
ESP-IDF BluFi Reference
Application Vulnerability
Disclosure

Espressif Systems
Version 1.1 – March 6, 2025

Prepared By
James Chambers

1 Summary
The following vulnerabilities are in the ESP-IDF BluFi Reference Application (https://
github.com/espressif/esp-idf/tree/master/examples/bluetooth/blufi).

These vulnerabilities affect at least ESP-IDF versions 5.0.7, 5.1.5, 5.2.3, and 5.3.1, which are
the latest release versions at time of submission.

Memory corruption vulnerabilities were verified using an ESP32-S3-DevKitC-1. Proof-of-
concepts for triggering the buffer overflows were implemented with Python 3 code running
on macOS.

BluFi application projects for each release version are included in the blufi_apps.zip
attachment. Proof-of-concept exploit code is included in the blufi_exploits.zip
attachment.

2 / 15 – Summary

https://github.com/espressif/esp-idf/tree/master/examples/bluetooth/blufi
https://github.com/espressif/esp-idf/tree/master/examples/bluetooth/blufi

2 Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the
severity of the risk, application’s exposure and user population, technical difficulty of
exploitation, and other factors.

Title Status ID Risk

Buffer Overflows in WiFi Credential Setting
Commands

Reported WXR High

Buffer Overflow in Diffie-Hellman Key Negotiation
Commands

Reported V3L High

Unauthenticated Key Exchange Reported YL7 High

Out-of-Bounds Reads in Diffie-Hellman Key
Negotiation

Reported YQG Medium

Key Exchange Algorithm Doesn’t Meet Best Practices Reported 2BB Medium

Lack of Cryptographic Authentication for Secure
Messages

Reported A2M Low

3 / 15 – Table of Findings

3 Finding Details

Buffer Overflows in WiFi Credential Setting
Commands
Overall Risk High

Impact High

Exploitability High

Finding ID NCC-BluFi-Ref-WXR

Category Data Validation

Status Reported

CVSS 8.7 (CVSS:4.0/AV:A/AC:L/AT:N/PR:N/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N)

Impact
An attacker within Bluetooth range can achieve arbitrary code execution on an ESP32
device running the BluFi reference code by exploiting the WiFi credential setting commands.

Description
Handlers for the WiFi credential setting commands ESP_BLUFI_EVENT_RECV_STA_SSID , ESP_BLUF
I_EVENT_RECV_STA_PASSWD , ESP_BLUFI_EVENT_RECV_SOFTAP_SSID , and ESP_BLUFI_EVENT_RECV_SOFT
AP_PASSWD unsafely copy the input credential buffer into a global variable buffer. While these
commands use strncpy to copy the buffer, the supplied length limit matches the length of
the input, rather than the length of the destination buffer.

For example, ESP_BLUFI_EVENT_RECV_STA_SSID copies the input SSID from param-
>sta_ssid.ssid into sta_config.sta.ssid , but provides the length limit param-
>sta_ssid.ssid_len instead of sizeof(sta_config.sta.ssid) :

Each of these unsafe strncpy operations allows an attacker to overflow the buffers in global
memory. Which variables are adjacent to the vulnerable buffers is determined at compile
time. An attacker could overwrite adjacent function pointers or data structures that can be
manipulated to take control of the instruction pointer, and then achieve arbitrary code
execution through techniques such as Return Oriented Programming.

We noted that in ESP-IDF 5.0 builds the WiFi config structures are located very close to the
btc_profile_cb_tab callback table. This allows for a simple overflow to overwrite the BluFi
callback function pointer entry, which allows the attacker to take control of the instruction
pointer.

In ESP-IDF 5.3 builds there was more unrelated data located between the WiFi config
structures and the btc_profile_cb_tab callback table, and overwriting random data
structure pointers caused the device to crash. In this case we were able to use a different
technique to take control of the instruction pointer.

In ESP-IDF 5.0 and 5.3 builds, the pointer to the BluFi security state structure, blufi_sec ,
was located just after the WiFi config structures. By setting up a fake blufi_security struct
in the SoftAP config structure and then overwriting the blufi_sec pointer to redirect to this
fake data structure, we were able to create a write-what-where primitive triggered via the
SEC_TYPE_DH_PARAM_DATA security negotiation command. Using the write-what-where
primitive we then overwrote a function pointer in btc_profile_cb_tab to take control of the
instruction pointer, as before.

