-cases should be designed to test numerical parameter manipulation in numerical fields
such as price, quantity, voucher codes and so on.

2.5.1 Negative Numbers
Negative numbers can lead to a number of logical issues. Most of the time, they reverse the application
logic so, for example, a user may be able to deposit “£100” by refunding “-£100” from the system. Any
associated parameter value such as the quantity parameter can also be used for this purpose.

As the application logic is reversed, transferring “-£100” into another account can be like transferring
money from the target account to steal their money. The same logical issue applies to reward points
or within gaming applications in which chips or other virtual currencies are used instead of money to
buy virtual items.

Although using negative numbers in different parameters does not always reverse the application logic,
it can cause other useful logical flaws and it should always be tested.

The “-1” value should also be tested separately, as it can have a specific meaning for the application,
as developers often use it to initialise numerical parameters or when a condition has not been met.

2.5.2 Decimal Numbers
In addition to the rounding issues which were discussed earlier, decimal numbers can cause logical
issues for applications, especially when a parameter such as quantity should only accept integer
values. Decimal values can also be used to exploit rounding issues – see the section above. An
additional use of decimal values is to create the same transactions multiple times when there is a
restriction on uniqueness of items in an order; in this case, it can be used in numerical id parameters
to point to the same item multiple times by having values such as “1234”, “1234.00”, or
“01234.000001”, which can have the same meaning when processed by the payment system or the
database.

2.5.3 Large or Small Numbers
Range validation check is an important test, which should be done using a value slightly larger or
smaller than the maximum and minimum values (decimal numbers can be used here as well).

2.5.4 Overflows and Underflows
A numeric overflow or underflow can occur when a value or the result of a calculation is bigger or
smaller than what can be stored for that variable type in the memory or the database.

For example, in Java or C# (not VB.NET), if an integer value reaches the maximum value (“231-1 =
2147483647”) and is incremented, an overflow occurs, without causing any error, which causes the
value to roll-over into the smallest minimum value (“-231 = -2147483648”). These numbers can be used
to bypass some validations. A similar behaviour may occur in other programming languages.

2.5.5 Zero, Null, or Subnormal Numbers
“0”, “NaN”, or null characters can be used in different contexts, especially for price manipulation.
Non-zero numbers with magnitude smaller than the smallest normal number and which are nearly
equal to zero, such as “0.0000000000000000000000000000000001” or “1e-50”, should also be
tested.

NCC Group | Page 13 © Copyright 2019 NCC Group

2.5.6 Exponential Notation
Exponential notations are quite useful for bypassing length restrictions in which the numerical values
cannot contain certain number of digits.

For instance, when only four characters are allowed, the following notation can bypass the “9999”
restriction as the maximum value:

9e99 = 9 * 10^99  100 digits

Another example is when the dot character (“.”) is not allowed to create decimal numbers:

1e-1 = 0.1

2.5.7 Reserved Words
The following reserved words can be used in Java and C# applications to represent a number, which
can cause serious logical issues:

NaN
Infinity
-NaN
-Infinity

2.5.8 Numbers in Different Formats
Numbers in different technologies can be written in different formats to bypass validation mechanisms.
For instance, when sending “0” as a value is restricted, “0.00”, “-0.00”, or even “$0” or “£0” could be
allowed.

The following table shows response of different functions within ASP Classic (VBScript), C# .NET,
Java, and PHP to several presentations of numbers.

Columns Description:

A. VBScript – ASP Classic IsNumeric function
B. C# – .NET IsNumeric function
C. C# – .NET Double.TryParse function + result value
D. Java – Float.valueOf function + result value
E. PHP – is_numeric function
F. PHP– floatval function + result value

String A B C D E F Comment

001.0000 True True True

(1)

True

(001.0000)

True True

(1)

Decimal symbol with leading
zeros based on the regional
settings of the server

$10 False True False
(10)

False False False Currency symbol based on the
regional settings of the server
(culture format).

1,,2,,,3,, True True True
(123)

False False True

(1)

Digit grouping symbol based on
the regional settings of the server
(culture format). Can be created
by HPP too.

-10.0 True True True

(-10)

True

(-10.0)

True True

(-10)

Negative symbol based on the
regional settings of the server. It
could be a positive sign.

