

Who am I?

• NCC Group Research Director

• >20 years in information security

• Still very hands-on

• Enjoy testing more unusual technologies

• Also developing tools to test them

What is Zulu?

• Zulu is an interactive GUI-based fuzzer

• Written in Python

• As much as possible, input and output-agnostic

• Multiple modules

• Extendible via ZuluScript

Motivations behind the tool

• I had lots of unique “fuzzer scripts”

• Fuzzing frameworks have a steep learning curve

• Fuzzers should be quick and easy to setup

• Wanted a point-and-click solution

• Needed to be scriptable to add complexity where
required

Zulu basics – the GUI

Zulu basics – typical data

Zulu basics – the console

File structure

• /bin - Zulu binaries and custom.py (ZuluScript Python)

• /crashfiles - When file fuzzing, files that have caused the target to
crash

• /fuzzdb - the fuzzer testcase files

• /images - images used by the GUI

• /logs - log files

• /pcap - when Wireshark integration is enabled, auto-generated PCAP
files

• /PoC - when a crash occurs a PoC is auto-generated

• /sessions - configuration options and captured packets

• /tempfiles - when file fuzzing, temp manipulated files are stored here

• /templates - the template used to generate the PoC files is in here

Proxy-based network module

Configure the proxy

Use the standard network client

Select some fuzz points

Select mutators

Select output method

Start fuzzing

Instrumentation and triage

Other inputs: PCAP files

Wireshark captures

Importing a PCAP

File module

Select input file

Select file fuzzer + fuzz process

Fuzz process + debugging

USB module

Graphic USB

Import generator script

Select USB fuzzer

Fuzzer running

Serial module

Serial settings

Serial data capture

Serial fuzzing

Wireshark integration

Point to Wireshark binary

Auto-load Wireshark

VMware integration

Select file fuzzer + fuzz process

GUI-power

Adding a length field

No need to watch! Email alerts

Select email settings

Advanced features - ZuluScript

Using ZuluScript

• How do you modify a packet after the mutator but before being
processed by the target?

• The answer is by using ZuluScript

• Python script stored in a special file (/bin/custom.py)

• Includes a sample UpdateContentLengthField() function

Access to data

• self.packets_selected_to_send = list of packets selected to
send [[packet number, data],[packet number, data]...]

• self.all_packets_captured = list of all packets captured
[[[source IP,source port],data], [[source IP,source
port],data]...]

• self.modified_data = list of all the data in the current packet
(after any modification with fuzzpoint data) [byte1, byte2,
byte3...]

• self.current_packet_number = the number of the current
packet being processed (packet 0 is the first packet)

Bugs that Zulu has found

• Samba 'AndX' request remote heap overflow (CVE-2012-0870)

• Oracle 11g TNS listener remote null pointer dereference

• Apple OS X USB Hub Descriptor bNbrPorts Field Handling
Memory Corruption

• …and many others that haven’t been fixed yet

Zulu is available on Github

Zulu can be downloaded today at:

https://github.com/nccgroup/zulu