High

case ESP_BLUFI_EVENT_RECV_STA_SSID:

strncpy((char *)sta_config.sta.ssid, (char *)param->sta_ssid.ssid, param->sta_ssid.ssid

_len);

sta_config.sta.ssid[param->sta_ssid.ssid_len] = '\0';

4 / 15 – Finding Details

Recommendation
Handlers for ESP_BLUFI_EVENT_RECV_STA_SSID , ESP_BLUFI_EVENT_RECV_STA_PASSWD ,
ESP_BLUFI_EVENT_RECV_SOFTAP_SSID , and ESP_BLUFI_EVENT_RECV_SOFTAP_PASSWD should all be
updated to fix the vulnerable strncpy calls.

The call to each strncpy should use the size of the destination buffer (e.g.,
sizeof(sta_config.sta.ssid)) as the length parameter, and add a null terminator at buf_len
- 1 when necessary (e.g., sizeof(sta_config.sta.ssid) - 1).

Location
examples/bluetooth/blufi/main/blufi_example_main.c

5 / 15 – Finding Details

Buffer Overflow in Diffie-Hellman Key
Negotiation Commands
Overall Risk High

Impact High

Exploitability High

Finding ID NCC-BluFi-Ref-V3L

Category Data Validation

Status Reported

CVSS 8.7 (CVSS:4.0/AV:A/AC:L/AT:N/PR:N/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N)

Impact
An attacker within Bluetooth range can achieve arbitrary code execution on an ESP32
device running the BluFi reference code by exploiting the initial secure key exchange
commands.

These commands are used to establish a secure channel at the beginning of the connection,
so even if extra functionality were added to the BluFi application to require a user to
authenticate before setting WiFi credentials, these commands would be vulnerable to
unauthenticated attackers.

Description
At the beginning of the secure key exchange process, the BluFi reference code reads Diffie-
Hellman parameters from the peer (a BluFi client application), including the generator and

modulus used for calculating public keys. The parameters are read into the
blufi_sec->dhm Diffie-Hellman context structure:

The ESP32 then calculates a public key to match the length of the modulus p provided by
the peer. Calling mbedtls_dhm_get_len(&blufi_sec->dhm) returns the size of the P multi-
precision integer in the Diffie-Hellman parameters. (Older versions of the BluFi reference
application, such as the one in ESP-IDF v4.4, do the equivalent by calling mbedtls_mpi_size(
&blufi_sec->dhm.P) .)

However, the BluFi application hard-codes the size of its public key buffer to be 128 bytes
(1024 bits), which may not match the size of the parameters received from the peer:

High

g

p

uint8_t *param = blufi_sec->dh_param;

memcpy(blufi_sec->dh_param, &data[1], blufi_sec->dh_param_len);

ret = mbedtls_dhm_read_params(&blufi_sec->dhm, ¶m, ¶m[blufi_sec->dh_param_len]);

const int dhm_len = mbedtls_dhm_get_len(&blufi_sec->dhm);

ret = mbedtls_dhm_make_public(&blufi_sec->dhm, dhm_len, blufi_sec->self_public_key, dhm_len,

myrand, NULL);

struct blufi_security {

#define DH_SELF_PUB_KEY_LEN 128

#define DH_SELF_PUB_KEY_BIT_LEN (DH_SELF_PUB_KEY_LEN * 8)

uint8_t self_public_key[DH_SELF_PUB_KEY_LEN];

#define SHARE_KEY_LEN 128

#define SHARE_KEY_BIT_LEN (SHARE_KEY_LEN * 8)

uint8_t share_key[SHARE_KEY_LEN];

size_t share_len;

#define PSK_LEN 16

uint8_t psk[PSK_LEN];

uint8_t *dh_param;

6 / 15 – Finding Details

If the peer specifies a modulus larger than 1024 bits, the ESP32 will overflow its public key
buffer when calculating a public key.

Since the attacker controls the Diffie-Hellman generator and modulus parameters, they can
force the other party to calculate a specific public key no matter what random private key
exponent they choose. This allows the attacker to send an arbitrary buffer to overflow the
self_public_key buffer with.