NCC Group | Page 14 © Copyright 2019 NCC Group

String A B C D E F Comment

(10) True True False

(-10)

False False False Negative symbol based on the
regional settings of the server.

10- True True False

(-10)

False False True

(10)

Negative symbol based on the
regional settings of the server. It
could be a positive sign.

1e2 True True True

(100)

True

(1e2)

True True

(100)

String length can be less than the
number’s length

%20%091 True True True

(1)

True

(1)

True True

(1)

Space characters (09-0D and 20)

Space characters (09-0D and 20)
%20=Space

%09=Tab

1%20%00%00 True True True

(1)

True

(1)

False True

(1)

Space characters (09-0D and 20)
followed by Null Character(s)

&hff True True False

(255)

False False False &h and &o can be used in
VBScript to represent a number in
Hex or Octal.

Infinity False True True

(Infinity)

True

(Infinity)

False False Infinity: a reserved Word for C#
and Java

NaN False True True

(NaN)

True

(NaN)

False False NaN (not a number): a reserved
Word for C# and Java

0x0A False False False False True False Hex format

An Array False False False False False True

(1)

Providing an input as an array.
e.g.:

p.php?in[]=val

%0B%09%20-
0001,,,,2.8e00
02%09%20%0
C%00%00

True True True

(-1280)

False False True

(-1)

An example using the above
notations

%0B$%09%2
0(0001,,,,2.8e
0002%09%20)
%0C%00%00

False True False

(-1280)

False False False An example using the above
notations

Note 1: “Integer.parseInt” in Java cannot convert any of the numbers in the above table.

Note 2: “Convert.ToInt32("0X0A", 16)” in C# .Net returns “10”. This function cannot convert
other numbers in the above table though.

Note 3: PHP 5.4 supports a binary prefix (“0b”) that can be used to create a number as well.

NCC Group | Page 15 © Copyright 2019 NCC Group

2.6 Card Number-Related Issues

Payment card numbers are some of the most attractive data for attackers. In addition to being used
for online shopping, they can be sold on black markets even without the card verification code or value
(three-digit or four-digit number printed on the front or back of a payment card).

Nowadays many e-commerce websites are compliant with the Payment Card Industry Data Security
Standard (PCI DSS) [8], making them more secure and in order to attract more suppliers and
customers and to reduce the risk of card data breaches. As a result, they must not permanently store
the card verification code used to verify card-not-present transactions. In addition, they must encrypt
the card numbers in their storage.

The following examples discuss two different security issues to which PCI-compliant web applications
can still be vulnerable.

2.6.1 Showing a Saved Card Number during the Payment Process
E-commerce websites may reveal users’ saved bank card numbers during the checkout process. Most
of the time, this occurs due to a bad implementation, and the card number is not required to be
displayed. Sometimes, however, the card number should be decrypted on the payment page; for
instance if it is to be sent to a 3D-Secure authentication website.

This can be problematic, as an attacker who has hijacked a user’s session or credentials or is exploiting
a cross-site scripting (XSS) issue can obtain the card numbers.

The risk can be mitigated if card numbers are only partially displayed (e.g. the last for digits) when
necessary, the pages which contain the card numbers are password protected, and the 3D-Secure
authentication process or similar mechanisms cannot be activated directly by accessing those pages
when they are not required.

NCC Group also often finds unsaved card numbers in HTTP responses after using a card number in
a payment process and before logging out of the website. This behaviour can also be dangerous,
especially when the website is vulnerable to XSS or session-hijacking attacks.

It should be noted that the CVV (CV2) numbers (the card verification code) must not be seen in any of
the responses from the server at any time.

2.6.2 Card Number Enumeration via Registering Duplicate Cards
Some websites do not allow their customers to save the same card number in multiple accounts. One
of the reasons is to detect duplicate accounts or to stop abusing first-time buyers’ offers.

This functionality, when it is badly implemented, can be abused to brute-force other user card numbers
which are registered on the website.

2.7 Dynamic Prices, Prices with Tolerance, or Referral Schemes

CWE: 840

Sometimes prices and discounts can be dynamic because of currency exchange rates, number of sold
items, referral schemes, and delays in submitting a price in dynamic trading systems.

Therefore, the application specification should be reviewed to see if it supports dynamic prices. Most
of the time, an additional input parameter helps the application to recognise the use of dynamic prices.
For instance, the system may start using dynamic prices when the application does not use the default
currency or when a customer uses a mobile device or resides in a certain country which can have a
slower Internet speed. It may also consider using submitted prices when a referral header or a referral
parameter is available. In order to find these systems, a number close to the original price (price ±
0.01) should be submitted while changing the other parameters.

Other parameters that affect the final price may also be dynamic or have a margin of threshold. For
example, it is quite normal to see this behaviour in the “odds” parameter of a live betting application.

NCC Group | Page 16 © Copyright 2019 NCC Group

The application policy should be reviewed whenever dynamic prices are found, to ensure that the
changed prices are within the allowed margin. In addition, a secure cryptographic method should be
used when the prices are generated by a trusted party or even by the website itself, in order to identify
any manipulation by untrusted parties.

2.8 Discount Codes, Vouchers, Offers, Reward Points, and Gift Cards

Users can earn reward points in many e-commerce applications when the points can be used to
purchase items, they should be treated and tested exactly like the user’s balance. Therefore, negative
number issues, rounding issues, concurrency issues, and so on should all be tested.

2.8.1 Enumeration and Guessing
Discount codes and vouchers which can be used to reduce the final price should be tested to ensure
they are not predictable and cannot be easily enumerated.

Similarly, gift or loyalty card numbers should be unpredictable and very difficult to enumerate,
otherwise an attacker can create a duplicate card to use a victim’s balance. When these cards carry a
spendable balance, they should be treated similarly to bank card numbers and should be protected by
PIN codes or passwords.

2.8.2 Vouchers and Offers Stacking
E-commerce applications typically prevent the use of multiple vouchers or offers in a single transaction.
However, logical flaws sometimes happen when for example a buy-1-get-1-free offer is combined with
3-for-2 or 3-for-1 which can result in a 3-for-1 or 3-for-0.5.

2.8.3 Earning More Points or Cash Return than the Price when Buying an Item
Point collection when using points to purchase an item should not be possible as it can lead to logical
flaws. An example can be a promotional offer that buying with points would result in collecting the
same amount of points. This can also happen in systems that can accept cash when the promotional
returned cash or collected points can be used to buy the same item.

Another interesting example is the purchase of prepaid cash cards that can be used like real money.
These cards may be purchased for less than their actual value when there is an offer on all gift cards.
This can even be more problematic when gift cards can be used to purchase more gift cards to create
constant profit until they are out of stock.

2.8.4 Using Expired, Invalid, or Other Users’ Codes
The application behaviour after applying any discount method should be reviewed to see if there are
any interesting parameters that can be manipulated or replayed to use a discount code for different
products, after a certain date when it is expired, or multiple times when it should expire after the first
use (concurrency issues can also be tested here).

Vouchers and offers should be tried to ensure they cannot be used to buy illegitimate items for instance
using new product discount codes to extend old services. Another example of a verification issue is
when vendor A promotional codes can be used on vendor B’s website, even if a user does not have
an account with vendor A.

2.8.5 State and Basket Manipulation
Applications need to be tested to ensure that the discount values are calculated at the last stage of
purchase when the user changes the initial order in any way (adding/removing items or changing the
quantities).

This issue can be exploited when removing items from a bundle does not reduce the discount on the
rest of selected items. In this case, additional items are added to basket to satisfy a promotion, and
the discount is still honoured upon their removal.

NCC Group | Page 17 © Copyright 2019 NCC Group

Another variant is when discounted and non-discounted items can be added to a basket to receive an
additional discount on the whole basket. For instance, this might be exploited similar to voucher or
promotion stacking when another voucher code can be applied to the whole basket, as a non-
discounted item exists. In some cases, the originally non-discounted item can be removed from the
basket afterwards without losing the discount on an already discounted item.