The largest possible size an MbedTLS multi-precision integer can be is 1024 bytes, or 8192
bits (MBEDTLS_MPI_MAX_SIZE). Range checks and modular exponentiation functions used by
mbedtls_dhm_make_public require that the modulus is an odd number, and that the generated
public key is in the range .

To calculate specific bytes into self_public_key , the attacker creates an arbitrary buffer and
then converts it into an integer. The last few bits must be adjusted so that it is an odd
number and has a remainder of 1 when divided by 3. This is used as the generator
parameter . The modulus is then . No matter what random positive non-zero exponent

the device chooses, the result of the public key calculation is .

By overwriting the dh_param pointer and dh_param_len size value within the same
blufi_security data structure, the attacker can then send another SEC_TYPE_DH_PARAM_DATA
command to write to an arbitrary location in memory with the call to memcpy(blufi_sec-
>dh_param, &data[1], blufi_sec->dh_param_len) . This creates a write-what-where primitive
that the attacker can use to take control of the device’s instruction pointer.

Recommendation
The call to mbedtls_dhm_make_public should not use an output length olen larger than the
size of the destination buffer. As the output length should also be at least equal to ctx->len ,
consider increasing the size of self_public_key to MBEDTLS_MPI_MAX_SIZE , or dynamically
allocating a sufficiently sized buffer for the public key.

There are further cryptographic concerns for using finite field Diffie-Hellman with a key size
limited to 1024 bits, as well as allowing the peer to specify the generator and modulus
parameters instead of using safe pre-determined values. These concerns are described in
finding "Key Exchange Algorithm Doesn't Meet Best Practices".

Location
esp-idf/examples/bluetooth/blufi/main/blufi_security.c

[2, p− 2]

g 3g x

gx mod 3g g

int dh_param_len;

uint8_t iv[16];

mbedtls_dhm_context dhm;

mbedtls_aes_context aes;

};

7 / 15 – Finding Details

Unauthenticated Key Exchange
Overall Risk High

Impact High

Exploitability Medium

Finding ID NCC-BluFi-Ref-YL7

Category Cryptography

Status Reported

CVSS 7.4 (CVSS:4.0/AV:A/AC:H/AT:P/PR:N/UI:P/VC:H/VI:H/VA:N/SC:N/SI:N/SA:N)

Impact
An attacker who can perform a Man-in-the-Middle on the BluFi BLE connection would be
able to decrypt and/or alter all messages sent across the connection, which could reveal
secret information such as WiFi network credentials.

Description
The BluFi reference application secure key exchange process is unauthenticated, making it
vulnerable to an active Man-in-the-Middle attack on the connection between a client and
ESP32 device.

Without authenticated pairing, the BluFi client has no way to check if it has connected to the
real target device. If they connect to an attacker’s BLE device instead, the attacker can
establish a separate connection with the real target device and pass messages across the
link, with the ability to decrypt and tamper with anything sent between the client and ESP32
device.

Recommendation
The lack of authentication in the key exchange process is difficult to solve without some
kind of public key infrastructure or ability to display a code on the ESP32-based device
(similar to Bluetooth passkey or numeric comparison). These solutions would be specific to
each application built upon the BluFi reference app.

The lack of authenticated pairing should at least be called out with a warning for developers
using the BluFi reference application.

Location
esp-idf/examples/bluetooth/blufi/main/blufi_security.c

High

8 / 15 – Finding Details

Out-of-Bounds Reads in Diffie-Hellman Key
Negotiation
Overall Risk Medium

Impact Low

Exploitability High

Finding ID NCC-BluFi-Ref-YQG

Category Data Exposure

Status Reported

CVSS 5.3 (CVSS:4.0/AV:A/AC:L/AT:N/PR:N/UI:N/VC:L/VI:N/VA:N/SC:N/SI:N/SA:N)

Impact
An attacker within Bluetooth range can cause the ESP32 device to read out-of-bounds data
into Diffie-Hellman parameter setup structures, leaking very limited information about the
content of the out-of-bounds data.

Description
The blufi_dh_negotiate_data_handler for handling DH key negotiation messages fails to
check the length of the received data buffer before reading from it.