2.8.6 Refund Abuse
The refund process should also be tested to ensure that a user cannot earn free points by buying and
refunding items. The points might be spent in between buying and refunding items; in this case, users
may not have enough points in their reward cards when refunding an item, and an appropriate policy
should be in place to recover the lost points. Any collected free items should also be considered to be
returned when a refund or cancellation is due to happen.

2.8.7 Buy-X-Get-Y-Free
Offer schemes such as buy-one-get-one-free in which the user only pays for the most expensive item
can also be abused to buy inapplicable items for free or to pay for the cheapest items to get the more
expensive ones for free.

The following logical issues show a series of examples that might occur here:

 Not discounting the cheapest item in 3-for-2. This can result in buying an expensive item for
less. For example, when the discount is applied on the last item added to the basket or when
the cheapest item is not alphabetically the last one in the list of items in a basket.

 3-for-2 can become 2-for-1 when a free item is added by buying another item and the free item
is counted as one of 3.

 3-for-2 can become 33% off the whole basket. Although this might be a human error, some
applications might have a software bug to allow this when different items are mixed and
matched. As a result, it is possible to add an expensive and two cheap items to the basket to
buy the expensive item cheaper.

 3-for-2 can become 4-for-2 when adding 4 items to the list rather than 3.

 3-for-2 can become 3-for-1 when there is a software bug. Although this type of issue is
common, it is highly likely that it is based on human error.

2.8.8 Ordering Out of Stock or Unreleased Items
Some websites may reduce their out of stock items’ prices in order to attract more customers. This
might be abused if an order can be made using out of stock items when it can still go through to their
warehouse while the items still exist despite being selected as out of stock on the website.

This can also be abused in order to receive free or discounted items by adding an out of stock item to
the basket as part of a special discount or offer.

It should be noted that this issue might also be exploited by ordering and then cancelling all of a specific
item in a website in order to create a temporary out of stock item while the website is processing the
cancellation requests.

2.8.9 Bypassing Other Restrictions
Additional tests need to be performed to bypass any available restrictions such as limited quantity of
specific items in sale, use of customer specific offers, or using one time vouchers multiple times.

NCC Group | Page 18 © Copyright 2019 NCC Group

2.8.10 Point Transfer
If users receive reward points by referring someone else to register or by registering themselves for
the first time, they can abuse the reward point scheme by using point transfer functionality. Although
point transfer functionality may not be directly accessible to the users in an application, it can be
available upon closing an account or when a loyalty card has been lost or stolen. The point transfer
functionality should also be tested for the previously explained race condition issues.

2.9 Cryptography Issues

CWE: 310

Cryptographic methods such as encryption, encoding, signing, and hashing are often seen within
payment systems. However, design errors and implementation mistakes, due to human error, or the
lack of attack vector knowledge, are quite commonly seen in this area, especially in applications which
implement their own cryptography methods rather than using well-known pre-implemented libraries.

For example, when an application hashes some of the known parameters with a short and insecure
secret key, this key can easily be brute-forced when the algorithm is known. Sometimes applications
do not use long and strong secret keys when the implementation does not enforce it.

Another example is length-extension attack, in which the hash of a secret key which is concatenated
with other values can be exploited to add data to the original request by padding the original data and
calculating a new hash (see [5] and [6] for more details).

Concatenated values in a signature hash should also use unforgeable delimiters. Otherwise, it might
be possible to move part of a parameter’s value to another parameter’s value without changing the
signature as the concatenated string remains the same.

The following example shows a signature hash based on concatenated parameters without any
delimiters which could leave the application vulnerable:

HMAC_SHA256(SecretKey, Other Parameters + ReferenceString + NumericalAmount)

When the “ReferenceString” parameter could contain an arbitrary string, the “NumericalAmount”
parameter could be manipulated as shown below to create the same signature hash:

OtherParams=OtherValues&...&ReferenceString=SomeStringHere&NumericalAmount=89
OtherParams=OtherValues&...&ReferenceString=SomeStringHere8&NumericalAmount=9

When the encrypted values are used in multiple places within the input parameters (in cookies, or
POST/GET requests), the application often decrypts them in multiple places as well. The user may be
able to use those pages to decrypt unknown encrypted values in order to understand how the
application works. The problem can be severe if a user can shape and encrypt arbitrary data by using
the provided input parameters in order to replace the current encrypted parameters.