For example, blufi_dh_negotiate_data_handler initially reads a message type byte without
checking that len is greater than zero:

For SEC_TYPE_DH_PARAM_LEN messages, the handler accesses offsets 1 and 2 into data
without checking its length is at least 3:

The most significant OOB read is in the handler for SEC_TYPE_DH_PARAM_DATA , where it can
read up to 65k bytes of out-of-bounds data based on the attacker-controlled dh_param_len
value. The size of the data buffer isn’t checked against blufi_sec->dh_param_len before
doing a memcpy operation:

An attacker could trigger this by sending an SEC_TYPE_DH_PARAM_LEN message that specifies a
length of 0xFFFF, and then send a SEC_TYPE_DH_PARAM_DATA message only containing one
byte (the type value).

Recommendation
Use the len argument to validate the size of the data buffer before reading from it. Ensure
that the size and offset of the read remains within the bounds of the buffer.

Location
esp-idf/examples/bluetooth/blufi/main/blufi_security.c

Medium

uint8_t type = data[0];

case SEC_TYPE_DH_PARAM_LEN:

blufi_sec->dh_param_len = ((data[1]<<8)|data[2]);

memcpy(blufi_sec->dh_param, &data[1], blufi_sec->dh_param_len);

9 / 15 – Finding Details

Key Exchange Algorithm Doesn’t Meet Best
Practices
Overall Risk Medium

Impact High

Exploitability Low

Finding ID NCC-BluFi-Ref-2BB

Category Cryptography

Status Reported

CVSS 5.9 (CVSS:4.0/AV:A/AC:H/AT:N/PR:N/UI:P/VC:H/VI:N/VA:N/SC:N/SI:N/SA:N)

Impact
The secure key negotiation scheme used in the BluFi reference application doesn’t follow
modern best practices for algorithm or parameter choice.

A compromised secure key exchange process could allow an attacker to eavesdrop on
messages between a client and ESP32 device to leak sensitive data such as WiFi network
credentials.

Description
There are several cryptographic concerns with the way secure key exchange is performed in
the BluFi reference application:

Using finite field Diffie-Hellman with a key size limited to 1024 bits

Allowing the peer to specify the generator and modulus parameters instead of using safe
pre-determined values

Using finite field Diffie-Hellman (DH) instead of Elliptic-curve Diffie–Hellman (ECDH)

Limiting the Diffie-Hellman key to only 1024 bits does not meet modern best practices for
cryptography. Attacks against pre-computed 1024 bit Diffie-Hellman parameters have been
considered feasible for nearly a decade. While the ESP32 reference application allows
arbitrary parameters to be supplied by the peer, the reference client applications for Android
and iOS do use pre-computed parameters:

https://github.com/EspressifApp/EspBlufiForAndroid/blob/1d707064e0930e3d4a3dc303e
9c81971e1304dc0/lib-blufi/src/main/java/blufi/espressif/BlufiClientImpl.java#L55

https://github.com/EspressifApp/EspBlufiForiOS/blob/87456f811bdc25e8e0aa2e307eee1
64a304f10e3/BlufiLibrary/Security/BlufiSecurity.m#L33

Using Elliptic-Curve Diffie-Hellman key exchange instead of finite field Diffie-Hellman would
avoid this weakness. See https://weakdh.org/.

Diffie-Hellman parameter validation in the mbedTLS library is not rigorous enough to prevent
the client from choosing insecure or intentionally malicious parameters; it primarily validates
public keys generated with generator and modulus parameters that are assumed to be safe.

Recommendation
Consider using ECDH instead of DH.

Safe base parameters should be chosen ahead of time and hard-coded into the BluFi ESP32
and client applications, so that only the public keys need to be exchanged between the
ESP32 and client applications.

For example, for finite field Diffie-Hellman, generate a safe 2048-bit (or larger) group ahead
of time. For Elliptic-Curve Diffie-Hellman, use Curve25519.

Medium

•

•

•

•

•

10 / 15 – Finding Details

https://github.com/EspressifApp/EspBlufiForAndroid/blob/1d707064e0930e3d4a3dc303e9c81971e1304dc0/lib-blufi/src/main/java/blufi/espressif/BlufiClientImpl.java#L55
https://github.com/EspressifApp/EspBlufiForAndroid/blob/1d707064e0930e3d4a3dc303e9c81971e1304dc0/lib-blufi/src/main/java/blufi/espressif/BlufiClientImpl.java#L55
https://github.com/EspressifApp/EspBlufiForAndroid/blob/1d707064e0930e3d4a3dc303e9c81971e1304dc0/lib-blufi/src/main/java/blufi/espressif/BlufiClientImpl.java#L55
https://github.com/EspressifApp/EspBlufiForAndroid/blob/1d707064e0930e3d4a3dc303e9c81971e1304dc0/lib-blufi/src/main/java/blufi/espressif/BlufiClientImpl.java#L55
https://github.com/EspressifApp/EspBlufiForiOS/blob/87456f811bdc25e8e0aa2e307eee164a304f10e3/BlufiLibrary/Security/BlufiSecurity.m#L33
https://github.com/EspressifApp/EspBlufiForiOS/blob/87456f811bdc25e8e0aa2e307eee164a304f10e3/BlufiLibrary/Security/BlufiSecurity.m#L33
https://github.com/EspressifApp/EspBlufiForiOS/blob/87456f811bdc25e8e0aa2e307eee164a304f10e3/BlufiLibrary/Security/BlufiSecurity.m#L33
https://github.com/EspressifApp/EspBlufiForiOS/blob/87456f811bdc25e8e0aa2e307eee164a304f10e3/BlufiLibrary/Security/BlufiSecurity.m#L33
https://weakdh.org/

Location
esp-idf/examples/bluetooth/blufi/main/blufi_security.c

11 / 15 – Finding Details

Lack of Cryptographic Authentication for
Secure Messages
Overall Risk Low

Impact Low

Exploitability Medium

Finding ID NCC-BluFi-Ref-A2M

Category Cryptography

Status Reported

CVSS 2.1 (CVSS:4.0/AV:A/AC:L/AT:P/PR:N/UI:P/VC:N/VI:L/VA:N/SC:N/SI:N/SA:N)

Impact
Encrypted messages sent over a BluFi BLE connection do not use cryptographic
authentication to ensure that the content of the messages has not been tampered with.

Description
The reference BluFi application uses AES in CFB mode for encryption. This cipher mode is
partially based on XOR operations, making it “malleable” - flipping a bit value in the
ciphertext directly results in a corresponding flip in the corresponding plaintext.

Currently, lack of authentication on the secure key exchange process is a more compelling
MitM attack as it would give the attacker the ability to fully decrypt and encrypt messages
using a known secret key.

Recommendation
Use a standard authenticated encryption mode such as AES-GCM. Ensure that the cipher
parameters are chosen securely. For example, for AES-GCM make sure to generate a
securely random nonce value for the initialization vector (IV) of each encrypted stream.

Location
esp-idf/examples/bluetooth/blufi/main/blufi_security.c

Low

12 / 15 – Finding Details

4 Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group
identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,
application’s exposure and user population, technical difficulty of exploitation, and other
factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.
Every organization has a different risk sensitivity, so to some extent these recommendations
are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target
system or systems. It takes into account the impact of the finding, the difficulty of
exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily
accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a
small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for
application improvement, functional issues with the application, or
conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or
systems. It takes into account potential losses of confidentiality, integrity and availability, as
well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on
the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny
access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly
degrade system performance. May have a negative public perception of
security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into
account the level of access required, availability of exploitation information, requirements
relating to social engineering, race conditions, brute forcing, etc, and other impediments to
exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or
significant roadblocks.

13 / 15 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,
exploit a race condition, already have privileged access, or otherwise
overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,
guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.
This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or
software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

14 / 15 – Finding Field Definitions

5 Contact Info
The team from NCC Group has the following primary member:

James Chambers – Researcher
james.chambers@nccgroup.com

•

15 / 15 – Contact Info

mailto:james.chambers@nccgroup.com

	Title Page
	Summary
	Table of Findings
	Finding Details
	Buffer Overflows in WiFi Credential Setting Commands
	Buffer Overflow in Diffie-Hellman Key Negotiation Commands
	Unauthenticated Key Exchange
	Out-of-Bounds Reads in Diffie-Hellman Key Negotiation
	Key Exchange Algorithm Doesn’t Meet Best Practices
	Lack of Cryptographic Authentication for Secure Messages

	Finding Field Definitions
	Risk Scale
	Category

	Contact Info