As was discussed in the “Replay Attacks” section, sometimes there is also no need to break the
cryptography methods, as they can be replayed.

2.10 Downloadable and Virtual Goods

CWE: 425

E-commerce applications which sell virtual goods such as application files, MP3s, streaming videos,
or PDF and document files can often be vulnerable to direct object reference attacks. In this case, an
attacker can download or use non-free materials for free just by guessing or finding the actual URLs
of the virtual products.

2.11 Hidden and Insecure Backend APIs

CWE: 656

NCC Group | Page 19 © Copyright 2019 NCC Group

Backend APIs which are used by electronic point of sale systems or payment servers are often old
and insecure, as they are not directly accessible to the users. Sometimes even mobile or tablet
application APIs are also insecure, as the developer did not think about security in the server side
application layer when implementing them.

Some of these APIs and web services do not have any protection against many of the described attack
techniques, and some of them even suffer from access control issues, allowing an attacker to perform
administrative tasks such as balance adjustment.

2.12 Using Test Data in Production Environment

CWE: 531

In order to implement an e-commerce application, test payment methods and dummy card data are
normally used in the testing or staging environments to prevent sending test requests to the live
payment APIs or banks. Developers often miss removing a code from the production environment that
is supposed to be only available in the testing environment. As a result, it is sometimes possible to
change some of the parameters in the request to force a live application to use the test data. In
addition, an e-commerce application may not show all of its payment methods, especially when they
are not enabled for a specific user or when they are not fully implemented. Some of the test pages
with which developers test and debug the functionality of third party APIs to ensure they work in the
right way can also be available on e-commerce websites. These debugging functions and test pages
can put the website in danger when found by an attacker.

The following shows an example of this vulnerability:

A website sent a numerical payment type to the server, alongside the other parameters which were
needed to complete a transaction. However, changing the payment type to other numerical values
could force the application to use the test payment gateway that used testing accounts to simulate the
live environment. This allowed an attacker to complete a transaction without spending real money, just
by connecting the application to its testing environment.

The destination page and all the input data in a payment request should be examined and tested to
make sure that is not possible to force a live application to use test data. For instance, sometimes
changing the “HOST” header in the HTTP request to a known internal hostname that is used for testing
can trigger this vulnerability.

In addition, payment-specific testing data should also be tested in order to make sure that it is not
possible to use it in the live environment. For instance, in one application it was possible to use the
Sage Pay test card data [9] in a real transaction.

2.13 Currency Arbitrage in Deposit/Buy and Withdrawal/Refund

If an e-commerce application supports different payment methods with different currencies, someone
can potentially deposit money in one currency and withdraw it with another. Arbitrage occurs when the
deposit and the withdrawal methods are different (such as using a credit card company to deposit
money and PayPal for money withdrawal) and they use inconsistent exchange rates.

For instance, imagine a third party website supports two different payment types (let’s call them Bank
A and B) to deposit or withdraw money in or from the website. The USD-to-EUR exchange rate with
the commission is 3/2 (giving $3 for €2) using Bank A, and the EUR-to-USD exchange rate is 3/4 using
Bank B (giving €3 for $4). By depositing 8 Euros in the website using Bank A, 12 Dollars will be
deposited (exchange rate = 3/2). Now, by withdrawing this 12 Dollars from the website and depositing
them into Bank B, 9 Euros will be deposited for the user (exchange rate = 3/4). This gives one
additional Euro to the user who only had deposited 8 Euros to the website originally.

NCC Group | Page 20 © Copyright 2019 NCC Group

Figure 9: Exploiting currency arbitrage

A more sophisticated issue can be found when a financial application supports money transfer with
different currencies, as multiple-currency arbitrage (such as triangular arbitrage) can be exploited
when the commission fees are negligible.

It is rare to see this vulnerability among banking and trading applications, due to the use of high-speed
computer networks which can alarm them to close the gap whenever arbitrage can happen [3].
However, an e-commerce application that updates its exchange rate slowly can be a victim of this
exploitation technique.

NCC Group | Page 21 © Copyright 2019 NCC Group

3 Conclusions
In this paper, the following attack methods and testing methodologies were discussed against e-
commerce, payment, and trading applications:

• Time-of-Check-Time-of-Use (TOCTOU) and race condition issues
o Transferring money/points or buying items simultaneously
o Changing the order upon payment completion
o Changing the order after payment completion

• Parameter manipulation
o Price manipulation
o Currency manipulation
o Quantity manipulation
o Shipping address and post method manipulation
o Additional costs manipulation
o Response manipulation
o Repeating an input parameter multiple times
o Omitting an input parameter or its value
o Mass assignment, autobinding, or object injection
o Monitor the behaviour while changing parameters to detect logical flaws

• Replay attacks
o Replay the call-back request
o Replay an encrypted parameter

• Rounding issues
o Currency rounding issues
o Generic rounding issues between different applications

• Numerical processing
o Negative numbers
o Decimal numbers
o Large or small numbers
o Overflows and underflows
o Zero, null, or subnormal numbers
o Exponential notation
o Reserved words
o Numbers in different formats

• Credit card and other payment card related issues
o Showing a saved card number during the payment process
o Card number enumeration via registering duplicate cards

• Dynamic prices, prices with tolerance, or referral schemes
• Discount codes, vouchers, offers, reward points, and gift cards

o Enumeration and guessing
o Vouchers and offers stacking
o Earning more points or cash return than the price when buying an item
o Using expired, invalid, or other users’ codes
o State and basket manipulation
o Refund abuse
o Buy-x-get-y-free
o Ordering out of stock or unreleased items
o Bypassing other restrictions
o Point transfer

• Cryptography Issues
• Downloadable and virtual goods
• Hidden and insecure backend APIs
• Using test data in production environment
• Currency arbitrage in deposit/buy and withdrawal/refund

These attack methods can also be used against other similar applications such as betting and
gambling applications, or other financial services platforms.

NCC Group | Page 22 © Copyright 2019 NCC Group

In addition to the items which were discussed in this research, web applications should also be tested
for common vulnerabilities to ensure comprehensive coverage. Organisations such as OWASP
provide good advice on what to cover, and how to gain this coverage.

It is clear that while there are common factors in all web applications, understanding the supporting
business process and thus specific threats is imperative in order to tease out certain vulnerabilities. It
is for this reason that today humans can provide a more complete picture than automated tooling
alone. In the future we can expect approaches such as expert systems to go some way to make up
this ground, however today certain vulnerability classes, and thus threats, can only reliably be
discovered by humans and manual tests within dynamic application environments.

NCC Group | Page 23 © Copyright 2019 NCC Group

4 References and Further Reading
The following references were used in the production of this whitepaper.

1. Research Insights Volume 1 - Sector Focus: Financial Services
https://www.nccgroup.trust/media/481879/research-insights-vol-1_sector-focus-financial-
services-mar2015-online.pdf

2. Is Your Online Bank Vulnerable To Currency Rounding Attacks?
http://blog.acrossecurity.com/2012/01/is-your-online-bank-vulnerable-to.html

3. Currency Arbitrage
http://www.investopedia.com/terms/c/currency-arbitrage.asp

4. Corsaire Whitepaper: Breaking the Bank
http://lists.owasp.org/pipermail/webappsec/2008-July/000634.html

5. Ron Bowes – Crypto: You’re Doing It Wrong
https://www.youtube.com/watch?v=j3wXitDweC4#t=1411

6. Flickr API Signature Forgery
http://netifera.com/research/flickr_api_signature_forgery.pdf

7. Don’t trust a string based on TryParse or IsNumeric result
https://soroush.secproject.com/blog/2012/10/dont-trust-a-string-based-on-tryparse-or-
isnumeric-result-netvbscript/

8. The PCI Security Standards Council Website
https://www.pcisecuritystandards.org/

9. Test Card Details for Your Test Transactions
http://www.sagepay.co.uk/support/12/36/test-card-details-for-your-test-transactions

10. Common Weakness Enumeration
https://cwe.mitre.org/

11. Online shoplifting – exploiting e-commerce basket and voucher faults for five-

finger discount

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2019/april/online-
shoplifting-exploiting-e-commerce-basket-and-voucher-faults-for-five-finger-discount/

https://www.nccgroup.trust/media/481879/research-insights-vol-1_sector-focus-financial-services-mar2015-online.pdf
https://www.nccgroup.trust/media/481879/research-insights-vol-1_sector-focus-financial-services-mar2015-online.pdf
http://blog.acrossecurity.com/2012/01/is-your-online-bank-vulnerable-to.html
http://www.investopedia.com/terms/c/currency-arbitrage.asp
http://lists.owasp.org/pipermail/webappsec/2008-July/000634.html
https://www.youtube.com/watch?v=j3wXitDweC4%23t=1411%20
http://netifera.com/research/flickr_api_signature_forgery.pdf
https://soroush.secproject.com/blog/2012/10/dont-trust-a-string-based-on-tryparse-or-isnumeric-result-netvbscript/
https://soroush.secproject.com/blog/2012/10/dont-trust-a-string-based-on-tryparse-or-isnumeric-result-netvbscript/
https://www.pcisecuritystandards.org/
http://www.sagepay.co.uk/support/12/36/test-card-details-for-your-test-transactions
https://cwe.mitre.org/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2019/april/online-shoplifting-exploiting-e-commerce-basket-and-voucher-faults-for-five-finger-discount/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2019/april/online-shoplifting-exploiting-e-commerce-basket-and-voucher-faults-for-five-finger-discount/

	1 Introduction
	2 Common Vulnerability Classes in Financially-Oriented Web Applications
	2.1 Time-of-Check-Time-of-Use (TOCTOU) and Race Condition Issues
	2.1.1 Transferring Money or Points, or Buying Items Simultaneously
	2.1.2 Changing the Order upon Payment Completion
	2.1.3 Changing the Order after Payment Completion

	2.2 Parameter Manipulation
	2.2.1 Price Manipulation
	2.2.2 Currency Manipulation
	2.2.3 Quantity Manipulation
	2.2.4 Shipping Address and Post Method Manipulation
	2.2.5 Additional Costs Manipulation
	2.2.6 Response Manipulation
	2.2.7 Repeating an Input Parameter Multiple Times
	2.2.8 Omitting an Input Parameter or its Value
	2.2.9 Mass Assignment, Autobinding, or Object Injection
	2.2.10 Monitor the Behaviour while Changing Parameters to Detect Logical Flaws

	2.3 Replay Attacks (Capture-Replay)
	2.3.1 Replaying the Call-back Request
	2.3.2 Replaying an Encrypted Parameter

	2.4 Rounding Errors
	2.4.1 Currency Rounding Issues
	2.4.2 Generic Rounding Issues

	2.5 Numerical Processing
	2.5.1 Negative Numbers
	2.5.2 Decimal Numbers
	2.5.3 Large or Small Numbers
	2.5.4 Overflows and Underflows
	2.5.5 Zero, Null, or Subnormal Numbers
	2.5.6 Exponential Notation
	2.5.7 Reserved Words
	2.5.8 Numbers in Different Formats

	2.6 Card Number-Related Issues
	2.6.1 Showing a Saved Card Number during the Payment Process
	2.6.2 Card Number Enumeration via Registering Duplicate Cards

	2.7 Dynamic Prices, Prices with Tolerance, or Referral Schemes
	2.8 Discount Codes, Vouchers, Offers, Reward Points, and Gift Cards
	2.8.1 Enumeration and Guessing
	2.8.2 Vouchers and Offers Stacking
	2.8.3 Earning More Points or Cash Return than the Price when Buying an Item
	2.8.4 Using Expired, Invalid, or Other Users’ Codes
	2.8.5 State and Basket Manipulation
	2.8.6 Refund Abuse
	2.8.7 Buy-X-Get-Y-Free
	2.8.8 Ordering Out of Stock or Unreleased Items
	2.8.9 Bypassing Other Restrictions
	2.8.10 Point Transfer

	2.9 Cryptography Issues
	2.10 Downloadable and Virtual Goods
	2.11 Hidden and Insecure Backend APIs
	2.12 Using Test Data in Production Environment
	2.13 Currency Arbitrage in Deposit/Buy and Withdrawal/Refund

	3 Conclusions
	4 References and Further Reading

